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Abstract In this paper we study some nonoverlapping domain decomposition methods for solving a class

of elliptic problems arising from composite materials and flows in porous media which contain many spatial

scales. Our preconditioner differs from traditional domain decomposition preconditioners by using a coarse

solver which is adaptive to small scale heterogeneous features. While the convergence rate of traditional domain

decomposition algorithms using coarse solvers based on linear or polynomial interpolations may deteriorate in

the presence of rapid small scale oscillations or high aspect ratios, our preconditioner is applicable to multiple-

scale problems without restrictive assumptions and seems to have a convergence rate nearly independent of

the aspect ratio within the substructures. A rigorous convergence analysis based on the Schwarz framework is

carried out, and we demonstrate the efficiency and robustness of the proposed preconditioner through numerical

experiments which include problems with multiple-scale coefficients, as well problems with continuous scales.
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1 Introduction

Many problems of fundamental and practical importance have multiple-scale solutions. Typical
examples include transport of flows in strongly heterogeneous media and heat conduction in
composite materials. When applying conventional domain decomposition methods to these
problems using linear or polynomial interpolations, the convergence rate deteriorates because
the coarse grid solver does not account for fine scale heterogeneous features. To attain a
satisfactory convergence rate it is therefore important to construct a coarse grid solver which
reflects the small scale structures. Such a solver has been developed by Hou et al.[4,5] who
introduced the Multiscale Finite Element Method (MsFEM). The basic idea behind the MsFEM
is to construct base functions which are adaptive to the local property of the differential operator
and contain the important subgrid information.

An important property with the MsFEM solver is that the coarse space is ”generalized”
discrete harmonic with respect to the physical elliptic operator that contains small scale coef-
ficients. From a theoretical point of view, this property implies that the MsFEM solver is in a
sense optimal within a general class of coarse solvers. Furthermore it allows us to interpret the
MsFEM solver as a natural extension of coarse solvers using discrete harmonic coarse spaces to
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problems which contain multiple-scale coefficients. In particular, if the coarse grid is a triangu-
lation of the physical domain and the elliptic coefficients are quasi-homogeneous, i.e. constant
on each coarse grid element, then the corresponding MsFEM using linear boundary conditions
to construct the multiscale base functions simply reduces to standard linear finite elements.

Our main objective in this paper is to develop, analyze and test a class of nonoverlapping
domain decomposition methods using multiscale coarse grid solvers. These methods fall into
the category of Schwarz methods, and the main steps in our analysis is based on the general
abstract framework for the analysis of Schwarz methods, see [3,8,11,15,16]. We first demonstrate
that the MsFEM induces an ideal nonoverlapping domain decomposition preconditioner in 1D
which converges in one iteration. In 2D and 3D the ability to select proper boundary conditions
for the multiscale base functions will be important to achieve a fast convergence rate. We
derive condition number estimates for the multiscale domain decomposition preconditioner
by splitting the convergence rate into a homogenized part, which essentially depends on the
selection of boundary conditions for the base functions, and a multiscale part which depends on
the nature of the heterogeneous structures within the coarse grid elements. Our analysis shows
that the multiscale preconditioner almost achieves the same rate of convergence for multiscale
elliptic problems as traditional preconditioners with ”discrete harmonic” coarse solvers achieve
for elliptic problems with quasi-homogeneous coefficients. The extra multiscale factor has a
relatively weak dependence on the elliptic coefficients, and is hard to observe in practice.

We perform a series of numerical experiments to test the performance of our preconditioner
for elliptic partial differential equations in two dimensions. We choose the coarse grid and
the boundary conditions for the multiscale base functions so that the MsFEM solver is the
”multiscale extension” of bilinear finite elements. The elliptic coefficient function is chosen to
be the product of a quasi-homogeneous coefficient function and a periodic oscillatory coefficient
function. We demonstrate that the MsFEM induced preconditioner proposed in this paper
shows a logarithmic dependence on the mesh ratio H/h and is almost insensitive to the local
aspect ratios (for aspect ratios as high as 1010). This confirms that the rate of convergence
of our preconditioner for elliptic problems with high aspect ratios is essentially the same as
standard nonoverlapping domain decomposition methods using conventional conforming finite
element coarse solvers achieve for elliptic problems with quasi-homogeneous coefficients.

We compare our preconditioner with the preconditioners obtained by replacing the MsFEM
solver with the linear and bilinear finite element solvers. The convergence behavior for these
preconditioners may deteriorate rapidly if the aspect ratio within the coarse grid elements
blows up. As we are not aware of any other coarse solvers which successfully handles high
aspect ratios, the linear and bilinear finite element solvers serve the purpose of illustrating the
need for coarse solvers which are adaptive to the small scale structures.

The paper is organized as follows. In Section 2 we define the model problem and the
MsFEM, and outline the abstract Schwarz framework. In Section 3 we present the domain
decomposition preconditioner and provide the convergence analysis. The numerical results are
reported in Section 4 and we conclude with some remarks and directions for further work in
Section 5.

2 Mathematical Formulations

In Section 2.1 we introduce the elliptic model problem and outline the multiscale finite element
method in its original form which was defined and analyzed in [4,5]. The selection of boundary
functions for the multiscale base functions is addressed in Section 2.2. In Section 2.3 we give
some general remarks and show that the MsFEM solver is an ideal preconditioner for the Schur
compliment in 1D. Finally, in Section 2.4 we outline the abstract framework for the analysis of
Schwarz methods and give the abstract form of our preconditioner.
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2.1 Governing Equations and the MsFEM

We consider solving the second-order elliptic equation

−∇ ·
(
a(x)∇u

)
= f in Ω ⊂ Rd, (1)

u = 0 on ∂Ω, (2)

where a(x) = (aij(x)) is the conductivity tensor, assumed to be symmetric and positive definite
with upper and lower bounds. We also assume that Ω is a polygon if d = 2 and a polyhedron
if d = 3. Eq. (1) may represent single-phase porous media flow or steady state heat conduction
through a composite material. These are typical examples of problems where a(x) can be highly
oscillatory and the solution of (1)–(2) displays a multiple-scale structure.

The variational formulation of (1)–(2) is to seek u ∈ H1
0 (Ω) such that

a(u, v) :=
∫

Ω

(∇u)Ta∇v dx =
∫

Ω

fv dx := f(v), ∀ v ∈ H1
0 (Ω). (3)

In the conforming finite element method the approximate solution uh is sought in a finite
dimensional subspace V h ⊂ H1

0 (Ω), i.e. we seek u
h ∈ V h such that

a(uh, v) = f(v), ∀ v ∈ V h. (4)

We assume linear finite elements is applied for the fine mesh discretization. Thus, let T h = {τ}
be a quasi-uniform triangulation of Ω with mesh parameter h and let V h be the space of
piecewise linear functions determined by its values at the triangle (tetrahedral) vertices NT .
Furthermore, let KH = {K} be a quasi-uniform partitioning of Ω with mesh parameter H and
a corresponding set of nodal points NK ⊂ NT ∩ Γ, Γ = ∪

K∈KH
∂K, such that T h also forms a

triangulation of each K ∈ KH . Then, for each K ∈ KH we define the multiscale base functions
φi

K on K by
a(φi

K , v) = 0, ∀ v ∈ V h ∩H1
0 (K), i = 1, · · · , n(K), (5)

where n(K) is the number of base functions with support in K, i.e. the number of nodal points
xi ∈ NK ∩ ∂K. To make (5) well posed, we need to specify the boundary condition for φi

K . For
now, assume the base functions are continuous across the boundaries of the elements so that

V0 = span
{
φi

K : K ∈ KH , i = 1, · · · , n(K)
}
⊂ V h.

The MsFEM solution u0 ∈ V0 is thus defined by

a(u0, v) = f(v), ∀ v ∈ V0. (6)

For easy reference we write this equation in operator form, A0u
h = u0, where A0 is referred to

as the MsFEM operator.

2.2 Boundary Conditions for the Base Functions

The selection of proper boundary conditions for the base functions is important to achieve good
approximation properties. In fact, since the base functions satisfy the homogeneous equation
(5), the boundary conditions determines how well the local property of the operator is sampled
into the base functions. It was eg. observed in [4,5] that u− u0 may display a boundary layer
structure if improper boundary conditions are chosen.

From computational experience we found that boundary conditions which adapt to hetero-
geneous structures along the element boundaries in general lead to better accuracy than simple
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(smooth) boundary conditions. An appealing approach is to let the boundary condition µi
K for

φi
K be the solution of the reduced elliptic problem obtained from (1) by deleting terms with
partial derivatives in the direction normal to ∂K and having the coordinate normal to ∂K as a
parameter. The boundary data for µi

K is such that µi
K(xj) = δij , xj ∈ NK. One may verify that

this choice implies V0 ⊂ V h. Another possibility, which was proposed and analyzed in [4,5], is
by oversampling, i.e. by constructing base-functions ψi

S from a sampling element S ⊃ K, and
defining

φi
K =

n(K)∑
j=1

cijψ
i
S ,

where the constants cij are determined by the condition φi
K(xj) = δij . Because the boundary

conditions constructed in this way in general does not allow the inclusion V0 ⊂ V h, we see that
this leads to a non-conforming MsFEM.

Though the MsFEM solvers induced by the boundary conditions above may have better
approximation properties than eg. linear boundary conditions, they do not necessarily achieve
faster convergence of the domain decomposition iteration consisting of additional local solves.
In fact, preliminary tests showed that choosing the boundary conditions µi

K for φi
K to be the

solution of the reduced elliptic problem described above did not give faster convergence than if
linear boundary conditions for φi

K were used. To understand this we should keep in mind that
the coarse solver usually act the role of removing low frequency errors, while the local solves
remove high frequency errors. But most importantly, the local solves should be somewhat
complimentary to the coarse solver. Therefore, using non-smooth boundary conditions may
call for non-standard local solves.

2.3 General Remarks

Let V h be the linear finite element space in one dimension and let uh ∈ V h. Then the multiscale
finite element method inherit the special super convergence property u0 = uI , where uI is the
coarse scale interpolant of uh in V0. Indeed, since uh − uI vanishes at the coarse grid nodal
points NK = ∂K\∂Ω, we have

a(uI , v) = a(uh, v) = f(v), ∀ v ∈ V0.

Thus, in particular, by (6) and choosing v = uI − u0 we obtain

a(uI − u0, uI − u0) = 0,

which implies u0 = uI . It is interesting to observe that this super-convergence result remains
valid, using the same reasoning, for general functions u ∈ H1

0 (Ω) if we replace the roles of
V h ∩H1

0 (K) in (5) with H
1
0 (K). The solution to (3) can thus be decomposed as u = u0 + u∗

where u∗ is the sum of the local solutions u∗,K ∈ H1
0 (K) with

a(u∗,K , v) = f(v), ∀ v ∈ H1
0 (K).

This result implies that A0 is an ideal preconditioner for nonoverlapping domain decomposition
methods in 1D, i.e. κ(A−1

0 S) = 1 where S is the Schur compliment matrix.
There is, however, a fundamental difference between 1D and higher dimensional problems

since the “resonance error” caused by non-matching boundary conditions only occurs in multi-D.
This is clearly important since nonoverlapping domain decomposition methods act on the set of
interface variables Mh = V h|Γ and the convergence rate of the domain decomposition iteration
is closely related to the approximation properties of A0 on Γ, which, in turn, is determined by
the spaceM0 = V0 |Γ spanned by the boundary conditions for the multiscale space functions. To
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clarify the relation between the approximation properties of A0 on Γ and the selected boundary
conditions for the multiscale base functions, define the space of generalized discrete harmonic
functions,

W h =
{
w ∈ V h : a(w, v) = 0, ∀ v ∈ V h ∩H1

0 (KH)
}
,

and the generalized discrete harmonic extension operator Hh
a :Mh →W h,

a(Hh
aµ, v) = 0, ∀ v ∈ V h ∩H1

0 (KH).

If a(x) is quasi-homogeneous, then Hh
a coincides with the ordinary discrete harmonic extension

and we omit the subscript a and write Hh. In nonoverlapping domain decomposition methods
we reformulate (4) as follows,

Find µh ∈Mh : a(Hh
aµ

h,Hh
a ν) = (f,H

h
a ν), ∀ ν ∈Mh, (7)

Find u∗,K ∈ V h ∩H1
0 (K) : a(u∗,K , v) = f(v), ∀ v ∈ V h ∩H1

0 (K), (8)

and write uh = Hh
aµ

h +
∑

K∈KH

u∗,K . It thus follows that the relevant bilinear form for the

nonoverlapping domain decomposition formulation (7) is given by (µ, ν)M = a(Hh
aµ,H

h
a ν).

Now, since V0 ⊂ W h and u0 is the orthogonal projection of uh onto V0 with respect to a(·, ·)1/2,
it follows that µ0 = u0|Γ is the orthogonal projection of µh onto M0 with respect to (·, ·)1/2

M .
This implies that A0 is optimal, in a certain sense, for nonoverlapping domain decomposition
algorithms among all coarse solvers AH : V h → V H with V H |Γ =M0. In the remainder of this
paper we shall view A0 as an operator acting on the set of interface variables so that A0µ

h = µ0.

2.4 Framework for Analysis

Many nonoverlapping domain decomposition methods can be categorized as so called Schwarz
methods for which a simple framework for the convergence analysis exists, see [3,8,11,15,16].
This framework was originally developed for the analysis of domain decomposition precondi-
tioners for linear elliptic partial differential equations, but has later been extended to include
non-linear elliptic partial differential equations, see [13,14]. The abstract Schwarz framework
is based on a splitting of a finite dimensional Hilbert space V into subspaces with in general
much smaller dimension.

Thus, let Vi be a sequence of finite dimensional Hilbert spaces and let Ii : Vi → V be a
corresponding sequence of interpolationlike operators such that V allows the following decom-
position,

V =
p∑

i=0

IiVi :=
{
v : v =

∑
i

Iivi, vi ∈ Vi

}
,

The space V0 represents a coarse global approximation space while Vi, 1 ≤ i ≤ p, are subspaces
corresponding to some localized region in space. Let V be supplied with a symmetric positive
definite bilinear form a(·, ·) and assume that each Vi is supplied with an auxiliary symmetric
positive definite bilinear form (·, ·)i on Vi which approximates a(·, ·) on Vi in the following sense:

a(Iiv, Iiv) ≤ ω(v, v)i, ∀ v ∈ Vi, ∀ i.

The parameter ω is assumed to be bounded and plays a special role in the analysis of Schwarz
methods. Now, define the projectionlike operators Ti : V → Vi by,

(Tiu, v)i = a(u, Iiv), ∀u ∈ V, ∀ v ∈ Vi.

Finally, let P be a polynomial with no zero order term and suppose we want to find u∗ ∈ V
such that

a(u∗, v) = f(v), ∀ v ∈ V, f ∈ V ′. (9)
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The idea behind the general abstract Schwarz method is to replace (9) with a better conditioned
operator equation

P(T0, · · · , Tp)u = g∗,

where g∗ = P(T0, · · · , Tp)u∗. The Additive Schwarz method is eg. obtained by choosing

P(·) =
p∑

i=0

Ti. The following result bounds the condition number for the preconditioned abstract

additive Schwarz method (see [2,8,11,15]).
Theorem 1. Let C0 be a positive constant such that for any v ∈ V there exists a decomposition

v =
p∑

i=0

Iivi, vi ∈ Vi with
p∑

i=0

(vi, vi)i ≤ C0a(v, v),

and let

C1 = max
1≤j≤p

p∑
i=1

εij ,

where εij = 0 if TiTj = 0, and 1 otherwise. Then the abstract additive Schwarz method admits
the following estimate

κ
( p∑

i=0

Ti

)
≤ ω C0(1 + C1). (10)

We assume T0 = A0 and study the preconditioner

P( · ) = T0 +
(
I −

p∑
i=1

Ti

)
T0, (11)

for which it is known that κ(P) ≤ κ
( p∑

i=0

Ti

)
, see [7,11]. Note that (11) can be viewed as a

multiplicative Schwarz preconditioner on the splitting V = V0+V∗, V∗ = V , where the bilinear
form on V∗ is approximated with an additive Schwarz splitting into V1 to Vp. Hence, in each
iteration we first update the solution for the coarse subspace correction and then perform an
additive block Jakobi sweep to correct for the local “high frequency” error. This splitting
isolates the coarse subspace correction in each iteration, and it is therefore easier to single
out the effect of replacing conventional finite element solvers with the MsFEM operator A0.
Moreover, since V0 ⊂ V∗ = V , this multiplicative coarse-local splitting of V ensures that we
do not correct for the same error twice, regardless of the selected boundary conditions for the
multiscale base functions. Finally, it should be noted that the operator (11) can be symmetrized
by including a coarse subspace correction before and after the local additive solves. However,
this will not affect the result since A0 is an orthogonal projection and we do not gain anything
by applying A0 more than once in consecutive order.

3 The Domain Decomposition Preconditioner

We now study a class of domain decomposition methods arising from (11) with T0 = A0.
We shall leave the boundary conditions for the multiscale base functions undetermined, but
we assume that they induce a well defined problem with V0 ⊂ V h. We wish to point out,
however, that allowing non-conforming boundary conditions can improve the convergence rate
of the domain decomposition iteration in the same way the non-conforming finite element
methods may give superior performance to the analogous conforming finite element methods.
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For instance, it is well known that if we allow the subdomains to have sufficient overlap, then
the non-conforming linear finite element coarse solver allows an optimal rate of convergence for
the preconditioning of elliptic problems with quasi-homogeneous coefficients, see [10]. On the
other hand, we know that the conforming linear finite element method coarse solver induce a
suboptimal rate of convergence, see [1].

The local solves can be viewed as an overlapping additive Schwarz method where we use
a partition of unity to assemble the local solves. The idea of using an overlapping domain
decomposition strategy for nonoverlapping domain decomposition algorithms has been studied
before in various forms, see eg. [16] Section 7.2 and [12]. The main difference between the local
solves proposed below and those proposed in [16] is that we use “vertex based” subdomains
similar to the vertex domains in [12], while Xu et al. used “domain based” subdomains in [16].
The overlapping subdomains for our local solves are chosen to coincide with the support of
the multiscale base functions. This implies that the construction of A0 is comparable to one
iteration of the preconditioner, and it is therefore easy to measure the computational savings
we achieve with the MsFEM induced preconditioner.

We now proceed to develop the components the Schwarz preconditioner (11) for the pre-
conditioning of (7). First, let the bilinear form on V = Mh be given by ( · , · )M and note that
( · , · )0 = ( · , · )M by the definition of A0. To define the local components of (11), let Ω be
decomposed into the overlapping subdomains

Ωi = ∪{K ∈ KH : ∂K ∩ xi �= ∅, xi ∈ NK},

where we assume Ωi ∩NK = xi. Let Γi = Ωi ∩Γ and let Θ = {θi : Γi → (0, 1]} be a partition of
unity on Γ with θi(xj) = δij for xj ∈ NK where δij is the Kronecker delta function. In 2D it is
natural to let θi be linear on each edge E ⊂ Γi. Similarly, in 3D one can let θi be eg. linear or
bilinear on each face F ⊂ Γ, depending on the number of vertices for F . Now, let Mi =Mh|Γi

and define the local Schwarz operators on Mi according to,

Ii = Ih(1/θi) and Ti = Ih(θiPi),

where Pi is the orthogonal projection ontoMi with respect to ( · , · )1/2
M and Ih : H1/2(∂K)→Mh

is the nodal operator mapping µ ∈ H1/2(∂K) onto µh ∈ Mh with µ(x) = µh(x) for every
x ∈ NT ∩ Γ. The appropriate bilinear form on Mi is now defined by(

Ih(θiµ), Ih(θiν)
)
i
= (µ, ν)M , ∀µ, ν ∈Mi.

The choice of Ti, and thus of Ii and ( · , · )i, is unconventional, but has a very intuitive explana-
tion. Observe that each Pi has best approximation properties away from ∂Ωi and not so good
close to ∂Ωi since Pi correspond to solving (4) in Ωi with homogeneous Dirichlet boundary
conditions on ∂Ωi. Hence, each θi is in correspondence with Pi in such a way that θi is close
to one where Pi performs well, and close to zero where Pi performs poorly. Thus, by defining
Ti like above we gather the local updates such that the most reliable solution at any point is
weighted the most.

It is easy to see that the auxiliary bilinear forms ( · , · )i are symmetric positive definite.
Moreover, for any µ ∈Mh, we have

(Tiµ, ν)i = (Piµ, Iiν)M = (µ, Iiν)M , ∀ ν ∈Mi,

and, by definition,
(Iiµ, Iiµ)M = (µ, µ)i, ∀µ ∈Mi,

which implies ω = 1. It is therefore clear that Mi, ( · , ·)i, Ti and Ii fulfill the prerequisites for
Schwarz analysis. Hence, to obtain a bound on the condition number of our preconditioner we
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only need to bound the parameters C0 and C1. The parameter C1 is bounded independent of
the mesh parameters by a standard coloring argument, see eg. [11,16]. To bound C0 we first
observe that, since ( · , · )0 = ( · , · )M , estimating C0 amounts to showing, for each µ ∈Mh, the

existence of a representation µ =
p∑

i=0

µi, µi ∈Mi, with

p∑
i=0

(µi, µi)M ≤ C0(µ, µ)M . (12)

Note that this is the usual estimate for C0 corresponding to Ti = Pi, 1 ≤ i ≤ p.
Before we continue with the convergence analysis, let us outline the main steps in the

proposed domain decomposition algorithm. One loop of the domain decomposition iteration
consists of the following steps:

If not converged,
(a) uk+1

0 = uk +A0(uh − uk),
(b) uk+1

i = Pi(uh − uk+1
0 ), i = 1, · · · , p,

(c) uk+1 = uk+1
0 +

p∑
i=1

Ih(θiu
k+1
i ),

where uh is the solution to (7) and µk is the current approximation to µh after k iterations.

3.1 Analysis and Error Estimates

The purpose of the following is to estimate C0 and thereby obtain an estimate for the condition
number of our preconditioner (11). Our primary objective is to clarify the advantages of using
the MsFEM solver as opposed to conventional coarse finite element solvers. In particular we
want to establish that the MsFEM induced preconditioner is insensitive to the local aspect
ratios and thus show the same performance for elliptic problems with high aspect ratios as
traditional preconditioners with conventional coarse solvers show for elliptic problems with
quasi-homogeneous coefficients. The idea is to split the analysis into a homogenized part which
depends on the selected boundary conditions for the multiscale base functions, and a multiscale
part which only depends on the heterogeneous structures within the coarse grid elements.

To analyze the homogenized part of the multiscale algorithm we assume that there exists
an operator J : V h → HhM0 such that the following local stability estimates hold for each
v ∈ V h and K ∈ KH ,

|Jv|2H1(K) � β |v|2H1(K), (13)

‖v − Jv‖2
L2(K) � βH2|v|2H1(K). (14)

Estimates of this kind is the main ingredient in the analysis of traditional Schwarz algorithms
and has been established for a great variety of coarse spaces. For instance if KH is a triangulation
of Ω and M0 is the space of piecewise linear functions on Γ determined by its values at the
nodal points NK, then it is well known that β ∼ log(H/h) in 2D and β ∼ H/h in 3D. Similar
estimates holds if K is a polygon and linear on each edge or face F ⊂ ∂K, see [16] Section 5.2.
To eliminate this mesh dependence one need to allow non-conforming boundary conditions so
that M0 �⊂ Mh. In particular, the non-conforming linear finite element method allows β to be
independent of the mesh parameters, see [10]. We now state the following lemma.
Lemma 2. If the stability estimates (13)–(14) hold, then, for each v ∈ V h we have a decom-

position v =
p∑

i=0

vi, v0 ∈ HhM0, vi ∈ V h ∩H1
0 (Ωi), with

p∑
i=0

|vi|2H1(K) ≤ β |v|2H1(K), ∀K ∈ KH . (15)
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Proof. Since the subdomains have generous overlap, there exists a partition of unity Ψ = {ψi :
Ωi → (0, 1], 1 ≤ i ≤ p} on Ω such that ‖∇ψi‖L∞(Ω) � H−1. Thus, letting v0 = Jv, v∗ = v− v0
and vi = Ihψiv∗, we get (15) by following the proof in eg. [11], pp. 166–167. This proves (15).

As a direct consequence of (15) we have that for each µ ∈Mh, there exists a decomposition

µ =
p∑

i=0

µi, µi ∈Mi, such that

p∑
i=0

|Hhµi|2H1(K) ≤ β |Hhµ|2H1(K),∀K ∈ K. (16)

Indeed, since HhMh ⊂ V h, the estimate (15) holds for each v = Hhµ, µ ∈ Mh. Now, if

v =
p∑

i=0

vi, then we also have v =
p∑

i=0

Hhµi, µi = vi|Γ. Thus, by the minimal energy property

of discrete harmonic functions we have |Hhµi|H1(K) ≤ |vi|H1(K) and (16) follows.
We now turn to the general multiscale case. We thus want to replace Hh in (16) with Hh

a

and the H1 seminorm | · |H1(K) with the following local weighted norm on H1(K),

|u|2a,K =
∫

K

(∇u)Ta(x)∇u.

To this end, we introduce positive constants γ1(K) and γ2(K) such that

γ1(K) |Hhµ|2H1(K) ≤ |Hh
aµ|2a,K ≤ γ2(K) |Hhµ|2H1(K), ∀µ ∈Mh. (17)

Now, let γ1(K) and γ2(K) be the sharpest possible bounds in (17), and define

γ = max
K∈KH

γ2(K)
γ1(K)

. (18)

We have the following estimate for the condition number of (11).
Theorem 3. Let β and γ be as defined by (13)–(14) and (18). An upper bound for the
condition number of the multiscale domain decomposition preconditioner (11) is then given by

κ

(
T0 +

(
I −

p∑
i=1

Ti

)
T0

)
� γ β. (19)

Proof. Let µ ∈ Mh have the decomposition µ =
p∑

i=0

µi used in (16). Then, as a direct

consequence of (16) and (17) we obtain,

p∑
i=0

|Hh
aµi|2a,K ≤

p∑
i=0

γ2(K) |Hhµi|2H1(K) ≤ γ2(K)β |Hhµ|2H1(K) ≤
γ2(K)
γ1(K)

β |Hh
aµ|2a,K .

Thus, by (18) and summing over ∀K ∈ KH we have,

p∑
i=0

(µi, µi)M =
p∑

i=0

a(Hh
aµi,H

h
aµi) � γβa(Hh

aµ,H
h
aµ) = γβ(µ, µ)M . (20)

This bounds the parameter C0 in (12) and the desired result follows from (10). This completes
the proof of Theorem 3.
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It follows from Voigt-Reiss Inequality in the homogenization theory that γ1(K) is bounded
below by the “harmonic mean” of a(x) over K and γ2(K) is bounded above by the “arithmetic
mean” of a(x) over K. Indeed, if aε(x) is a symmetric periodic matrix in Rd×d, then the
homogenized matrix a0 satisfies the convergence of energies, see [6] Section 1.3,

lim
ε→0

|Hh
aε
µ|2aε,K = |Hh

a0
µ|2a0,K , ∀µ ∈Mh(∂K).

Moreover, by the Voigt-Reiss’s inequality (see [6] Section 1.6), we have
( 1
K

∫
K

a−1(x) dx
)−1

≤ a0 ≤
( 1
K

∫
K

a(x) dx
)
,

where the inequalities are to be interpreted in a spectral sense. Though a(x) may not be
periodic, the multiscale analysis only concerns the local nature of a(x) and we may think of K
as a periodic cell in an infinite periodic media. The bounds for γ1(K) and γ2(K) follows and
we obtain,

γ ≤ max
K∈KH

κ
(∫

K
a(x) dx

∫
K
a−1(x) dx

)
|K|2 .

The harmonic and arithmetic means are sharp lower and upper bounds for the homogenized
matrix in the sense that they are attained for perfectly stratified media with flow either per-
pendicular or parallel to the layers. But, they are also very crude in the sense that they do
not account for the heterogeneous structures within K. Many other and better bounds can be
found in the literature on upscaling for porous media flow, and some of these bounds can be
found in [9].

Since we always interpret coarse spaces for nonoverlapping domain decomposition in terms
of values on Γ, it seems appropriate to emphasize what makes our algorithm special. Philo-
sophically we see that the MsFEM coarse space V0 for general polygonal partitionings is a gen-
eralization of the coarse spaces discussed in [16], Section 5.2. However, they have not discussed
the technicalities which need to be considered if we have strongly varying coefficients within
the substructures. The important thing to keep in mind is that we have to select the coarse
grid operator so that it is close to the orthogonal projection onto V0 with respect to a( · , · )1/2.
For this purpose it is no longer sufficient to apply “discrete harmonic” coarse solvers.

Again we use the one dimensional case to illustrate. We now assume that a(τ) = cτ > 0 for
each τ ∈ T h since this is the resolution of the fine mesh discretization. First note that γ1(K)
and γ2(K) coincide with the harmonic mean of a(x) over K. To see this, let µ ∈Mh and define
u = Hh

aµ and v = Hhµ. Then, since v is linear on each K and a(x)∂xu is constant on each K,
we have

∂xv =
1
|K|

∫
K

∂xv =
1
|K|

∫
K

∂xu =
a(x)∂xu

|K|

∫
K

a(x)−1dx.

Thus we have,

|u|2a,K = a(x)∂xu

∫
K

∂xudx =
|K|2(∂xv)2∫

K
a−1dx

=
|K|∫

K
a−1dx

|v|2H1(K).

It follows that γ = 1 and we confirm the optimal convergence rate since β ∼ 1 in one dimension.
In contrast, if we replace A0 with the coarse grid linear finite element solver, then we need to
replace Hh

aµ0 in (20) with v0 = Hhµ0. Thus, if v0 is the interpolant of u ∈ W h in HhM0 so
that µ0 = µ, then

|v0|2a,K = ‖a‖L1(K)‖1/a‖L1(K)|u|2a,K .

The convergence of the corresponding linear finite element induced preconditioner thus depend
on the ratio of the arithmetic mean over the harmonic mean.
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4 Numerical Results

Let T h be a uniform triangulation of Ω = [0, 1]2 with mesh parameter h and let KH be a
uniform partitioning of Ω into squares with mesh parameter H. We assume the coarse to fine
grid mesh ratio is determined by the relation H/h = H−1. The right hand side in (1) is chosen
to be f ≡ 1. This choice of f implies that the solution uh will have a multiple scale structure if
the elliptic coefficients are oscillatory. The stopping criteria is set to be when the relative size
of the current residual to the initial residual drops below 10−5, i.e. when ‖rk‖2/‖b‖2 ≤ 10−5

where ‖ · ‖2 is the Euclidean norm.
The scalar coefficient function is assumed to have the form a(x) = aH(x)ah(x) where ah

is an H-periodic function and aH is quasi-homogeneous. It is clear that ah is determined by
its values in the unit cell Y = [0,H]d. We report results for three different choices of ah, a
uniformly oscillatory function ah,1, and two rather special functions with high aspect ratios, ah,2

and ah,3, used to identify situations where multiscale domain decomposition methods may give
a substantial improvement of the convergence rate. Hence, let k(τ), τ ∈ T h(Y ), be randomly
sampled from a uniform probability distribution on (0, 1] and define ah,1|Y (x) = k(x)p,

ah,2|Y (x) =
{
10pk(x), if dist(x, ∂Y ) ≤ h,

k(x), if dist(x, ∂Y ) > h,

ah,3|Y (x) =
{
k(x), if dist(x, ∂Y ) ≤ h,

10pk(x), if dist(x, ∂Y ) > h,

where p is some specified power which has the effect of scaling the local aspect ratios. The quasi-
homogeneous coefficient function aH is chosen to be either aH ≡ 1, the periodic media case, or
aH(K) = k(K)2 where k(K) is randomly sampled from a uniform probability distribution on
(0, 100].

Fig. 1 Plots of ah,2 and ah,3 on a 2-by-2 coarse grid with H/h=15 and p=2.

The boundary conditions for the multiscale base functions are chosen to be linear and
determined by the requirement φi

K(xj) = δij where xj range over the set of vertices for K.
Hence, if ah ≡ 1, then A0 coincides with the coarse bilinear finite element solver. It is therefore
natural to use this solver for comparison below. We also compare with the standard linear finite
elements solver as this solver is perhaps the most popular coarse solver for domain decomposition
algorithms in 2D. We thus denote by AL and ABL the coarse grid finite element operators
constructed from linear and bilinear base functions respectively with coarse grid nodal points
NK. We denote by P0, the Schwarz preconditioner (11) induced by A0. Similarly we denote
by PL and PBL the Schwarz operators induced by replacing A0 with Hh

aAL and Hh
aABL

respectively.
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Table 1. The table shows iteration counts for each of the Schwarz operators P0, PL

and PBL for a periodic media in R2 with the prescribed choices of ah.

p H−1 ah = ah,1 ah = ah,2 ah = ah,3

P0 PBL PL P0 PBL PL P0 PBL PL

1 4 5 6 6 5 7 8 7 16 17

1 8 5 6 6 6 11 11 7 18 19

1 16 6 7 7 7 15 15 7 18 18

1 32 6 7 7 6 14 15 7 14 14

2 4 6 7 9 7 10 11 7 30 30

2 8 7 11 11 8 18 19 9 93 94

2 16 6 11 11 7 19 19 10 >100 >100

2 32 7 11 11 8 23 23 9 >100 >100

3 4 7 8 9 8 11 12 6 34 34

3 8 6 13 14 6 17 17 9 >100 >100

3 16 7 19 19 8 24 24 12 >100 >100

3 32 8 21 22 9 28 28 12 >100 >100

Table 2. The table shows iteration counts for each of the Schwarz operators P0, PL

and PBL in R2 with the prescribed choices of aH and ah.

p H−1 ah = ah,1 ah = ah,2 ah = ah,3

P0 PBL PL P0 PBL PL P0 PBL PL

1 4 5 6 8 5 7 8 6 14 15

1 8 7 8 11 7 13 15 12 27 33

1 16 12 13 17 9 16 18 23 40 47

1 32 16 18 23 13 19 23 26 39 50

2 4 6 6 8 6 9 11 7 58 62

2 8 8 10 14 10 20 21 14 >100 >100

2 16 14 19 23 13 24 26 25 >100 >100

2 32 18 24 30 13 27 28 43 >100 >100

3 4 5 6 9 6 8 10 9 56 57

3 8 8 14 17 12 23 24 14 >100 >100

3 16 18 27 32 17 32 34 30 >100 >100

3 32 21 35 42 22 46 48 49 >100 >100

We first consider the periodic media case aH ≡ 1. Table 1 shows that the condition number
of P0 seems to be bounded independent of the mesh parameters H and h, and, in particular,
that the convergence rate seems to be nearly independent of ah. We wish to emphasize that the
scaling of the local aspect ratio through the parameter p has very little effect on the convergence
of the MsFEM induced preconditioner. We observe that the iteration count for PL and PBL

are comparable for all choices of ah. They perform reasonably well for moderate local aspect
ratios, i.e. for p = 1, but both solvers are clearly very sensitive to a scaling of the local aspect
ratios, especially for ah,3. This reflect that neither the linear finite element or bilinear finite
element coarse grid solver accounts for small scale features in the elliptic coefficients.

We now study the general non-periodic media problem where a is the product of a quasi-
homogeneous coefficient function aH and a periodic oscillatory coefficient function ah. Note
that multiplying ah with aH does not affect the local aspect ratios since aH only scales the
“mean” of a over the coarse grid elements. The results depicted in table 3 demonstrate that
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the iteration count for P0 still seems to be almost insensitive to the parameter p which scales
the local aspect ratios, even for p = 3 where the elliptic coefficients can vary more than 10
orders of magnitude within each coarse grid element. The iteration counts for P0 are consistent
with a logarithmic growth in H−1 = H/h. These results thus illustrate that the coarse MsFEM
solver A0 reveals only a weak dependence on the heterogeneous structures within the coarse
grid blocks.

We again observe that PL and PBL perform reasonably well for p = 1, but are clearly very
sensitive to a scaling of p, in particular for ah,3 where we again see that the coarse subspace
correction does not seem to have an important effect on the convergence rate for p = 2 and
p = 3. Hence, we conclude that the linear bilinear finite element coarse solvers perform very
poorly for high aspect ratios and are sensitive to the heterogeneous formation within the coarse
grid blocks.

5. Concluding Remarks

We have demonstrated that the proposed multiscale domain decomposition preconditioner is
applicable to problems with high aspect ratios as well as problems with continuous scales. The
numerical tests indicate a convergence rate nearly independent of the local aspect ratios and a
logarithmic dependence on the mesh ratio H/h. This latter dependence is of the same order
as conventional overlapping Schwarz methods using conforming finite element coarse solvers
achieve for quasi-homogeneous coefficients. It is possible to eliminate this mesh dependence by
considering non-conforming finite element spaces such as the oversampling strategy or selecting
boundary conditions for the multiscale base functions which correspond to eg. non-conforming
linear finite elements. These solvers will be considered in future work.

We have shown that the proposed preconditioner can lead to a significant gain in iterations
compared with the linear and bilinear finite element induced preconditioners discussed in this
paper. Since the construction of the multiscale finite element solver is comparable with one loop
of the domain decomposition iteration, we also see a substantial improvement in computational
cost. The linear and bilinear finite element induced preconditioners show good performance
for problems with small aspect ratios, and therefore serve the purpose of providing a valid
measure of the performance of the MsFEM induced preconditioner. We are not aware of any
coarse solvers in the literature which are able to handle high aspect ratios within the coarse grid
elements. The blow up of the iteration count for the linear and bilinear finite element induced
preconditioners therefore display a typical situation for conventional domain decomposition
preconditioners.

The key to the success of the proposed domain decomposition algorithm is that the coarse
subspace correction accounts for small scale heterogeneous features. In porous media flow
problems, the permeability tensor can often vary several orders of magnitude in the microscale
level. Thus, to obtain effective preconditioners for these problems it is very important that we
have a coarse solver which is adaptive to the small scale heterogeneities. We have shown that
the proposed preconditioner can be a very effective tool for these problems. In multi-phase
porous media flows, the savings can be even greater since the elliptic problem is only a part of
a set of coupled equations and involves solving the elliptic equation repeatedly.

We have also carried out preliminary tests for periodic oscillatory coefficients in 3D and
these show that the MsFEM solver retains its insensitivity to the local aspect ratios. The
performance of the MsFEM induced preconditioner to general three dimensional problems with
oscillatory coefficients will be studied in more detail in further work.
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