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In a recent paper [11], Hou and Shi introduced a new adaptive data analysis method
to analyze nonlinear and non-stationary data. The main idea is to look for the
sparsest representation of multiscale data within the largest possible dictionary
consisting of intrinsic mode functions of the form {a(t) cos(θ(t))}, where a ∈ V (θ),
V (θ) consists of the functions that are less oscillatory than cos(θ(t)) and θ′ � 0.
This problem was formulated as a nonlinear L0 optimization problem and an
iterative nonlinear matching pursuit method was proposed to solve this nonlinear
optimization problem. In this paper, we prove the convergence of this nonlinear
matching pursuit method under some scale separation assumptions on the signal.
We consider both well-resolved and poorly sampled signals, as well as signals with
noise. In the case without noise, we prove that our method gives exact recovery of
the original signal.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Developing a truly adaptive data analysis method is important for our understanding of many natural
phenomena. Although a number of effective data analysis methods such as the Fourier transform or windowed
Fourier transform have been developed, these methods use pre-determined bases and are mostly used to
process linear and stationary data. Applications of these methods to nonlinear and non-stationary data
tend to give many unphysical harmonic modes. To overcome these limitations of the traditional techniques,
time–frequency analysis has been developed by representing a signal with a joint function of both time
and frequency [9]. The recent advances of wavelet analysis have led to the development of several powerful
wavelet-based time–frequency analysis techniques [13,7,19,17]. But they still cannot remove the artificial
harmonics completely and do not give satisfactory results for nonlinear signals.

Another important approach in the time–frequency analysis is to study instantaneous frequency of a
signal. Some of the pioneering work in this area was due to Van der Pol [25] and Gabor [10], who introduced
the so-called Analytic Signal (AS) method that uses the Hilbert transform to determine instantaneous
frequency of a signal. However, this method works mostly for monocomponent signals in which the number of
zero-crossings is equal to the number of local extrema [1]. There were other attempts to define instantaneous
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frequency such as the zero-crossing method [22,23,18] and the Wigner–Ville distribution method [1,15,21,9,
14,20]. Most of these methods suffer from various limitations. The main limitation is that they all assume
that there is a single instantaneous frequency which implies that the performance of these method is not
good for multi-component signals.

More substantial progress has been made recently with the introduction of the Empirical Mode Decompo-
sition (EMD) method [12]. Through a sifting process, the EMD method decomposes a signal into a collection
of oscillating functions with possibly modulated amplitudes and frequencies, which are called intrinsic mode
functions (IMFs) in the literatures of EMD [12]. On the other hand, since the EMD method relies on the
information of local extrema of a signal, it is unstable to noise perturbation. Recently, an ensemble EMD
method (EEMD) was proposed to make it more stable to noise perturbation [26]. But some fundamental
issues remain unresolved.

1.1. A brief review of the data-driven time–frequency analysis method

Inspired by EMD/EEMD and the recently developed compressive sensing theory [5,4,8,2], Hou and Shi
proposed a data-driven time–frequency analysis method in a recent paper [11]. The main idea of this method
is to look for the sparsest decomposition of a signal over the largest possible dictionary. The dictionary is
chosen to be:

D =
{
a cos θ: a ∈ V (θ), θ′ ∈ V (θ), and θ′(t) > 0, ∀t ∈ R

}
, (1)

where V (θ) is a collection of all the functions that are less oscillatory than cos θ(t). By saying that f is
less oscillatory than g, we mean that either f contains fewer high frequency Fourier modes than g or the
high frequency Fourier coefficients of f decay faster than those of g. In many cases, this would imply that
the H1-norm of f is smaller that of g. In general, it is most effective to construct V (θ) using overcomplete
Fourier modes in the θ-space, which is the function space with θ as a coordinate.

In this paper, we only consider the periodic data. We can use standard Fourier modes in the θ-space to
construct the V (θ) space. More precisely, we will define V (θ) as follows:

V (θ) = span
{

1,
(

cos
(
kθ

Lθ

))
1�k�λLθ

,

(
sin
(
kθ

Lθ

))
1�k�λLθ

}
, (2)

where Lθ = (θ(T ) − θ(0))/2π is a positive integer and λ � 1/2 is a control parameter, which enforces that
the functions in V (θ) are less oscillatory that cos θ(t). In the analysis and computations of this paper, we
set λ = 1/2.

We then formulate the problem as a nonlinear version of the L0 minimization problem.

P : Minimize
(ak)1�k�M ,(θk)1�k�M

M

Subject to
{
f =

∑M
k=1 ak cos θk,

ak cos θk ∈ D, k = 1, . . . ,M.

(3)

The constraint f =
∑M

k=1 ak cos θk can be replaced by an inequality when the signal is polluted by noise. This
kind of optimization problem is known to be very challenging to solve since both ak and θk are unknown.
Inspired by matching pursuit [16,24], Hou and Shi [11] proposed a nonlinear matching pursuit method to
solve this nonlinear optimization problem. The basic idea is to decompose the signal sequentially into two
parts by solving a nonlinear least square problem:

min
a,θ

‖f − a cos θ‖2
l2 ,

Subject to a cos θ ∈ D.
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This nonlinear least square problem is solved by a Gauss–Newton type iteration. In each step of this
algorithm, we need to solve the following least square problem:

min
a,b

∥∥f − a cos θn − b sin θn
∥∥2
l2
,

Subject to a, b ∈ V
(
θn
)
. (4)

When the signal has sufficient samples, this nonlinear least square problem can be solved approximately
by first interpolating f to a uniform mesh in the θn-space and then applying FFT. This gives rise to a very
efficient algorithm with complexity of order O(N log(N)), where N is the number of sample points of the
signal, see Section 2 for more details.

If the signal is poorly sampled, then we cannot apply FFT. In this case, we need to solve an l1 minimization
problem to obtain the Fourier coefficients of f in the θn-space, where θn is a given approximate phase
function.

min
x

‖x‖1, subject to Φθnx = f, (5)

where each column of matrix Φθn is a Fourier mode in the θn-space, i.e. each column of matrix Φθn is of the
type ei2kπθ

n , where k ∈ Z and θn = θn−θn(0)
θn(T )−θn(0) . We then use this coefficient x to update θn, and repeat

this process until it converges. We refer to Section 3 for more details of this algorithm.
The objective of this paper is to analyze the convergence and stability of the algorithms in two cases:

periodic signals with well-resolved samples and periodic signals with poor samples.

1.2. Main results

Our first result is for well-resolved periodic signals of the form f(t) = f0(t) + f1(t) cos θ(t). By a well-
resolved signal, we mean that the signal is measured over a set of grid points that are fine enough such that
we can interpolate the signal to any other grid points with very little loss of accuracy.

We ignore the interpolation error and assume that f(t) is given for all t ∈ [0, T ]. We further assume that
the non-zero Fourier coefficients of θ′ in the physical space are confined in the first M0 modes, i.e.

θ′(t) ∈ span
{
ei2kπt/T , |k| � M0

}
,

and f0, f1 have M1 low frequency modes in the θ̄-space, i.e.

f0, f1 ∈ span
{
ei2kπθ̄, |k| � M1

}
,

where θ̄ = θ(t)−θ(0)
θ(T )−θ(0) is the normalized phase function. Later on, we refer to this property for f0, f1 and θ′

as the “low frequency confinement property”.
For this type of signals, we can prove that the iterative algorithm converges to the exact solution under

some scale separation assumption on the signal. More precisely, if θ0, the initial guess of θ, satisfies

∥∥F((θ0 − θ
)′)∥∥

1 � πM0/2, (6)

where F is the Fourier transform in the physical space, then there exists η0 > 0 such that

∥∥F((θm+1 − θ
)′)∥∥ � 1∥∥F((θm − θ

)′)∥∥ , ∀m = 0, 1, 2, . . . (7)
1 2 1
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provided that L � η0, where L = θ(T )−θ(0)
2π and η0 is a constant determined by M0, M1, min f1 and θ̄′. The

precise statement of the theorem can be found in Theorem 2.1. We remark that 1/L can be used to measure
the smallest scale of the signal. By smallest scale, we mean the length of the smallest interval over which
the signal has O(1) change. Similarly, we can use 1/M1 and 1/M0 to measure the smallest scale of f0, f1,
and θ′ respectively. The requirement L � η0 is actually a mathematical formulation of the scale separation
property. By scale separation, we mean that the mean f0 and the amplitude f1 are less oscillatory than
cos θ.

The key idea of the proof is to estimate the decay rate of the coefficients over the Fourier basis in the
θn-space, where θn is the approximate phase function in each step. We show that the Fourier coefficients
of the signal in the θn-space have a very fast decay as long as that θn is a smooth function. Using this
estimate, we can show that the error of the phase function in each step is a contraction and the iteration
converges to the exact solution.

We have also proved a similar convergence result for signals that are polluted by noise, see Section 2.2. In
many problems, f0, f1 and θ′ may not be exactly low frequency confined. A more general setting is that the
Fourier coefficients of f0, f1, and θ′ decay according to some power law as the wave number increases. In
this case, we can prove that our method will converge to an approximate solution with an error determined
by the truncated error of f0, f1 and θ′. The detailed analysis will be presented in Section 2.3.

For signals with poor samples, we can also prove similar convergence results with an extra condition on
the matrix Φθn . In this case, we need to use the l1 minimization even with periodic signals. Suppose S is
the largest number such that δ3S(Φθn) + 3δ4S(Φθn) < 2, and δS(A) is the S-restricted isometry constant of
matrix A given in [3]. Under the same sparsity assumption on the instantaneous frequency, the mean and
the amplitude as before, we can prove that there exist ηL > 0, ηS > 0, such that

∥∥F((θm+1 − θ
)′)∥∥

1 � 1
2
∥∥F((θm − θ

)′)∥∥
1, (8)

provided that L � ηL and S � ηS .
Further, we show that if the sample points {tj}Ns

j=1 are selected at random from a set of uniformly
distributed points {tl}Nf

j=1, the condition δ3S(Φθn) + 3δ4S(Φθn) < 2 holds with an overwhelming probability
provided that S � CNs/(max(θ′)(logNb)6) and Nf � max{C‖θ̂′‖1Nb, 2M0}, where Ns is the number of
the samples, Nb is the number of the basis. If M0 = 0, which implies that θ′ = 1, then the above result is
reduced to the well-known theorem for the standard Fourier basis in [6].

The rest of the paper is organized as follows. In Section 2, we establish the convergence and stability of
our method for well-resolved signals. In Section 3, we propose an algorithm for signals with poor samples
and prove its convergence and stability. In Section 4, some numerical results are presented to demonstrate
the performance of the algorithm and confirm the theoretical results. Some concluding remarks are made
in Section 5.

2. Well-resolved periodic signal

In this section, we will analyze the convergence and stability of the algorithm proposed in [11] for signals
which are well-resolved by the samples. In the analysis, we assume that the signal is periodic in the sample
domain. Without loss of generality, we assume that the signal f is periodic over [0, 1].

As we mentioned in the introduction, our nonlinear matching pursuit method solves a least square problem
(4) iteratively. Since we require that the phase function θn be monotonically increasing, we can use θn as a
coordinate instead of the physical coordinate t. In this new coordinate, cos θn, sin θn and the basis functions
in V (θn) are simple Fourier modes. We can solve the least-square problem (4) easily by using the Fourier
transform.
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In the θ-space, the signal is sampled over a non-uniform grid. In order to employ the Fast Fourier
Transform to accelerate the computation, we have to interpolate the signal to an uniform grid in the
θ-space which will introduce some interpolation error. This is why we require that the signal is well-
resolved to make sure that the interpolation error is very small. We can also utilize a non-uniform Fast
Fourier Transform to avoid interpolation errors. In this paper, we do not consider this approach since the
implementation of non-uniform FFT is more complicated. In our practical implementation, we use the
interpolation-FFT approach to calculate the Fourier transform in the θ-space. However, in the analysis, we
neglect the interpolation error since the signal is assumed to be well-resolved and the interpolation error is
negligible.

In order to make this paper self-contained, we also state the algorithm here. Suppose the signal f is given
over a uniform grid tj = j/N for j = 0, . . . , N − 1.

Algorithm 1 (Data-driven time–frequency analysis for periodic signal with well-resolved samples).
Input: original signal f ; initial guess of the phase functions θ0.
Output: phase function θ, amplitude a1, residual r.
Main iteration:

Initialization: n = 0 and θn = θ0.
S1: Interpolate f from the grid in the time domain to a uniform mesh in the θn-coordinate to get fθn and

compute the Fourier transform f̂θn :

fθn, j = Interpolate
(
θn(ti), f, θnj

)
, (9)

where θnj , j = 0, . . . , N − 1 are uniformly distributed in the θn-coordinate, i.e. θnj = 2πLθnj/N . We use
the cubic spline to perform the interpolation.

Apply the Fourier transform to fθn as follows:

f̂θn(ω) =
N∑
j=1

fθn,je
−i2πωθn

j , ω = −N/2 + 1, . . . , N/2, (10)

where θnj = θn
j −θn

0
2πLθn

.
S2: Apply a cutoff function to the Fourier transform of fθn to compute a and b on the mesh in the

θnk -coordinate, denoted by aθn and bθn :

aθn(ω) = F−1
θn

[(
f̂θn(ω + Lθn

k
) + f̂θn(ω − Lθn

k
)
)
· χ(ω/Lθn

k
)
]
, (11)

bθn(ω) = −i · F−1
θn

[(
f̂θn(ω + Lθn

k
) − f̂θn(ω − Lθn

k
)
)
· χ(ω/Lθn

k
)
]
, (12)

where F−1 is the inverse Fourier transform defined in the θn coordinate:

F−1
θn (f̂θn) = 1

N

N/2∑
ω=−N/2+1

f̂θnei2πωθn
j , j = 0, . . . , N − 1, (13)

and χ is the cutoff function, which is defined implicitly by the definition of V (θ) in (2),

χ(ω) =
{ 1, −1/2 < ω < 1/2,

0, otherwise.
(14)
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S3: Interpolate aθn and bθn back to the uniform mesh in the time domain by the cubic spline:

an+1 = Interpolate
(
θnj , aθn , θn(ti)

)
, i = 0, . . . , N − 1, (15)

bn+1 = Interpolate
(
θnj , bθn , θn(ti)

)
, i = 0, . . . , N − 1. (16)

S4: Update θn in the t-coordinate:

Δθ′ = PVM0

(
d

dt

(
arctan

(
bn+1
k

an+1
k

)))
, Δθ(ti) =

ti∫
0

Δθ′(s) ds, i = 0, . . . , N − 1

and

θn+1(ti) = θn(ti) + βΔθ(ti), i = 0, . . . , N − 1,

where β ∈ [0, 1] is chosen to make sure that θn+1 is monotonically increasing:

β = max
{
α ∈ [0, 1]: d

dt

(
θn + αΔθ

)
� 0
}
, (17)

and PVM0
is the projection operator to the space VM0 = span{ei2kπt/T , k = −M0, . . . , 0, . . . ,M0} and

M0 is chosen a priori.
S5: If ‖θn+1 − θn‖2 < ε0, stop. Set

θ = θn+1, a1 =
√(

an+1
)2 +

(
bn+1

)2
, r = f − an+1 cos θn − bn+1 sin θn. (18)

Otherwise, set n = n + 1 and go to S1.

After the first component is obtained, treat the residual r as the input signal and apply the above
algorithm to r with another initial guess of the phase function to get the second component. Repeat this
process sequentially until the residual is small enough. This will decompose the original signal f to several
components in the dictionary D.

In the previous paper [11], we demonstrated that this algorithm works very effectively for periodic
signals and is stable to noise perturbation. In this paper, we will analyze its convergence and stability.
Our main results can be summarized as follows. For periodic signals that have the exact low-frequency
sparsity structure, we can prove that the above algorithm will converge to the exact decomposition. For
periodic signals that have an approximate low-frequency sparsity structure, the above algorithm will give an
approximate result withe accuracy determined by the truncated error of the signal. The precise definition of
low-frequency sparsity structure will be given in the convergence theorems. In the following three subsections,
we will present these results separately.

2.1. Exact recovery

In this subsection, we consider a periodic signal f(t) that has the following decomposition:

f(t) = f0(t) + f1(t) cos θ(t), f1(t) > 0, θ′(t) > 0, t ∈ [0, 1], (19)

where f0, f1 and θ are the exact local mean, the amplitude and the phase function that we want to recover
from the signal.
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First, we introduce some notations. Let L = θ(1)−θ(0)
2π be the number of periods of the signal which

is a measurement of the scale of the signal. We denote θ = θ−θ(0)
2πL as the normalized phase function and

f̂0,θ(k), f̂1,θ(k) as the Fourier coefficients of f0, f1 in the θ-coordinate, i.e.

f̂0,θ(k) =
1∫

0

f0 e
−i2πkθ dθ, f̂1,θ(k) =

1∫
0

f1 e
−i2πkθ dθ. (20)

We also use the notation Fθ(·) to represent the Fourier transform in the θ-space and F(·) to represent the
Fourier transform in the original t-coordinate.

Now we can state the theorem as follows:

Theorem 2.1. Assume that the instantaneous frequency θ′ satisfies min θ′ > M0π and the non-zero Fourier
coefficients of θ′ in the physical space are confined in the first M0 modes, i.e.

θ′ ∈ VM0 = span
{
ei2kπt/T , k = −M0, . . . , 1, . . . ,M0

}
. (21)

Further, we assume that the non-zero Fourier coefficients of f0 and f1 in the θ-space are confined in the
first M1 modes, i.e.

f̂0,θ(k) = f̂1,θ(k) = 0, ∀|k| > M1. (22)

If the initial guess of the phase function, θ0, satisfies∥∥F((θ0 − θ
)′)∥∥

1 � πM0/2, (23)

then there exist η0 > 0 such that

∥∥F((θm+1 − θ
)′)∥∥

1 � 1
2
∥∥F((θm − θ

)′)∥∥
1, (24)

provided that L � η0.

We first introduce some notations for the convenience of the representation. Let θm be the approximate
phase function in the mth step, and Δθm = θ − θm be the error of the phase function in the current
step, Lm = θm(1)−θm(0)

2π be the number of periods in mth step and ΔLm = L − Lm. Let ãm, b̃m be the
approximate amplitude functions, which are obtained by using Step 3 of the algorithm. Further, we define
am = f1 cosΔθm, bm = f1 sin Δθm, and Δam = am − ãm, Δbm = bm − b̃m. The quantities am and bm

can be considered as the “exact” amplitude functions at the mth iteration since Δθm = arctan( bm

am ). Thus,
we would obtain the exact phase starting from θm in one iteration. In our analysis, we need to establish a
relationship among Δam, Δbm and Δθm.

One key ingredient of the proof is to estimate the integral
∫ 1
0 ei2π(ωθ−kθm) dθm. Fortunately, for this type

of integral, we have the following lemma.

Lemma 2.1. Suppose φ′(t) > 0, t ∈ [0, 1], φ(0) = 0, φ(1) = 1, and ψ′, φ′ ∈ VM0 = span{ei2kπt, k =
−M0, . . . , 1, . . . ,M0}. Then we have, for any n ∈ N, there is a (n−1)th order polynomial P (x, n), such that

∣∣∣∣∣
1∫
eiψe−i2πωφ dφ

∣∣∣∣∣ � P
( ‖φ̂′‖1

min φ′ , n
)
Mn

0

|ω|n(minφ′)n
n∑

j=1
(2πM0)−j

∥∥ψ̂′
∥∥j

1, (25)

0
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provided that eiψe−i2πωφ is a periodic function. Here P (x, n) is a (n − 1)th order polynomial of x and the
coefficients are non-negative and depend on n.

Remark 2.1. Lemma 2.1 is valid for any n ∈ N. The integral that we would like to estimate in Lemma 2.1 is
actually the Fourier transform of eiψ. Since ψ is a smooth function, we expect that the Fourier transform
of eiψ has a rapid decay for large |ω|. In Lemma 2.1, we give a more delicate decay estimate of the Fourier
transform of eiψ. Such estimate is required in our proof of Theorem 2.1.

Proof. Using integration by parts, we have

∣∣∣∣∣
1∫

0

eiψe−i2πωφ dφ

∣∣∣∣∣ = 1
|2πω|n

∣∣∣∣∣
1∫

0

dn(eiψ)
dφn

e−i2πωφ dφ

∣∣∣∣∣ � 1
|2πω|n max

t∈[0,1]

∣∣∣∣dn(eiψ)
dφn

∣∣∣∣.
Since eiψe−i2πωφ is periodic, there is no contribution from the boundary terms when performing integration
by parts. Using the fact that ψ′, φ′ ∈ VM0 for any g ∈ VM0 we have

max
t

∣∣g(n)(t)
∣∣ �∑

k

∣∣(2πk)n−1ĝ′(k)
∣∣ � (2πM0)n−1

∑
k

∣∣ĝ′(k)
∣∣ = (2πM0)n−1∥∥ĝ′∥∥1, (26)

where g(n)(t) means the nth order derivative of g with respect to t.
Direct calculations give

∣∣∣∣dn(eiψ)
dφn

∣∣∣∣ � P
( ‖φ̂′‖1

min φ′ , n
)

(minφ′)n
n∑

j=1
(2πM0)n−j

∥∥ψ̂′
∥∥j

1. (27)

Thus, we get

∣∣∣∣∣
1∫

0

eiψe−i2πωφ dφ

∣∣∣∣∣ � P
( ‖φ̂′‖1

min φ′ , n
)
Mn

0

|ω|n(minφ′)n
n∑

j=1
(2πM0)−j

∥∥ψ̂′
∥∥j

1. (28)

This proves Lemma 2.1. �
Remark 2.2. Regarding the polynomial P (x, n), we can get an explicit expression for small n. For example,
when n = 2, we have∣∣∣∣ d2

dφ2 e
iψ

∣∣∣∣ = ∣∣∣∣i( ψ′′

φ′ 2 − ψ′φ′′

φ′ 3 + i
ψ′ 2

φ′ 2

)
eiψ
∣∣∣∣ � ∣∣∣∣ ψ′′

φ′ 2

∣∣∣∣+ ∣∣∣∣ψ′φ′′

φ′ 3

∣∣∣∣+ ∣∣∣∣ψ′ 2

φ′ 2

∣∣∣∣
� max |ψ′′|

(minφ′)2 + max |ψ′|max |φ′′|
(minφ′)3 + (max |ψ′|)2

(minφ′)2

� 1
(minφ′)2

[(
1 + ‖φ̂′‖1

minφ′

)
2πM0

∥∥ψ̂′
∥∥

1 +
∥∥ψ̂′
∥∥2

1

]
, (29)

where we have used Δθ, θ ∈ VM0 in deriving the last inequality. Then, we have P (x, 2) = x + 1. Similarly,
we can also get P (x, 3) = 3x2 + 4x + 3.

Now we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. First, we need to establish the relationship among Δθm+1 and Δam, Δbm. Recall
that Δθm = arctan( bm

am ). Thus, we have Δ̃θ = Δθm − arctan( b̃m

ãm ) = arctan( bm

am ) − arctan( b̃m

ãm ). Using the
differential mean value theorem, we know that there exists ξ ∈ [0, 1] such that

|Δ̃θ| =
∣∣∣∣arctan

(
bm

am

)
− arctan

(
b̃m

ãm

)∣∣∣∣ = ∣∣∣∣ (am + ξΔam)Δbm − (bm + ξΔbm)Δam

(am + ξΔam)2 + (bm + ξΔbm)2

∣∣∣∣
� (|am| + |Δam|)|Δbm| + (|bm| + |Δbm|)|Δam|

((am)2 + (bm)2)/2 − ((Δam)2 + (Δbm)2)
� D1

∣∣Δam
∣∣+ D2

∣∣Δbm
∣∣, (30)

where

D1 = max
t

{
f1 + |Δbm|

f2
1 /2 − ((Δam)2 + (Δbm)2)

}
, D2 = max

t

{
f1 + |Δam|

f2
1 /2 − ((Δam)2 + (Δbm)2)

}
, (31)

and we have used the relations that f2
1 = (am)2 + (bm)2 and |am|, |bm| � f1.

In the algorithm, there is another smooth process when updating θ, which gives the following result for
Δθm+1,

Δθm+1 = 2πΔLm+1t + Δ̃θp,M0 , (32)

where Δ̃θp,M0 = PVM0
(Δ̃θp) is the projection of Δ̃θp over the space VM0 , Δ̃θp and 2πΔLm+1t are the

periodic part and the linear part of Δ̃θ respectively:

Δ̃θ = 2πΔLm+1t + Δ̃θp. (33)

Using (32), we can estimate (Δθm+1)′ as follows,

∥∥F((Δθm+1)′)∥∥
1 � 2πΔLm+1 +

∥∥̂̃Δθ
′
p,M0

∥∥
1 � 2πΔL + M0‖

̂̃Δθp,M0‖1

� 2‖Δ̃θ‖∞ + M2
0 ‖Δ̃θp‖∞ �

(
3M2

0 + 2
)
‖Δ̃θ‖∞, (34)

where we have used the fact that

2π
∣∣ΔLm+1∣∣ = ∣∣Δ̃θ(1) − Δ̃θ(0)

∣∣ � 2‖Δ̃θ‖∞, (35)
‖Δ̃θp‖∞ = ‖Δ̃θ‖∞ + 2πΔL � 3‖Δ̃θ‖∞. (36)

Combining (34) with (30), we get∥∥F((Δθm+1)′)∥∥
1 �

(
3M2

0 + 2
)(
D1
∥∥Δam

∥∥
∞ + D2

∥∥Δbm
∥∥
∞
)
. (37)

Next, we will establish the relationship among Δam, Δbm and Δθm. This can be done by estimating the
Fourier coefficients of am, bm in the θm-space.

In Appendix A, we will prove the following estimates of Δam and Δbm (see (156), (157)),∣∣Δam
∣∣ � 2

∑
1
2L

m<k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âθm(k)
∣∣+ ∣∣b̂θm(k)

∣∣)+
∑

|k|>Lm

2

∣∣âθm(k)
∣∣, (38)

∣∣Δbm
∣∣ � 2

∑
1
2L

m<k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âθm(k)
∣∣+ ∣∣b̂θm(k)

∣∣)+
∑

|k|>Lm

2

∣∣b̂θm(k)
∣∣, (39)

where f̂0,θm , âmθm and b̂mθm are the Fourier transform of f0, am and bm in the θm-space.
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To obtain the desired estimates, we need to use Lemma 2.1 to estimate the Fourier coefficients of f0, a
m, bm

in the θm-space. In an effort to make the proof concise and easy to follow, we defer the derivation of the
estimates (40), (41) and (42) to Appendix C. The main results of Appendix C are summarized as follows.
As long as γ = ‖F [(Δθm)′]‖1

2πM0
� 1/4 and L � 4M1, we have

∣∣f̂0,θm(ω)
∣∣ � C0Q

(
|ω|
2

)−n

Mn
0 M1γ, ∀|ω| > L/2, (40)

∣∣âmθm(ω)
∣∣ � 4C0Q

(
|ω|
2

)−n

Mn
0 (2M1 + 1)γ, ∀|ω| � L/2, (41)

∣∣b̂mθm(ω)
∣∣ � 4C0Q

(
|ω|
2

)−n

Mn
0 (2M1 + 1)γ, ∀|ω| � L/2, (42)

where C0 = max|k|�M1(|f̂0,θ(k)|, |f̂1,θ(k)|) and

Q = P (z, n)
(min(θm)′)n

, z = ‖F [(θm)′]‖1

min(θm)′
, γ = ‖F [(Δθm)′]‖1

2πM0
. (43)

Using (38)–(42) and the fact that
∑∞

k=1 k
−n converges as long as n � 2, we conclude that∣∣Δam
∣∣ � Γ0Q(αL)−n+1γ, (44)∣∣Δbm
∣∣ � Γ0Q(αL)−n+1γ, (45)

where α = Lm/L and Γ0 is a constant that depends on M0,M1, n and C0 (the magnitude of f0 and f1). It
follows from (37), (43), (44) and (45) that∥∥F((Δθm+1)′)∥∥

1 � Γ1(D1 + D2)Q(αL)−n+1∥∥F((Δθm
)′)∥∥

1, (46)

where Γ1 is a constant that depends on M0,M1, n and C0.
To complete the proof, we need to show that there exists a constant η0 > 0 which does not change in

the iterative process, such that β̃ = Γ1(D1 +D2)Q(αL)−n+1 � 1/2 provided that L � η0. This seems to be
trivial, simply choosing η0 = 1

α (2Γ1(D1 + D2)Q)1/(n−1) would make β̃ � 1/2 provided that L � η0. The
problem is that D1, D2, Q, α vary during the iteration. We need to show that they are uniformly bounded
during the iteration.

It is relatively easy to show that α is bounded,

|1 − α| =
∣∣∣∣1 − θm(1) − θm(0)

θ(1) − θ(0)

∣∣∣∣ = ∣∣∣∣Δθm(1) − Δθm(0)
2πL

∣∣∣∣ � ‖(Δθm)′‖∞
2πL � ‖F [(Δθm)′]‖1

2πL � M0

4L ,

which implies that 7/8 � α � 9/8, provided that L � 2M0 and γ � 1/4.
It is more involved to show that Q is bounded. We need to first estimate |(θm)′| and ‖F [(θm)′]‖1,

∣∣(θm)′∣∣ = ∣∣θ′/α−
(
Δθm

)′
/
(
2πLm

)∣∣ � 1
α

(
θ′ −

∥∥F[(Δθm
)′]∥∥

1/(2πL)
)

� 8
9

(
θ′ − M0

4L

)
, (47)

and ∥∥F[(θm)′]∥∥1 = 1
α

∥∥θ̂′ −F
[(

Δθm
)′]/(2πL)

∥∥
1 � 1

α

(∥∥θ̂′∥∥1 +
∥∥F[(Δθm

)′]∥∥
1/(2πL)

)
� 8(∥∥θ̂′∥∥ + M0/(4L)

)
, (48)
7 1
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where we have used the assumption that γ � 1
4 . If L satisfies the following condition,

M0

L
� 2 min

(
θ′
)
, (49)

then we can get

∣∣(θm)′∣∣ � 4
9θ

′,
∥∥F[(θm)′]∥∥1 � 12

7
∥∥θ̂′∥∥1, (50)

where we have used the fact that min(θ′) � max(θ′) � ‖θ̂′‖1. It follows from (50) that the term z defined
in (43) is uniformly bounded,

z � z0, (51)

where z0 is a constant depending on θ′.
Based on the above estimation of z, the term Q in (43) can be bounded by a constant,

Q = P (z, n)
(min(θm)′)n

�
(

9
4

)n
P (z0, n)
(min θ′)n

= Q0, (52)

where Q0 is a constant that depends on θ′ and n. Here we have used the fact that P (z, n) is a non-decreasing
function of z, since it is a (n− 1)th polynomial of z with non-negative coefficients.

We now proceed to bound D1 and D2. Note that if |Δam|, |Δbm| �
√

2
4 min f1, we can bound D1 as

follows:

D1 = max
{

|bm| + |Δbm|
((am)2 + (bm)2)/2 − ((Δam)2 + (Δbm)2)

}
� max |f1| + |Δbm|

(f1)2/2 − ((Δam)2 + (Δbm)2)

� 4 +
√

2
min f1

= E0. (53)

Similarly, we can show that D2 � E0.
It is not difficult to see that the condition |Δam|, |Δbm| �

√
2

4 min f1 is valid if L satisfies

Γ0Q0(7L/8)−n+1 �
√

2min f1, (54)

since we have

|Δa| � Γ0Q(αL)−n+1γ � 1
4Γ0Q0(7L/8)−n+1, (55)

|Δb| � Γ0Q(αL)−n+1γ � 1
4Γ0Q0(7L/8)−n+1, (56)

where we have used α � 7/8, Q � Q0, the assumption γ � 1
4 and the estimates (72), (73).

Finally, we have derived the following estimate for the error of the instantaneous frequency,∥∥F((Δθm+1)′)∥∥
1 � β

∥∥F((Δθm
)′)∥∥

1, (57)

where β = Γ1E0Q0(7L/8)−n+1, Γ1 is a constant depends on M0,M1, n, E0 depends on min f1, and Q0
depends on θ′ and n.
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Now, we would like to prove that if γ = ‖F [(Δθm)′]‖1
2πM0

� 1
4 , then we have

∥∥F((Δθm+1)′)∥∥
1 � 1

2
∥∥F((Δθm

)′)∥∥
1, (58)

as long as L satisfies the following conditions

L � 4M1,
M0

L
� min

{
1
2 , 2 min

(
θ′
)}

, (59)

Γ0Q0(7L/8)−n+1 �
√

2min f1, (60)

Γ1E0Q0(7L/8)n−1 � 1
2 . (61)

It is obvious that there exist η0 > 0, such that conditions (59)–(61) are satisfied provided that L � η0. Here
η0 is determined by M0,M1, θ

′,min f1 and n which does not change during the iteration process.
Using (57) and by induction, it is easy to show that if the initial condition satisfies

‖F [(θ0 − θ)′]‖1

2πM0
� 1

4 ,

then there exists η0 > 0 which is determined by M0,M1, θ
′,min f1 and n, such that

∥∥F((Δθm+1)′)∥∥
1 � 1

2
∥∥F((Δθm

)′)∥∥
1, (62)

as long as L � η0. This completes the proof of Theorem 2.1. �
Remark 2.3. The above proof is valid for any n � 2. Note that η0 depends on n. Theoretically, there exists
an optimal choice of n to make η0 the smallest. By carefully tracking the constants in the proof, we can
show that as n going to +∞, η0 tends to δC(n)1/(n−1)M0, where δ is a constant independent on n, and
C(n) is the maximum of the coefficients of polynomial P (x, n) appears in Lemma 2.1. We conjecture that
C(n)1/(n−1) is bounded for n � 2. If this is the case, then η0 is proportional to M0.

Remark 2.4. Classical time–frequency analysis methods, such as the windowed Fourier transform or wavelet
transform, in general cannot extract the instantaneous frequency exactly for any signal due to the uncertainty
principle. For a single linear chirp signal without amplitude modulation, the Wigner–Ville distribution can
extract the exact instantaneous frequency, but it fails if the signal consists of several components due to the
interference. Theorem 2.1 shows that our data-driven time–frequency analysis method has the capability to
recover the exact instantaneous frequency for a much larger range of signals even if the signals consist of
multi-components.

2.2. Recovery of signals polluted by noise

Now, we turn to consider the case when the signal is polluted by noise, which we model as follows:

f = f0 + f1 cos θ + s, (63)

where s is a perturbation to the original signal.
Using techniques similar to those in Theorem 2.1, we can prove that our method is stable to small

perturbation. More precisely, we have the following theorem
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Theorem 2.2. Under the same assumptions as Theorem 2.1, if the initial guess of the phase function, θ0,
satisfies ∥∥F((θ0 − θ

)′)∥∥
1 � πM0/2, (64)

then there exist η0 > 0 and ε0 > 0, Γs > 0 such that

∥∥F((θm+1 − θ
)′)∥∥

1 � Γs‖s‖∞ + 1
2
∥∥F((θm − θ

)′)∥∥
1, (65)

provided that L � η0 and ‖s‖∞ � ε0. Here η0 is a constant determined by M0,M1, f1, θ
′, ε0 is a constant

depends on f1 and Γs is an absolute constants.

To prove this theorem, we need the following technical lemma,

Lemma 2.2. Suppose s(t) is a periodic function over [0, 1],

sL(t) = F−1[(χ(1 + k/L) + χ(1 − k/L)
)
· F [s](k)

]
, L ∈ N, (66)

and χ is the cutoff function,

χ(ω) =
{ 1, −1/2 < ω < 1/2,

0, otherwise.
(67)

Then, there exists Γs > 0 independent on L such that

‖sL‖∞ � Γs‖s‖∞. (68)

The proof of this lemma is deferred to Appendix B.
Now we are ready to prove Theorem 2.2

Proof. Using the same estimate as that in Theorem 2.1, we can get∣∣Δam
∣∣ � 2

∥∥smLm

∥∥
∞ + Γ0Q(αL)−n+1γ, (69)∣∣Δbm

∣∣ � 2
∥∥smLm

∥∥
∞ + Γ0Q(αL)−n+1γ, (70)

where α = Lm/L and Γ0 is a constant that depends on M0,M1, n and C0 (the magnitude of f0 and f1),
Q is defined in (43).

smLm = F−1
θm

[
χ(k/L) · Fθm [s](k)

]
. (71)

Then using Lemma 2.2, we have ∣∣Δam
∣∣ � Γs‖s‖∞ + Γ0Q(αL)−n+1γ, (72)∣∣Δbm
∣∣ � Γs‖s‖∞ + Γ0Q(αL)−n+1γ, (73)

where Γs > 0 is an absolute constant.
By following the same argument as that in Theorem 2.1, we have∥∥F((Δθm+1)′)∥∥ � Γs‖s‖∞ + Γ1E0Q0(7L/8)−n+1∥∥F((Δθm

)′)∥∥ , (74)
1 1
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as long as γ = ‖F [(Δθm)′]‖1
2πM0

� 1/4 and the following conditions are satisfied

L � 2M0,
M0

L
� min

{
1/2, 2 min

(
θ′
)}

, (75)

Γs‖s‖∞ + 1
4Γ0Q0(7L/8)−n+1 �

√
2

4 min f1, (76)

Γs‖s‖∞ + Γ1Q0E0(7L/8)−n+1 � πM0

2 , (77)

Γ1Q0E0(7L/8)−n+1 � 1
2 . (78)

It is obvious that there exist η0 > 0 and ε0 > 0, such that conditions (75)–(78) are satisfied provided that
L � η0 and ‖s‖∞ � ε0. Here η0 is determined by M0,M1, θ

′,min f1 and n which does not change during
the iteration process and ε0 is a constant depends on min f1.

By induction, it is easy to show that if initially

‖F [(θ0 − θ)′]‖1

2πM0
� 1

4 ,

then there exist η0 > 0 which is determined by M0,M1, θ
′,min f1 and n and an absolute constant ε0 > 0,

such that ∥∥F((Δθm+1)′)∥∥
1 � Γs‖s‖∞ + 1

2
∥∥F((Δθm

)′)∥∥
1, (79)

as long as L � η0 and ‖s‖∞ � ε0. This completes the proof of the theorem. �
2.3. Approximate recovery

If the signal does not have an exact low-frequency confined structure in the θ-space as required in
Theorem 2.1, our method cannot reproduce the exact decomposition. But the analysis in this subsection
shows that we can still get an approximate result and the accuracy is determined by the truncated error of
the signal. The main result is stated below.

Theorem 2.3. Assume that the non-zero Fourier coefficients of θ′ in the physical space are confined in the
first M0 modes, i.e.

θ′(t) ∈ VM0 = span
{
ei2kπt/T , k = −M0, . . . , 1, . . . ,M0

}
, (80)

and the Fourier coefficients of f0 and f1 in the θ-space have a fast decay, i.e. there exists C0 > 0, p � 4
such that ∣∣f̂0,θ(k)

∣∣ � C0|k|−p,
∣∣f̂1,θ(k)

∣∣ � C0|k|−p. (81)

Then, there exists η0 > 4 such that if L > η0 and the initial guess satisfies∥∥F((θ0 − θ
)′)∥∥

1 � πM0/2, (82)

then we have ∥∥F((θm+1 − θ
)′)∥∥

1 � Γ0(L/4)−p+2 + 1
2
∥∥F((θm − θ

)′)∥∥
1, (83)

where Γ0 > 0 is a constant determined by C0, p, M0 min f1 and θ′.
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Remark 2.5. This theorem shows that our iterative method will converge to the exact solution up to the
truncation error determined by the scale separation property.

Proof. The proof is very similar to that of Theorem 2.1. The only difference is that the estimates of f̂0,θm(k),
âmθm and b̂mθm are more complicated since they are not exactly confined in low frequency modes in the θ-space.
Here we only give the key estimates.

For f̂0,θm(ω), ω �= 0, we have

|f̂0,θm | =

∣∣∣∣∣
1∫

0

f0e
−i2πωθm

dθm

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

∑
k �=0

f̂0,θ(k)ei2πkθe−i2πωθm

dθm

∣∣∣∣∣
=

∣∣∣∣∣∑
k �=0

f̂0,θ(k)
1∫

0

ei2π(αk−ω)θm

eikΔθm/L dθm

∣∣∣∣∣ (84)

where α = Lm/L and f̂0,θ(k) are the Fourier coefficients of f0 as a function of θ. Note that the integral is 0
when k = 0 and ω �= 0. Thus we exclude the case k = 0 in the above summation. In the derivation of the last
equality, we have used the relationship that θ = θ/L = (θm + Δθm)/L = θm/L+ Δθm/L = αθm + Δθm/L.

As in the proof of Theorem 2.1, we also need to use Lemma 2.1. In the previous proof, we can choose n

to be any positive integer that is greater than 2. In the current theorem, the Fourier coefficients |f̂0,θ| and
|f̂1,θ| decay according to some power law. To obtain the desired estimates, we need to take 2 � n � p− 2.
This is why we require p � 4.

Applying Lemma 2.1 to the last equality of (84), we have

∣∣f̂0,θm(ω)
∣∣ �∑

k �=0

∣∣f̂0,θ(k)
∣∣∣∣∣∣∣

1∫
0

ei2π(αk−ω)θm

eikΔθm/L dθm

∣∣∣∣∣
�
∑

|k|> |ω|
2α

∣∣f̂0,θ(k)
∣∣+ ∑

0<|k|� |ω|
2α

∣∣f̂0,θ(k)
∣∣∣∣∣∣∣

1∫
0

ei2π(αk−ω)θm

eikΔθm/L dθm

∣∣∣∣∣
� C0

∑
|k|> |ω|

2α

|k|−p + C0
∑

0<|k|�| ω|
2α

QMn
0 |k|−p

|ω − αk|n
n∑

j=1

∣∣∣∣ kL
∣∣∣∣j(‖F [(Δθm)′]‖1

2πM0

)j

� C0

∞∫
|ω|/(2α)

x−p dx + C0Q

(
|ω|
2

)−n

Mn
0

( ∑
0<|k|�| ω|

2α

|k|−p+n

)( n∑
j=1

(γ/L)j
)

� C0

(
|ω|
2α

)−p+1

+ C0Q

(
|ω|
2

)−n

Mn
0 γ/L, (85)

where we have used the assumption n � p−2, γ � 1/4, and the fact that L � 1 is the number of the periods
within the time interval [0, 1]. Here C0 is a generic constant, Q, z and γ are defined below:

Q = P (z, n)
m ′ n

, z = ‖F [(θm)′]‖1
m ′ , γ = ‖F [(Δθm)′]‖1

. (86)

(min(θ ) ) min(θ ) 2πM0
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Using an argument similar to that as in the derivation of (85), we can get the desired estimates for âmθm

and b̂mθm as follows:

∣∣âmθm(ω)
∣∣ � C0

(
|ω|
2α

)−p+1

+ Q
∣∣f̂1,θ(0)

∣∣|ω|−nMn
0 γ + C0Q

(
|ω|
2

)−n

Mn
0 γ, (87)

∣∣b̂mθm(ω)
∣∣ � C0

(
|ω|
2α

)−p+1

+ Q
∣∣f̂1,θ(0)

∣∣|ω|−nMn
0 γ + C0Q

(
|ω|
2

)−n

Mn
0 γ. (88)

The estimates (38) and (39) remain valid in this case. Thus we obtain upper bounds for Δam and Δbm

by substituting (87) and (88) into (38) and (39),∣∣Δam
∣∣ � Γ1L

−p+2 + Γ2Q(αL)−n+1γ, (89)∣∣Δbm
∣∣ � Γ1L

−p+2 + Γ2Q(αL)−n+1γ, (90)

where Γ1 is a constant depending on C0, Γ2 depends on p and max(C0, |f̂1,θ(0)|).
Moreover, by following the same argument as we did in the proof of Theorem 2.1, we can obtain an error

estimate for the instantaneous frequency,∥∥F((Δθm+1)′)∥∥
1 � Γ3E0(L/4)−p+2 + Γ4E0Q0(7L/8)−n+1∥∥F((Δθm

)′)∥∥
1, (91)

as long as γ � 1/4 and the following conditions are satisfied

L � 2M0,
M0

L
� min

{
1/2, 2 min

(
θ′
)}

, (92)

Γ1(L/4)−p+2 + Γ2Q0(7L/8)−n+1 �
√

2min f1, (93)

Γ3E0(L/4)−p+2 + Γ4Q0E0(7L/8)−n+1 � πM0

2 , (94)

Γ4Q0E0(7L/8)−n+1 � 1
2 , (95)

where Γ3, Γ4 are constants that depend on C0, p,M0,min f1 and θ′. Using these four constraints, we can
easily derive a constant η0, such that all these conditions are satisfied provided that L � η0. This proves

∥∥F((Δθm+1)′)∥∥
1 � Γ3E0(L/4)−p+2 + 1

2
∥∥F((Δθm

)′)∥∥
1. (96)

This completes the proof of Theorem 2.3 by setting Γ0 = Γ3E0. �
Remark 2.6. The constraint n � p− 2 in the above proof can be relaxed to p � 3 by using a more delicate
calculation.

If we further consider a more general case: the instantaneous frequency is also approximately low frequency
confined instead of exactly low frequency confined as we assume in Theorems 2.1 and 2.3. In this case, we
can prove that the iterative algorithm also converges to an approximate result. However, we cannot apply
Lemma 2.1 here and need the following lemma instead.

Lemma 2.3. Suppose φ′(t) > 0, t ∈ [0, 1], φ(0) = 0, φ(1) = 1, and∣∣φ̂′(k)
∣∣, ∣∣ψ̂′(k)

∣∣ � C|k|−p, ∀|k| > M0.
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Then for n � p− 1, we have

∣∣∣∣∣
1∫

0

eiψe−i2πωφ dφ

∣∣∣∣∣ � P
(‖φ̂′‖1,M0+CM−p+1

0
min φ′ , n

)
|ω|n(minφ′)n Mn

0

n∑
j=1

(2πM0)−j
(∥∥ψ̂′

∥∥
1,M0

+ CM−p+1
0

)j
,

provided that eiψe−i2πωφ is a periodic function. Here ‖ψ̂′‖1,M0 =
∑

|k|�M0
|ψ̂′(k)| and P (x, n) is the same

(n− 1)th order polynomial as in Lemma 2.1.

Proof. The proof is similar to the proof of Lemma 2.1. The only difference is that we need the following
estimate instead of (26),

max
t

∣∣ψ(n)(t)
∣∣ �∑

k

∣∣(2πk)n−1ψ̂′(k)
∣∣ � (2πM0)n−1

∑
|k|�M0

∣∣ψ̂′(k)
∣∣+ (2π)n−1C

∑
|k|>M0

|k|−p+n−1

� (2πM0)n−1(∥∥ψ̂′
∥∥

1,M0
+ CM−p+1

0
)
. � (97)

Using this lemma and following an argument similar to that as in the previous two theorems, we can
prove the following theorem:

Theorem 2.4. Assume that the Fourier coefficients of the instantaneous frequency θ′, the local mean f0 and
the amplitude f1 all have fast decay, i.e. there exists C0 > 0, p � 4 such that∣∣F(θ′)(k)

∣∣ � C0|k|−p,
∣∣Fθ(f0)(k)

∣∣ � C0|k|−p,
∣∣Fθ(f1)(k)

∣∣ � C0|k|−p. (98)

If L is large enough and the initial guess satisfies∥∥F((θ0 − θ
)′)∥∥

1 � πM0/2, (99)

then, we have

∥∥F((θm+1 − θ
)′)∥∥

1 � Γ0(L/4)−p+2 + 1
2C0M

−p+1
0 + 1

2
∥∥F((θm − θ

)′)∥∥
1, (100)

where Γ0 > 0 is a constant determined by C0, M0 and f1.

Remark 2.7. In the analysis presented in this section, we have assumed that the Fourier transform in the
θm-space, Fθm(·), is exact. In real computations, we need to first interpolate the signal from a uniform
grid in the physical space to a uniform grid in the θm-space, then apply the Fast Fourier Transform. This
interpolation process would introduce some error. However, the interpolation error should be very small
since we assume that the signal is well-resolved by the sample points.

3. Periodic signal with poor samples

In this section, we will consider a more challenging case, if the signal is poorly sampled. More specifically,
we consider the case that the sample points tj , j = 1, . . . , N are too few to resolve the signal. In this case,
the algorithm presented in the last section does not apply directly. The reason is that the Fourier transform
in the θm-space, Fθm(·), cannot be computed accurately by the interpolation-FFT method. One way to
obtain the Fourier transform in the θm-space is to apply non-uniform FFT without interpolation. However,
for the signals we consider in this section, the number of samples is very small, for example, 1.2 samples per



252 T.Y. Hou et al. / Appl. Comput. Harmon. Anal. 37 (2014) 235–270
period on average (see Examples 2 and 3, Section 4). For this kind of signals, neither FFT nor non-uniform
FFT could give accurate Fourier transform.

Notice that for the signal we consider in Theorem 2.1, its Fourier spectral would consist of two parts:
low frequency part corresponding to the mean f0 and high frequency part corresponding to f1 cos θ. Since
we assume that the non-zero Fourier coefficients of f0 and f1 are confined in the first M1 modes in the
θ-space, the non-zero Fourier coefficients of the original signal f in the θ-space should be confined in the
first 4M1 modes, which implies that the signal is sparse in the Fourier space of θ if M1 is small. Thanks
to the recent developments of compressive sensing, we know that if the Fourier coefficients are sparse, then
l1 minimization would give an approximate solution from very few sample points. Hence, we can use a l1

minimization problem to generate the Fourier coefficients in the θm-space in each step. This observation
leads to the following algorithm:

Algorithm 2 (Data-driven time–frequency analysis for periodic signal with sparse samples).
Input: original signal: f ; initial guess of the phase functions: θ0.
Output: phase function θ, amplitude a1, residual r.
Main iteration:

Initialization: m = 0 and θm = θ0.
S1: Solve the l1 minimization problem to get the Fourier transform of the signal f in the θm-coordinate:

f̂θm = arg min
x∈R

Nb

‖x‖1, subject to Aθm · x = f (101)

where Aθm ∈ R
Ns×Nb , Ns < Nb, Ns is the number of samples and Nb is the number of Fourier modes.

Aθm(j, k) = ei2πkθ
m(tj), j = 1, . . . , Ns, k = −Nb/2 + 1, . . . , Nb/2 and θm = θm−θm(0)

θm(T )−θm(0) .
S2: Apply a cutoff function to the Fourier transform of fθm to compute am+1 and bm+1:

am+1 = F−1
θm

[(
f̂θm(ω + Lθm) + f̂θm(ω − Lθm)

)
· χ(ω/Lθm)

]
, (102)

bm+1 = −i · F−1
θm

[(
f̂θm(ω + Lθm) − f̂θm(ω − Lθm)

)
· χ(ω/Lθm)

]
, (103)

where F−1
θm is the inverse Fourier transform defined in the θm-coordinate:

F−1
θm (f̂θm)(tj) =

Nb/2∑
ω=−Nb/2+1

f̂θm(ω)ei2πωθm(tj), j = 1, . . . , Ns, (104)

and χ is the cutoff function,

χ(ω) =
{ 1, −1/2 < ω < 1/2,

0, otherwise.
(105)

S3: Update θm in the t-coordinate:

Δθ′ = PVM0

(
d

dt

(
arctan

(
bm+1

am+1

)))
, Δθ(tj) =

tj∫
0

Δθ′(s) ds, j = 1, . . . , Ns,

and

θm+1(tj) = θm(tj) + βΔθ(tj), j = 1, . . . , Ns, (106)
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where β ∈ [0, 1] is chosen to make sure that θm+1 is monotonically increasing:

β = max
{
α ∈ [0, 1]: d

dt

(
θm + αΔθ

)
� 0
}
, (107)

and PVM0
is the projection operator to the space VM0 = span{ei2kπt/T , k = −M0, . . . , 0, . . . ,M0} and

M0 is chosen a priori.
S4: If ‖θm+1 − θm‖2 < ε0, stop. Set

θ = θm+1, a1 =
√(

am+1
)2 +

(
bm+1

)2
, r = f − am+1 cos θm − bm+1 sin θm. (108)

Otherwise, set m = m + 1 and go to S1.

Suppose the sample points tj , j = 1, . . . , Ns are selected at random from a set of uniform grid l/Nf ,
l = 0, . . . , Nf − 1, then the optimization problem (101) in Step 1 can be rewritten in the following form:

min ‖x‖1, subject to Φθm · x = f̃ , (109)

where f̃ =
√

(θm)′
Nf

f and Φθm is obtained by selecting Ns rows from an Nf by Nb matrix Uθm which is

defined as Uθm(j, k) =
√

(θm)′
Nf

· ei2πkθm(tj), j = 1, . . . , Nf , k = −Nb/2 + 1, . . . , Nb/2. As we will show later,
the columns of Uθm are approximately orthogonal to each other. This property will play an important role
in our convergence and stability analysis.

We remark that our problem is more challenging than the compressive sensing problem in the sense that
we need not only to find the sparsest representation but also a basis parametrized by a phase function θ

over which the signal has the sparsest representation. To overcome this difficulty, we propose an iterative
algorithm to solve this nonlinear optimization problem.

3.1. Exact recovery

Theorem 3.1. Under the same assumption as in Theorem 2.1, there exist η0 > 0, η1 > 0, such that

∥∥F((θm+1 − θ
)′)∥∥

1 � 1
2
∥∥F((θm − θ

)′)∥∥
1, (110)

provided that L � η0 and S � η1, where S be the largest number such that δ3S(Φθm) + 3δ4S(Φθm) < 2. Here
δS(A) is the S-restricted isometry constant of matrix A given in [3], which is the smallest number such that

(1 − δS)‖c‖2
l2 � ‖AT c‖2

l2 � (1 + δS)‖c‖2
l2 ,

for all subsets T with |T | � S and coefficients sequences (cj)j∈T .

To prove this theorem, we need to use the following theorem of Candes, Romberg, and Tao [6].

Theorem 3.2. Let S be such that δ3S(A) + 3δ4S(A) < 2, where A ∈ R
n×m, n < m. Suppose that x0 is an

arbitrary vector in R
m and let x0,S be the truncated vector corresponding to the S largest values of x0. Then

the solution x∗ to the l1 minimization problem

min ‖x‖1, subject to Ax = f (111)
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satisfies

∥∥x∗ − x0
∥∥

1 � C2,S · ‖x0 − x0,S‖1. (112)

Now we present the proof of Theorem 3.1.

Proof of Theorem 3.1. Using (158) and (159) in Appendix A, we have

∣∣Δam
∣∣ � 2

∑
Lm

2 <k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âmθm(k)
∣∣+ ∣∣b̂mθm(k)

∣∣)
+
∑

|k|>Lm

2

∣∣âmθm(k)
∣∣+ 2

∑
Lm

2 <k< 3
2L

m

∣∣f̂θm(k) − ˆ̃fθm(k)
∣∣

� Γ0Q(αL)−n+1γ + C2,S · ‖f̂θm − f̂θm,S‖1, (113)

where Γ0 is a constant depending on M0,M1, n and f̂θm,S is the truncated vector corresponding to the S

largest values of f̂θm .
Without loss of generality, we assume that Lm > S/3, and define f̂θm,S to be

f̂θm,S(k) =
{
f̂θm(k), k ∈ [−Lm − S/6,−Lm + S/6] ∪ [−S/6, S/6] ∪ [Lm − S/6, Lm + S/6],
0, otherwise.

Then by the definition of f̂θm,S and f̂θm,S , we have

‖f̂θm − f̂θm,S‖1 � ‖f̂θm − f̂θm,S‖1

=
∑

S/6<|k|<Lm−S/6

∣∣f̂θm(k)
∣∣+ ∑

|k|>Lm+S/6

∣∣f̂θm(k)
∣∣

�
∑

|k|>S/6

∣∣f̂0,θm(k)
∣∣+ ∑

|k|>S/6

∣∣âθm(k)
∣∣+ ∑

|k|>S/6

∣∣b̂θm(k)
∣∣

� Γ1QS−n+1γ. (114)

Substituting (114) into (113), we get

∣∣Δam
∣∣ � (Γ0(αL)−n+1 + C2,SΓ1S

−n+1)Qγ. (115)

Similarly, we obtain

∣∣Δbm
∣∣ � (Γ0(αL)−n+1 + C2,SΓ1S

−n+1)Qγ. (116)

Using these two key estimates and following the same argument as that in the proof of Theorem 2.1, we
can complete the proof of Theorem 3.1. �
Remark 3.1. The above result on the exact recovery of signals with sparse samples can be generalized
to the case that we consider in Theorem 2.3 by combining the argument of the above theorem with the
idea presented in the proof of Theorem 2.3. In this case, we can recover the signal with an error which is
determined by L, S and the decay rates of f̂0,θ, f̂1,θ and θ̂′.
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In Theorem 3.1, we assume that in each step, the condition δ3S(Φθm) + 3δ4S(Φθm) < 2 is satisfied. Using
the definition of δS , it is easy to see that δ3S � δ4S . Thus, a sufficient condition to satisfy δ3S(Φθm) +
3δ4S(Φθm) < 2 is to require δ4S(Φθm) < 1/2.

In compressive sensing, there is a well-known result by Candes and Tao in [4]. This result states that
if the matrix Φ ∈ R

M×N is obtained by selecting M rows at random from an N × N Fourier matrix U

where Uj,k = 1√
N
ei2πjk/N , j, k = 1, . . . , N , then the condition δS(Φ) < 1/2 is satisfied with an overwhelming

probability provided that

S � C
M

(logN)6 , (117)

where C is a constant.
In our formulation (see (109)), the matrix Φθm also consists of Ns rows of an Nf -by-Nb matrix Uθm . The

main difference is that the matrix Uθm is not a standard Fourier matrix. Instead it is a Fourier matrix in
the θm-space which makes it non-orthonormal. As a result, we cannot apply the result of Candes and Tao in
[4] directly. Fortunately, we have the following result by slightly modifying the arguments used in [4] which
can be applied to matrix Uθm .

Theorem 3.3. If ν0 = maxk,j |(U∗
θUθ−I)k,j | � 1

16Nb
, where U∗

θ is the conjugate transpose of Uθ, the condition
δS(Φθ) < 1/2 holds with probability 1 − δ provided that

Ns � C · max(θ)′
(
S log2 Nb − log δ

)
log4 Nb, (118)

where Ns is the number of the samples, Nb is the number of elements in the basis.

This theorem shows that if the columns of Uθm are approximately orthogonal to each other, it has
a property similar to the standard Fourier matrix. Consequently, we need only to estimate the mutual
coherence of the columns of the matrix Uθm for θm ∈ VM0 .

Lemma 3.1. Let φ′(t) ∈ VM0 , t ∈ [0, 1] and φ(0) = 0, φ(1) = 1, φ′ > 0, tj = j/L, j = 0, ·, L− 1 is a uniform
grid over [0, 1], then for any n ∈ N, there exists C(n) > 0, such that

1
L

L−1∑
j=0

φ′(tj)ei2πkφ(tj) � C(n) max
{(

k‖φ̂′‖1

L

)n

,

(
2M0

L

)n}
. (119)

The proof of this lemma is deferred to Appendix D.
Using this lemma, we can show that the condition ν0 = maxk,j |(U∗

θmUθm − I)k,j | � 1
16Nb

is satisfied
as long as Nf � C‖F((θm)′)‖1Nb where C is a constant determined by Nb. This leads to the following
theorem.

Theorem 3.4. Suppose the sample points tj, j = 1, . . . , Ns are selected at random from a set of uniform grid
l/Nf , l = 0, . . . , Nf − 1. If

Nf � C
∥∥F((θm)′)∥∥1Nb

in (m + 1)st step, we have δS(Φθm) < 1/2 holds with probability 1 − δ provided that

Ns � C · max
[(
θm
)′](

S log2 Nb − log δ
)
log4 Nb, (120)

where Ns is the number of the samples, Nb is the number of elements in the basis.
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The above result shows that if the sample points are selected at random, in each step, with probability
1 − δ, we can get the right answer. This does not mean that the whole iteration converges to the right
solution with an overwhelming probability. If the iteration is run up to the nth step, the probability that
all these n steps are successful is 1− nδ. If n is large, the probability could be small even if δ is very small.

3.2. Uniform estimate of δS(Φθm) during the iteration

In order to make sure that the iterative algorithm would converge with a high probability, we have to
obtain an uniform estimate of δS(Φθm) during the iteration. More precisely, we need to prove that with an
overwhelming probability,

sup
θ∈WM0

δS(Φθ) � 1/2, (121)

where WM0 = {φ ∈ C∞[0, 1]: φ(0) = 0, φ(1) = 1, φ′ ∈ VM0 , φ′(t) > 0, ∀t ∈ [0, 1]}.
The analysis below shows that this is true even if the number of sample points is in the same order as

that required by Theorem 3.4. There are two key observations in this analysis. The first one is that the
difference between δS(Φθ) and δS(Φφ) would be small if θ, φ ∈ WM0 and ‖θ−φ‖∞ is small. Actually, we can
make |δS(Φθ) − δS(Φφ)| � 1

4 as long as ‖θ′ − φ′‖∞ � r = O(N−5/2
b M−1

0 ). The second observation is that
WM0 is bounded and finite dimensional which implies that its closure is compact. Then for any r > 0, there
exists a finite subset Ar ⊂ WM0 , such that for any θ ∈ WM0 , there exists φj ∈ Ar, such that ‖θ′−φ′

j‖∞ � r.
Based on these two observations, we can show that

sup
θ∈WM0

δS(Φθ) � sup
φ∈Ar

δS(Φφ) + 1/4. (122)

Then by the union bound, we have

P
(

sup
θ∈WM0

δS(Φθ) > 1/2
)

� P
(

sup
φ∈Ar

δS(Φφ) > 1/4
)

� |Ar| sup
φ∈Ar

P
(
δS(Φφ) > 1/4

)
. (123)

It is sufficient to prove that

P
(
δS(Φφ) > 1/4

)
� δ/|Ar|, ∀φ ∈ Ar ⊂ WM0 , (124)

which is true as long as

Ns � C · max
θ∈Ar

∥∥θ′∥∥∞(S log2 Nb + log |Ar| − log δ
)
log4 Nb. (125)

Now, we need only to choose a proper r and estimate the corresponding |Ar|.

Lemma 3.2. Let W = {φ ∈ C∞[0, 1]: φ(0) = 0, φ(1) = 1, φ′ ∈ VM0 , φ′(t) > 0, ∀t ∈ [0, 1]}. For any r > 0,
one can find a finite subset Ar of W with cardinality

|Ar| �
(

16πM2
0

r
+ 1
)2M0

, (126)

such that for all ψ ∈ W , there exists φ ∈ Ar such that ‖ψ′ − φ′‖∞ � r and ‖ψ − φ‖∞ � r.
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Proof. Let W = {φ′: φ ∈ W}. Then for all ψ ∈ W , we have the following Fourier representation

ψ(t) = 1 +
M0∑
j=1

(
cj cos(2πjt) + dj sin(2πjt)

)
> 0, ∀t ∈ [0, 1]. (127)

Since
∫ t

0 ψ(s) ds ∈ W according to the definition of W , then
∫ 1
0 ψ(s) ds = 1, so the constant in the above

Fourier representation is 1.
By multiplying 1 + cos(2πjt) to both sides of (127) and integrating over [0, 1] with respect to t, we get

1 + cj/2 � 0,

which implies that cj � −2, where we have used the fact that 1 + cos(2πjt) � 0.
On the other hand, multiplying −1 + cos(2πjt) to both sides of (127) and taking integral over [0, 1] with

respect to t, we have cj � 2. Combining these two results, we have

|cj | � 2. (128)

Similarly, by multiplying sin(2πjt) ± 1 to both sides of (127) and taking integral over [0, 1] with respect
to t, we obtain

|dj | � 2. (129)

Now, we have proven that for any function in W , its Fourier coefficients are bounded by 2. Let h =
r/(2M0), Lr = 
4/h�, Zr = {−2,−2 + h,−2 + 2h, . . . ,−2 + (Lr − 1)h}. For any ψ ∈ W , we know that its
Fourier coefficients cj , dj ∈ [−2, 2], j = 1, . . . ,M0, then one can find aj , bj ∈ Zr correspondingly such that

|aj − cj | � h/2 = r/(4M0), j = 1, . . . ,M0,

|bj − dj | � h/2 = r/(4M0), j = 1, . . . ,M0,

which implies that there exists y ∈ Y r such that

‖ψ − y‖∞ �
M0∑
j=1

(
|aj − cj | + |bj − dj |

)
� 2πM2

0h = r/2, (130)

where Y r is defined as follows

Y r =
{
y =

M0∑
j=1

(
aj cos(2πjt) + bj sin(2πjt)

)
: aj , bj ∈ Zr, Br/2(y) ∩W �= ∅

}
,

and Br/2(y) = {z ∈ VM0 : ‖z − y‖∞ � r/2}.
By the definition of Y r, one can get

|Y r| � |Zr|2M0 = L2M0
r �

(
8M0

r
+ 1
)2M0

. (131)

Suppose Y r = {y1, y2, . . . , y|Y r|}, by the definition of Y r, for each yj , there exists φj ∈ W such that
φj ∈ Br/2(yj). We can get a finite subset Ar of W by collecting all these φj together and obviously
|Ar| = |Y r|.
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Finally, let

Ar =
{ t∫

0

φ(s) ds: φ ∈ Ar

}
. (132)

Then, for any ψ ∈ W , there exists φj ∈ Ar and yj ∈ Y r, such that∥∥ψ′ − φ′
j

∥∥
∞ �

∥∥ψ′ − yj
∥∥
∞ +

∥∥yj − φ′
j

∥∥
∞ � r/2 + r/2 = r. (133)

Moreover, we have

‖ψ − φj‖∞ �
1∫

0

∣∣ψ′(s) − φ′
j(s)
∣∣ ds � r, (134)

where we have used the fact that ψ(0) = φj(0) = 0 to eliminate the integral constant. �
Remark 3.2. By multiplying cj cos(2πjt)+dj sin(2πjt)±

√
c2j + d2

j to both sides of (127) and taking integral
over [0, 1] with respect to t, we have

c2j + d2
j � 4, j = 1, . . . ,M0. (135)

This implies a sharper estimate of |Ar|,

|Ar| �
(

8πM2
0

r2

)M0

. (136)

Also, (135) gives us a bound for ‖φ′‖∞ in WM0 ,

sup
φ∈WM0

∥∥φ′∥∥
∞ � 4M0 + 1, (137)

which will be used later.

It remains to choose a proper r. First, we show that the difference of δS between two matrices can be
controlled by the difference of each element.

Proposition 3.1. Let A,B are two M by N matrices, M < N and the columns of A are normalized to be
unit vectors in l2 norm. Then, for any S ∈ N, we have∣∣δS(A) − δS(B)

∣∣ � (2ε√M + ε2M
)
S, (138)

where ε = maxi,j |Aij −Bij |.

Proof. By the definition of δS , we need only to prove that for all subsets T with |T | � S and coefficients
sequences (cj)j∈T , ∣∣‖AT c‖2

2 − ‖BT c‖2
2
∣∣ � (2ε√M + ε2M

)
S‖c‖2

2. (139)

This can be verified by a direct calculation:
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∣∣‖AT c‖2
2 − ‖BT c‖2

2
∣∣ = ∣∣∣∣∣ ∑

i,j∈T

cicj
(
AT

i Aj −BT
i Bj

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
i,j∈T

cicj
(
DT

i Aj + AT
i Dj + DT

i Dj

)∣∣∣∣∣
� max

i,j∈T

∣∣DT
i Aj + AT

i Dj + DT
i Dj

∣∣ ∑
i,j∈T

|cicj |

� |T |‖c‖2
2 max
i,j∈T

(
‖Di‖2‖Aj‖2 + ‖Ai‖2‖Dj‖2 + ‖Di‖2‖Dj‖2

)
�
(
2ε
√
M max

i∈ZN

‖Ai‖2 + ε2M
)
S‖c‖2

2. (140)

In the above derivation, D = B −A, Ai, Aj are ith and jth columns of A. �
Using the above proposition, we obtain the following result:

Corollary 3.1. Let θ, φ ∈ W , then

∣∣δS(Φθ) − δS(Φφ)
∣∣ � 1

8 , (141)

provided that |θ′ − φ′| � CN−2
b M

−1/2
0 , where C is an absolute constant.

Proof. Assume that |θ′ − φ′| � ε. We need only to show that the difference between Φθ and Φφ can be
controlled by ε. This is quite straightforward using the definition of Φθ and Φφ:

∣∣Φθ(j, k) − Φφ(j, k)
∣∣ = 1√

Ns

∣∣√θ′(tj)ei2πkθ(tj) −
√

φ′(tj)ei2πkφ(tj)
∣∣

�
∣∣√θ′(tj) −

√
φ′(tj)

∣∣
√
Ns

+

√
θ′(tj)
√
Ns

∣∣ei2πk(θ(tj)−φ(tj)) − 1
∣∣

�
∣∣√θ′(tj) −

√
φ′(tj)

∣∣
√
Ns

+

√
θ′(tj)
√
Ns

2πk
∣∣θ(tj) − φ(tj)

∣∣
�

√
ε√
Ns

+ 2πNbε
√

4M0 + 1√
Ns

, (142)

where we have used the estimate ‖θ′‖∞ � 4M0 + 1 given in (137). Using Proposition 3.1 and the fact that
S � Nb, we can complete the proof. �

Combining Lemma 3.2, Corollary 3.1 and (125), we have the following theorem,

Theorem 3.5. supθ∈WM0
δS(Φθ) � 1/2 holds with probability 1 − δ provided that

Ns � C · (4M0 + 1)
(
S log2 Nb + M0 logNb − log δ

)
log4 Nb, (143)

where Ns is the number of the samples, Nb is the number of elements in the basis.

Remark 3.3. Comparing with the condition stated in Theorem 3.4, we require extra M0 log5 Nb samples in
order to get the uniform estimate. But this number M0 log5 Nb can be absorbed by S log6 Nb, since S is
larger than M0. Thus the condition to get an uniform estimate is essentially the same as that in Theorem 3.4.
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Fig. 1. Left: Original signal; Right: Error of the IMF and the phase function.

4. Numerical results

In this section, we will perform several numerical experiments to confirm our theoretical results presented
in the previous section and to demonstrate the performance of the algorithm based on the weighted l1

optimization.

Example 1 (Exact recovery for a well-resolved signal). The first example is a well-resolved periodic signal.
The signal we use is generated by

f = (2 + cos θ + 2 sin 2θ + cos 3θ) + (3 + cos θ + sin 3θ) cos θ, (144)

where the phase function θ is given by

θ = 20πt + 2 cos 2πt + 2 sin 4πt, θ = θ/10.

This signal is sampled over a uniform mesh of 256 points such that there are about 12 samples in each
period of the signal on average to make sure that the signal is well-resolved by the samples.

In this example, the non-zero Fourier coefficients of mean a0 and the amplitude a1 in the θ-space are
confined to the low frequency band. In this case, the corresponding M1 = 3. The instantaneous frequency
also consists of the low frequency Fourier modes, M0 = 2 in this example. The parameter L, which is the
number of periods, is equal to 10. In the computation, the initial guess of the phase function, θ0, is chosen
to be 20πt.

From this example, we can see that the estimate in Theorem 2.1 is far from being sharp. It is easy to
check that the initial condition does not satisfy the condition (64) in Theorem 2.1. Moreover, L is not as
large as that required in (59)–(61) (L < 4M1 and η0 ≈ 30 > L when n = 3). But in the computation,
Algorithm 1 is still capable to recover the exact result up to the interpolation error.

The numerical results are shown in Figs. 1 and 2. In Fig. 1, we can see that our algorithm indeed recovers
the exact decomposition of this signal. This is also consistent with the theoretical result we obtained in
Theorem 2.1. The result shown in Fig. 1 is obtained by applying the non-uniform Fourier transform directly
by solving a linear system. As we proposed in our algorithm, for a well-resolved signal, it is more efficient
to use a combination of interpolation and FFT. This procedure would introduce some interpolation error,
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Fig. 2. Left: Error of the IMF and the phase function with 256 uniform samples; Right: Error of the IMF and the phase function
with 1024 uniform samples.

however the computation is accelerated tremendously. As we see in Fig. 2, if we use the FFT-based algorithm,
the error increase to the order of 10−4 instead of 10−11 in the previous result when we used the non-uniform
Fourier transform. If we increase the number of sample points to 1024, the order of error decreases to 10−7.
This indicates that the main source of error comes from the interpolation error.

In our previous paper [11], we have shown many numerical results to demonstrate the stability of our
algorithm. These numerical examples confirm the theoretical results presented in Theorems 2.3 and 2.4. We
will not reproduce these numerical examples in this paper.

Example 2 (Exact recovery for a signal with random samples). The second example is designed to confirm
the result of Theorem 3.1. This example shows that for a signal with a sparse structure, our algorithm is
capable of producing the exact decomposition even if it is poorly sampled. The signal is given below:

f = cos θ + (3 + cos θ + sin 2θ) cos θ, (145)

where the phase function θ is

θ = 200πt− 10 cos 2πt− 2 sin 4πt, θ = θ/(100).

In this case, the corresponding parameters are M0 = 2, M1 = 2 and L = 100. The ratio between L and
M0,M1 is much larger than that in the previous example. The initial guess is given by θ0 = 200πt.

The number of sample points is set to be 120. These sample points are selected at random over 4096
uniformly distributed points. On average, there are only 1.2 points in each period of the signal. We test
100 independent samples and our algorithm is able to recover the signal for 97 samples, which gives 97%
success rate. Fig. 3 gives one of the successful samples.

The right panel of Fig. 3 shows that the order of error is 10−2 for IMF and 10−3 for the phase function.
In the computation, the l1 optimization problem is solved approximately in each step of the iteration. This
is the reason that the error is much larger than the round-off error of the computer. If we increase the
accuracy in solving the l1 optimization problem, the algorithm would give a more accurate result. However
the computational cost also increases as a consequence. We also reduce the number of sample points to 80
and carry out the same test for 100 times. In this case, the recovery rate was 46 out of 100.
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Fig. 3. Left: Original signal and the sample points; Right: Error of the IMF and phase function.

Example 3 (Approximate recovery for a signal with random samples). In this example, we will check the
stability of our algorithm for a poorly sampled signal. The signal is generated by

f = cos(2πt) +
(
3 + cos(2πt) + sin(4πt)

)
cos θ + 0.1X(t), (146)

where the phase function θ is

θ = θ̃ + 0.1 sin(120πt)

and θ̃ is the phase function in Example 2, and X(t) is the Gaussian noise with standard deviation σ2 = 1.
Comparing with the signal in Example 2, we add one small high frequency component on the phase

function, whose wave number is 60. In S3 of Algorithm 2, M0 is set to be 20, which implies that the high
frequency component of the phase function can not be captured in the computation. Moreover, the mean
and amplitude are not exactly low frequency confined over the Fourier basis in the θ-space. This would also
introduce some truncation error in the computation. We also add white noise to the original signal to make
it even more challenging to decompose. The initial guess of the phase function is also 200πt.

In this example, when the number of sample points is 120, our method can give 92 successful recoveries
in 100 independent tests. Fig. 4 gives one of the successful recoveries obtained by our algorithm. Due to the
truncation error and the noise, the error becomes much larger than that in the previous example. But all the
errors are comparable with the magnitude of the truncation error and noise, which shows that our method
has good stability even for signals with poor samples. When the number of samples is reduced to 80, the
recovery rate drops to 40 out of 100.

5. Concluding remarks

In this paper, we analyze the convergence of the data-driven time–frequency analysis method proposed
in [11]. First, we considered the case when the number of sample points is large enough. We proved that the
algorithm we developed would converge to the exact decomposition if the signal satisfies some low frequency
mode confinement condition in the coordinate determined by the phase function. Our convergence analysis
has been extended to cover signals polluted by noise. We also proved the convergence of our method with
an approximate decomposition when the signal does not have the exact low frequency confinement property
but its spectral coefficients have a fast decay.
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Fig. 4. Left: Original signal (blue) and the sample points (red) in Example 3; Right: Errors of a0, a1 and θ. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

We further considered the more challenging case when only a few number of samples are given which do
not resolve the original signal accurately. In this case, we need to solve a l1 minimization problem which
is computationally more expensive. We proved the stability and convergence of our method by using some
results developed in compressive sensing. As in compressive sensing, the convergence and stability of our
method assumes that certain S-restricted isometry condition is satisfied. We proved that for each fixed step
in the iteration, this S-restricted isometry condition is satisfied with an overwhelming probability if the
sample points are selected at random.

We presented numerical evidence to support our theoretical results. Our numerical results confirmed the
theoretical results in all cases that we considered.

We are currently working on the convergence of the data-driven time–frequency analysis method for
non-periodic signals. Our extensive numerical results seem to indicate that our method also converges for
non-periodic signals. The theoretical analysis for this problem is more challenging. We will report the result
in a subsequent paper.
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Appendix A. Error of the amplitude functions

Suppose

f(t) = f0(t) + f1(t) cos θ (147)

is the signal we want to decompose. Let am = f1 cos Δθm, bm = f1 sin Δθm, then we have

f = f0 + am cos θm − bm sin θm. (148)
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Let Lm = θm(T )−θm(0)
2π and θm = θm/(2πLm). Then we can rewrite f as follows:

f = f0 + am cos 2πLmθm − bm sin 2πLmθm. (149)

Define the Fourier transform in the θ-space as:

f̂θm =
1∫

0

f(t)e−i2πkθm

dθm. (150)

Applying Fourier transform to both sides of (149), we have

f̂θm(k) = f̂0,θm(k) + 1
2
(
âmθm

(
k + Lm

)
+ âmθm

(
k − Lm

))
− i

2
(
b̂mθm

(
k + Lm

)
− b̂mθm

(
k − Lm

))
. (151)

Then, we get

âmθm(k) − ib̂mθm(k) = 2f̂θm

(
k − Lm

)
− 2f̂0,θm

(
k − Lm

)
− âmθm

(
k − 2Lm

)
− ib̂mθm

(
k − 2Lm

)
,

âmθm(k) + ib̂mθm(k) = 2f̂θm

(
k + Lm

)
− 2f̂0,θm

(
k + Lm

)
− âmθm

(
k + 2Lm

)
+ ib̂mθm

(
k + 2Lm

)
.

It is easy to solve for âmθm and b̂mθm to obtain:

âmθm(k) = f̂θm

(
k + Lm

)
+ f̂θm

(
k − Lm

)
−
[
f̂0,θm

(
k + Lm

)
+ f̂0,θm

(
k − Lm

)
+ 1

2
(
âmθm

(
k + 2Lm

)
+ âmθm

(
k − 2Lm

))
− i

2
(
b̂mθm

(
k + 2Lm

)
− b̂mθm

(
k − 2Lm

))]
, (152)

b̂mθm(k) = −i
(
f̂θm

(
k + Lm

)
− f̂θm

(
k − Lm

))
+ i

[
f̂0,θm

(
k + Lm

)
− f̂0,θm

(
k − Lm

)
+ 1

2
(
âmθm

(
k + 2Lm

)
− âmθm

(
k − 2Lm

))
− i

2
(
b̂mθm

(
k + 2Lm

)
+ b̂mθm

(
k − 2Lm

))]
. (153)

In our algorithm, Fθm(ãm) and Fθm(b̃m) are approximated in the following way:

ˆ̃amθm(k) =
{
f̂θm(k + Lm) + f̂θm(k − Lm), −Lm/2 � k � Lm/2,
0, otherwise,

(154)

ˆ̃b
m

θm(k) =
{
−i(f̂θm(k + Lm) − f̂θm(k − Lm)), −Lm/2 � k � Lm/2,
0, otherwise.

(155)

We then get the error of the approximation in the spectral space:

Δ̂a
m

θm(k) =

⎧⎪⎨⎪⎩
−[f̂0,θm(k + Lm) + f̂0,θm(k − Lm) + 1

2 (âmθm(k + 2Lm) + âmθm(k − 2Lm))
− i

2 (b̂mθm(k + 2Lm) − b̂mθm(k − 2Lm))], |k| � Lm/2,
âmθm(k), |k| > Lm/2,

Δ̂b
m

θm(k) =

⎧⎪⎨⎪⎩
i[f̂0,θm(k + Lm) − f̂0,θm(k − Lm) + 1

2 (âmθm(k + 2Lm) − âmθm(k − 2Lm))
− i

2 (b̂mθm(k + 2Lm) + b̂mθm(k − 2Lm))], |k| � Lm/2,
ˆm m
bθm(k), |k| > L /2.
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Thus, we have the following inequality for the l1 norm of the error in the spectral space:∣∣Δam
∣∣ � ∥∥Δ̂a

m

θm

∥∥
1

� 2
∑

Lm

2 <k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âmθm(k)
∣∣+ ∣∣b̂mθm(k)

∣∣)+
∑

|k|>Lm

2

∣∣âmθm(k)
∣∣. (156)

Similarly, we get∣∣Δbm
∣∣ � 2

∑
Lm

2 <k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âmθm(k)
∣∣+ ∣∣b̂mθm(k)

∣∣)+
∑

|k|>Lm

2

∣∣b̂mθm(k)
∣∣. (157)

In the above derivation, we assume that the Fourier transform of f in θm-space can be calculated exactly.
If only approximate Fourier transform is available, denoted as ˆ̃fθm , such as the signal with poor samples as
we discussed in Section 3, there would be an extra term in the estimates of Δam and Δbm,∣∣Δam

∣∣ � 2
∑

Lm

2 <k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âmθm(k)
∣∣+ ∣∣b̂mθm(k)

∣∣)
+
∑

|k|>Lm

2

∣∣âmθm(k)
∣∣+ 2

∑
Lm

2 <k< 3
2L

m

∣∣f̂θm(k) − ˆ̃fθm(k)
∣∣, (158)

∣∣Δbm
∣∣ � 2

∑
Lm

2 <k< 3
2L

m

∣∣f̂0,θm(k)
∣∣+ ∑

3
2L

m<k< 5
2L

m

(∣∣âmθm(k)
∣∣+ ∣∣b̂mθm(k)

∣∣)
+
∑

|k|>Lm

2

∣∣b̂mθm(k)
∣∣+ 2

∑
Lm

2 <k< 3
2L

m

∣∣f̂θm(k) − ˆ̃fθm(k)
∣∣. (159)

Appendix B. Proof of Lemma 2.2

Proof. By a direct calculation, it is easy to verify that

sL(t) =
1∫

0

s(τ)gL(t− τ) dτ, (160)

where gL is a periodic function over [0, 1] given by

gL(t) = F−1[(χ(1 + k/L) + χ(1 − k/L)
)]

=
∑

|k|<L/2,k∈Z

(
ei2π(k+L)t + ei2π(k−L)t), ∀t ∈ R. (161)

Then we have

∣∣sL(t)
∣∣ � ‖s‖∞

1∫
0

∣∣gL(τ − t)
∣∣ dτ = ‖s‖∞

1/2∫
−1/2

∣∣gL(t)
∣∣ dt, (162)

where we have used the fact that gL is periodic over [0, 1]. Define

GL(t) = F−1
R

[(
χ(1 + ω/L) + χ(1 − ω/L)

)]
=

−L/2∫
−3L/2

ei2πωt dω +
3L/2∫
L/2

ei2πωt dω, ∀t ∈ R, (163)

where FR is the Fourier transform over the whole real axis R.
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Utilizing the definition of gL and the definition of GL and the relation that

k+1/2∫
k−1/2

ei2πωt dω = sin πt

πt
ei2πkt, ∀k ∈ Z, (164)

it is easy to show that

gL(t) = πt

sin πt
GL(t), ∀t ∈ R. (165)

This leads to the following estimate

1/2∫
−1/2

∣∣gL(t)
∣∣ dt � max

t∈[−1/2,1/2]

∣∣∣∣ πt

sin πt

∣∣∣∣
1/2∫

−1/2

∣∣GL(t)
∣∣ dt � π

2

+∞∫
−∞

∣∣GL(t)
∣∣ dt. (166)

Notice that GL(t) = LG1(Lt) which implies that

+∞∫
−∞

∣∣GL(t)
∣∣ dt =

+∞∫
−∞

L
∣∣G1(Lt)

∣∣ dt =
+∞∫

−∞

∣∣G1(t)
∣∣ dt. (167)

Then the lemma can be proved by setting Γs = π
2 ‖G1‖1. �

Appendix C. Estimates of f̂0,θm(ω), âm
θm(ω) and b̂mθm(ω) in Theorem 2.1

We first estimate f0. We proceed as follows:

∣∣f̂0,θm(ω)
∣∣ = ∣∣∣∣∣

1∫
0

f0(t)e−i2πωθm

dθm

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

∑
|k|�M1

f̂0,θ(k)ei2π(kθ−ωθm) dθm

∣∣∣∣∣
=

∣∣∣∣∣ ∑
|k|�M1

f̂0,θ(k)
1∫

0

ei2π(kθ−ωθm) dθm

∣∣∣∣∣
=

∣∣∣∣∣ ∑
|k|�M1

f̂0,θ(k)
1∫

0

ei2π(αk−ω)θm

eikΔθm/L dθm

∣∣∣∣∣, (168)

where α = Lm/L. In the last equality, we have used the fact that θ = 2πLθ, θm = 2πLmθm and θ =
θm + Δθm.

Using Lemma 2.1, we obtain for any |ω| > L/2 that

∣∣f̂0,θm(ω)
∣∣ � ∣∣∣∣∣ ∑ f̂0,θ(k)

1∫
ei2π(αk−ω)θm

eikΔθm/L dθm

∣∣∣∣∣

|k|�M1 0
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� C0
∑

|k|�M1

QMn
0

|ω − αk|n
n∑

j=1

∣∣∣∣ kL
∣∣∣∣j(2πM0)−j

∥∥Fθm

[(
Δθm

)′]∥∥j
1

� 2C0Q

(
|ω|
2

)−n

Mn
0 M1

n∑
j=1

(M1γ/L)j , (169)

where C0 = max|k|�M1(|f̂0,θ(k)|, |f̂1,θ(k)|) and

Q = P (z, n)
(min(θm)′)n

, z = ‖F [(θm)′]‖1

min(θm)′
, γ = ‖F [(Δθm)′]‖1

2πM0
. (170)

In the above derivation, we need to assume that L � 4M1 such that |ω − αk| � |ω|/2 for all |ω| � L/2 and
|k| � M1.

If we further assume that γ � 1/4, we have

∣∣f̂0,θm(ω)
∣∣ � C0Q

(
|ω|
2

)−n

Mn
0 M1γ. (171)

Next, we estimate âmθm . The method of analysis is similar to the previous one, however the derivation is
a little more complicated. We proceed as follows:

∣∣âmθm(ω)
∣∣ = ∣∣∣∣∣

1∫
0

f1(t) cosΔθm(t)e−i2πωθm

dθm

∣∣∣∣∣
� 1

2

∣∣∣∣∣
1∫

0

∑
|k|�M1

f̂1,θ(k)ei2πkθ
(
eiΔθ + e−iΔθ

)
e−i2πωθm

dθm

∣∣∣∣∣
� 1

2

∣∣∣∣∣ ∑
|k|�M1

f̂1,θ(k)
1∫

0

ei2π(αk−ω)θm

ei(k+L)Δθ/L dθm

∣∣∣∣∣
+ 1

2

∣∣∣∣∣ ∑
|k|�M1

f̂1,θ(k)
1∫

0

ei2π(αk−ω)θm

ei(k−L)Δθ/L dθm

∣∣∣∣∣. (172)

For the first term in the above inequality, we have that for any |ω| > L/2,

∣∣∣∣∣ ∑
|k|�M1

f1,θ(k)
1∫

0

ei2π(αk−ω)θm

ei(k+L)Δθ/L dθm

∣∣∣∣∣
� C0Q

∑
|k|�M1

Mn
0

|ω − αk|n
n∑

j=1

∣∣∣∣1 + k

L

∣∣∣∣jγj

� C0Q

(
|ω|
2

)−n

Mn
0

n∑
j=1

2j−1γj
∑

|k|�M1

(
1 +
∣∣∣∣ kL
∣∣∣∣j)

� 4C0Q

(
|ω|
2

)−n

Mn
0 (2M1 + 1)γ. (173)

Here we assume that L � 4M1, γ � 1/4. The definition of Q and γ can be found in (43).
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For the second term in (172), we can get the same bound for |ω| � L/2,

∣∣∣∣∣ ∑
|k|�M1

f1,θ(k)
1∫

0

ei2π(αk−ω)θm

ei(k−L)Δθ/L dθm

∣∣∣∣∣ � 4C0Q

(
|ω|
2

)−n

Mn
0 (2M1 + 1)γ. (174)

By combining (172), (173) and (174), we obtain a complete control of â,

∣∣âmθm(ω)
∣∣ � 4C0Q

(
|ω|
2

)−n

Mn
0 (2M1 + 1)γ, ∀|ω| � L/2. (175)

Similarly, we can estimate b̂mθm by the same upper bound,

∣∣b̂mθm(ω)
∣∣ � 4C0Q

(
|ω|
2

)−n

Mn
0 (2M1 + 1)γ, ∀|ω| � L/2. (176)

Appendix D. Proof of Lemma 3.1

Proof. Since ei2πkφ is a periodic function over [0, 1], it can be represented by Fourier series:

ei2πkφ(t) =
+∞∑

l=−∞
dle

i2πlt, t ∈ [0, 1], (177)

where dl =
∫ 1
0 ei2πkφ(t)e−i2πlt dt. By assumption, we have φ′(t) ∈ VM0 . Thus, we get

φ′(t) =
M0∑

j=−M0

cje
i2πjt, t ∈ [0, 1], (178)

where cj =
∫ 1
0 θ′(t)e−i2πjt dt.

Further, we have

1
L

L−1∑
m=0

φ′(tm)ei2πkφ(tm) = 1
L

L−1∑
m=0

M0∑
j=−M0

+∞∑
l=−∞

cj dle
i2π(l+j)tm

= 1
L

M0∑
j=−M0

+∞∑
l=−∞

cj dl

L−1∑
m=0

ei2π(l+j)m/L

=
M0∑

j=−M0

∑
p∈Z

cj dpL−j

=
M0∑

j=−M0

cj d−j +
M0∑

j=−M0

∑
p∈Z,p �=0

cj dpL−j

=
1∫

0

θ′(t)ei2πkφ(t) dt +
M0∑

j=−M0

∑
p∈Z,p �=0

cj dpL−j

=
M0∑ ∑

cj dpL−j . (179)

j=−M0 p∈Z,p �=0



T.Y. Hou et al. / Appl. Comput. Harmon. Anal. 37 (2014) 235–270 269
Using integration by parts, we have

|dl| =

∣∣∣∣∣
1∫

0

ei2πkφe−i2πlt dt

∣∣∣∣∣
= 1

|l|n

∣∣∣∣∣
1∫

0

(
dn

dtn
ei2πkφ

)
e−i2πlt dt

∣∣∣∣∣
� 1

|l|n

1∫
0

∣∣∣∣( dn

dtn
ei2πkφ

)∣∣∣∣ dt
� 1

|l|n max
t

∣∣∣∣( dn

dtn
ei2πkφ

)∣∣∣∣. (180)

Using the inequality (26) in the proof of Lemma 2.1, and by a direct calculation, we can show that for any
n > 0, there exists C(n) > 0 such that

max
t

∣∣∣∣( dn

dtn
ei2πkφ

)∣∣∣∣ � C(n)
n∑

j=1
|k|jMn−j

0
∥∥φ̂′
∥∥j

1

= C(n)|k|Mn−1
0
∥∥φ̂′
∥∥

1

|k|n
Mn

0
‖φ̂′‖n1 − 1

|k|
M0

‖φ̂′‖1 − 1

�
{

2C(n)|k|n‖φ̂′‖n1 ,
|k|
M0

‖φ̂′‖1 > 2,

2C(n)(2M0)n, |k|
M0

‖φ̂′‖1 � 2.
(181)

As a result, we obtain

|dl| �
{

2C(n)|k‖φ̂′‖1
l |n, |k|‖φ̂′‖1 > 2M0,

2C(n)|2M0
l |n, |k|‖φ̂′‖1 � 2M0.

(182)

Finally, we derive the following estimate∣∣∣∣∣
M0∑

j=−M0

∑
p∈Z,p �=0

cjdpL−j

∣∣∣∣∣ � ∑
p∈Z,p �=0

M0∑
j=−M0

|cj || dpL−j |

� 2
M0∑

j=−M0

|cj |
+∞∑
p=1

max
j

|dpL−j |

� 4C(n)
∥∥φ̂′
∥∥

1

+∞∑
p=1

max
(∣∣∣∣ k‖φ̂′‖1

pL−M0

∣∣∣∣n, ∣∣∣∣ 2M0

pL−M0

∣∣∣∣n)

� 4C(n)
∥∥φ̂′
∥∥

1 max
(∣∣∣∣k‖φ̂′‖1

L

∣∣∣∣n, ∣∣∣∣2M0

L

∣∣∣∣n)+∞∑
p=1

(p−M0/L)−n

� 4(1 −M0/L)−n+1 C(n)
n− 1

∥∥φ̂′
∥∥

1 max
(∣∣∣∣k‖φ̂′‖1

L

∣∣∣∣n, ∣∣∣∣2M0

L

∣∣∣∣n). (183)

This completes the proof of the lemma. �
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