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Abstract

In this article, we study existence of analytic solution for slightly perturbed three-dimensional
vortex sheets in the absence of surface tension. The key in our analysis is to derive a local lead-
ing order system, which captures the leading order behavior of the full three-dimensional vortex
sheet equation. This is accomplished by a series of changes of variables, for both dependent and
independent variables in order to single out the leading order contributions of the 3-D vortex sheet
equations. The changes of variables are guided by properties of certain singular integral operators.
Moreover, by using the extended abstract Cauchy-Kowalewski theorem, we can control the growth
of the nonlinear nonlocal terms. For small initial analytic data, we show that the existence time
can be sufficiently close to the time of singularity formation. Thus our existence result is nearly
optimal.

1 Introduction

One of the classical examples of hydrodynamic instability occurs when two fluids are separated by
a free surface across which the tangential velocity has a jump discontinuity. This is called Kelvin-
Helmholtz instability. Kelvin-Helmholtz instability is a fundamental instability of incompressible
fluid flow at high Reynolds number. The idealization of a shear layered flow as a vortex sheet
separating two regions of potential flow has often been used as a model to study mixing properties,
boundary layers and coherent structures of fluids (see, e.g. [21]).

It is well known that small initial perturbations on a vortex sheet may grow rapidly due to
Kelvin-Helmholtz instability. The problem is ill-posed in the Hadamard sense [4]. Finite time
existence and uniqueness have been obtained only for analytic initial data, see, e.g., [24]. Due to
the rapid growth in high frequency modes and the nonlinear interaction among these high frequency
modes, an initially analytic vortex sheet may develop finite time curvature singularities. Moore
[19] was the first who studied finite time singularity formation of a 2D vortex sheet with a small
sinusoidal initial disturbance. His analysis predicted that close to the singularity, the curvature of
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the sheet is proportional to |[I'—T° S|*1/ 2 where T is the circulation in the sheet measured from a fixed
reference particle and T’y is the position of the singularity. Moreover, his analysis gave an accurate
prediction of the singularity time. Although Moore’s result was based on asymptotic analysis, his
result was subsequently verified numerically by a number of researchers, including Meiron, Baker
& Orszag [18], Krasny [17], Shelley [22]. As a rigorous validation of Moore’s analysis, Caflisch
& Orellana [7] proved a nearly optimal existence result for a slightly perturbed two-dimensional
vortex sheet using Moore’s initial condition. Using a constructive proof, Duchon & Roberts [11]
and Caflisch & Orellana [8] showed independently that an initial analytic vortex sheet can develop a
finite time singularity. More recently, Cowley, Baker & Tanveer [10] provided further detailed study
to singularity formation of the two-dimensional vortex sheet problem, revealing the the mechanism
of generating the singularities of order 3/2 for two-dimensional vortex sheets.

Three-dimensional vortex sheets are more difficult to analyze than the two-dimensional ones.
This is because one can formulate and analyze the two-dimensional vortex sheet problem using
complex variables. Sulem, Sulem, Bardos, & Frisch [24] were the first who provided a finite time
existence proof of three-dimensional vortex sheets for general analytic initial data. Studies of sin-
gularity formation in 3D vortex sheets are limited. Among them, Ishihara & Kaneda [16] provided
some evidence of the singularity formation in the three-dimensional problem by directly generaliz-
ing Moore’s analysis to the three-dimensional problem. However, their result does not give a clear
description of the singularity structure of the 3-D vortex sheet problem. Brady & Pullin [5] studied
three-dimensional vortex sheets which have cylindrical shape and normal mode initial data. They
showed that for this type of special initial data, the three-dimensional vortex sheet problem can be
reduced exactly to a two-dimensional vortex sheet problem.

In this article, we obtain a nearly optimal existence result for three-dimensional vortex sheets
with small analytic initial data. We do not consider the effect of surface tension in this study. The
key in our analysis is to derive a linear leading order system, which captures the leading order
behavior of the full three-dimensional vortex sheet equation. This is accomplished by a series of
changes of variables, for both dependent and independent variables in order to single out the leading
order contributions of the 3-D vortex sheet equations. This analysis is guided by a related stability
analysis for 3-D fluid interfaces by Hou and Zhang in [14] which uses properties of certain pseudo-
differential operators defined on moving interfaces. Although a nonlinear leading order system
(similar to Moore’s system) can also be derived, we find that the linear leading order system gives
a better structure for our analysis. Based on the approximated system, we split the solution into
a leading order part and a lower order part as in [7]. The existence of the leading order part of
the solution can be obtained immediately from the linear theory. On the other hand, we apply
the extended abstract Cauchy-Kowalewski theorem to estimate the nonlinear nonlocal lower order
part. We show that the second part of the solution is indeed of lower order and smaller amplitude
in a suitable norm. This proves the existence of the three-dimensional vortex sheet solution.

Specifically, we consider a three-dimensional vortex sheet with analytic initial data. More
precisely, we assume that the initial data are analytic within the complex domain of strip width
max(|Im(ai)|,|[Im(az)|) < po, where (a;, a2) are the Lagrangian parameters. Under these assump-
tions, we show that the smooth three-dimensional vortex sheet exists up to time 7' = 2py /(1 + 2k),
where x > 0 is a parameter depending on the amplitude of the initial disturbance and can be made



arbitrarily small for small initial disturbance. For the special initial data considered by Brady and
Pullin [5] of wave length m and amplitude €, Moore’s analysis can be used to show that singulari-
ties of order 3/2 develop at t. = |log |e| + O(log|loge|). Our existence results prove existence for
t < p|logel, if € is sufficiently small, with 4 — 1 as € — 0. Thus we show that the existence time
can be sufficiently close to the singularity time of the leading order system. In this sense, our result
is nearly optimal.

We remark that our existence result is different from that of Sulem, Sulem, Bardos, & Frisch [24].
The existence result of [24] is a short time existence result for general analytic data. Our analyses
focus on slightly perturbed initial analytic data, and we obtain a nearly optimal long time existence
result for small initial analytic data. Our aim is to establish existence of analytic solutions for 3D
vortex sheets arbitrarily close to the time when the vortex sheet develops a curvature singularity of
order 3/2 [5]. The derivation of the leading order system plays a crucial role in obtaining this nearly
optimal existence result. In particular, the analysis on the leading order system shows that along
the direction of the tangential velocity jump, the three-dimensional vortex sheet problem can be
effectively reduced to a corresponding two-dimensional problem to the leading order approximation.
In a separate paper [15], we have used this leading order analysis to study singularity formation
of 3D vortex sheets. We show that the singularity type of the three-dimensional vortex sheet is
essentially the same as that of the two-dimensional vortex sheet.

The organization of the rest of the paper is as follows. Section 2 provides a general introduction
to the formulation of the 3-D vortex sheet problem, and states our main result. In Section 3, we
derive a nonlinear system with linear leading order terms. This system is crucial in obtaining our
nearly optimal existence result. We outline the proof without giving the detailed estimates of our
approximated system in Section 4. In Section 5 and in the Appendix, we provide technical details
omitted in Section 4.

2 Formulation and Main Result

2.1 General Formulation

We consider an interface I' separating two infinite layers of incompressible, inviscid, irrotational
and identical fluids in the absence of surface tension. Using the Lagrangian frame, the interface
location at any instant ¢ is given by:

Z(alaa27t) = (m(alaa2,t) ay(alaa27t),z(alaa27t))T ’ (1)

where (a1, ag) is the Lagrangian surface parameter. Thus, the normalized tangential vectors to the
surface, T1 and Ty, are defined by

T, = o Ty = 202 2)

= 7 = b
|Z, | |Zas |

and the unit normal vector to the surface N is defined by

Zo, X Zg,
N: 1 2

|Zay X Za,|
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We label the region below the interface as Region 1 and the region above the interface as
Region 2. Therefore, the velocity field u; (uy) is the velocity below (above) the interface. We
define uy to be the limit of us approaching the interface from Region 2 and u_ to be the limit of
u; approaching the interface from Region 1. Since the flow in each region is irrotational, we can
introduce the velocity potentials ¢; and ¢9 so that

u; =V, uz = Voo . (4)
Furthermore, since the flows are incompressible, the velocity potentials satisfy the Laplace equation:
V241 =0 and V2¢y=0. (5)

Therefore, the potentials in the fluid domain can be written in the following dipole representation

[2]:

60) = [ 1) o0y % 700)(@) - T Gin — (e Q
where
G ! 1
(z —2) —m )
N o_ __ Z— z'
V.Gz—-12") = prm—r

and p(a) = ¢ — ¢4. By differentiating equation (6) with respect to z and then integrating by
parts, we obtain

V() = / Vois()T, Vaz(e!)T| x VyGlz — 2(a)) do | M)

where we have used the notation

ou ou
T T
|Vap ,Vaz | = a—alz(]Z — a—onal .

In the Lagrangian formulation of the interface problem, the motion of the interface is governed
by

02 0,) = u(a(a, ), 1) , (®)

ot

where u = (u,v,w) is the velocity of fluid particles on the interface. The kinematic condition that
ensures that the interface moves with the fluid requires that the normal component of the velocity
be continuous at the interface. However, the tangential velocity at the interface is arbitrary and
can be chosen at our convenience.

For the vortex sheet problem, we apply Bernoulli’s equation to the upper and lower layer of
fluid respectively. Based on the continuity of the normal stress, and combining with equation (6)
and equation (7), we can show that by choosing the interface velocity in (8) to be the average of
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the interface velocity from above u and the interface velocity from below u_ from above and from
below respectively, i.e. u = %(u; + u_), then we have [3]

on _

o =0. 9)

Equation (9) says that the circulation stays constant along the trajectories whose motions are
determined by the average fluid velocity.

With this particular choice of tangential velocity, the velocity of the vortex sheet interface can
be obtained by the average of the limiting velocities in equation (7) approaching from the upper
and lower layer of fluid. The equation of the surface particle motion can be written as (see, e.g.
[6, 12] for a derivation):

%(a,t) = /|Vau(a')T,Vaz(o/,t)T| x VuG(z(a,t) —z(d,t)) dd | (10)
z(a,0) = zo(a) (11)

where z € S and the integral takes the Cauchy principal value.

2.2 Main Result

Throughout the paper, we study the existence of a unique solution to the initial value problem (10).
The main result is to prove the existence of such a solution given a slightly perturbed periodic initial
condition from an equilibrium flat state. More precisely, we write the interface variable z as

T o1 S1
z 0 S3

where Si, Sp and S3 are periodic functions with period of (27 x 27) and small analytic initial
values in an analytic norm (see (13) below). Furthermore, without loss of generality, we assume
U = 7101 + e, with 1 and 2 being two constants. The existence of such a set of coordinates
has been proved in [15] in which the singularity formation of three-dimensional vortex sheets is
investigated.

It has been shown that the vortex sheet problem is not well-posed in any Sobolev norm [7].
Therefore, we establish the well-posedness in an analytic norm. Particularly, we define the Lipschitz
norm within a certain complex strip as follows:

f(r1, k2) — f(K], kS
flap = swp |frima)l+  sup  Enm) Sl
K1)|<p [Im(k1)|<p, |Im(k2)|<p |(H1"€2)_(H17’<’2)|
[Im(k2)|<p [Im(s)|<p, [Im(rky)/<p
(K1,K2)Z(K],K5)

The following theorem is our main result.



Theorem 2.1 (Ezistence of 3D Vortex Sheet Solutions) Let 0 < o < 1, and py > 0. Assume that
z has the form of (12) with S;(B1, B2, 0) satisfying

sup ( |S’L(/31518270)‘ +|VSZ(/81518270)‘

[Im(B1)|<po
[Im(B2)|<po
2 2
+ D> 195,05, 5i (1, 82,0))] ) < &, (13)
k=1 j=1
where i = 1,2,3 and ¢ is sufficiently small. Then there exists a solution z = (B1,02,0)T +

(S1,82,83)T for a time 0 <t < T, where T satisfies

2p0

T< —/——— .
<1+2KJ

Here k > 0 is a parameter depending on €. It satisfies the properties that k — 0 as ¢ — 0 and
k"2epyg — 0 as € — 0. Moreover, S;(t) satisfies:

3
S NSit)llay < onMte <en'Te,
i=1

for any p and t such that

0<p<po-—

bl

1
5tk

where ¢ is independent of €, kK and pg.

We remark that existence of 3D vortex sheets has been obtained by Sulem, Sulem, Bardos, &
Frisch [24] for general analytic initial data. Our existence result is different from that of [24] in the
sense that we are interested in establishing a nearly optimal existence result for slightly perturbed
vortex sheets arbitrarily close to the time when the vortex sheet forms a curvature singularity
[5, 15]. In order to achieve this objective, it is essential to explore the leading order structure of
the 3D vortex sheet equations. The derivation of the leading order system plays a crucial role
in obtaining this nearly optimal existence result for slightly perturbed 3D vortex sheets. For the
special initial data considered by Brady and Pullin [5] of wave length 7 and amplitude ¢, Moore’s
analysis can be used to show that singularities of order 3/2 develop at t. = |log |¢| + O(log | log€|).
Our existence result proves existence for ¢ < u|logel, if € is sufficiently small, with 4 — 1 as e — 0.
In comparison, applying the existence analysis of [24] to this initial data would give only a short
time existence result, which is not optimal.

3 A Nonlinear System with Linear Leading Order Terms

In this section, we derive a nonlinear system with linear leading order terms which approximates
the full vortex sheet equation (10). As in 2-D vortex sheets, the linear leading order system is of



elliptic type, whose initial value problem leads to Kelvin-Helmholtz instability. We will show that
the nonlinear terms are small in the Lipschitz norm for analytic solutions within a strip in the
complex domain. The bounds of the nonlinear terms are proved rigorously in the next section.

To estimate the growth of Kelvin-Helmholtz instability, we extend the independent variables
into the complex domain. With this complexification, the system can be considered as a hyperbolic
system with complex characteristic speeds. With its characteristic lines propagating within the
complex domain, the ill-posed problem in the physical domain becomes a well-posed problem in
the extended complex domain with shrinking analyticity strip.

Before we start deriving the system, it is necessary to introduce the Riesz transforms, which
will be used extensively throughout this paper.

Define:
Hl(f) _ // al - al)f(a,) do! ’ (14)

m—% + (a2 — h)2)?
_ (02 —eh)f(e)
Hy(f) = // (on — o)+ (02 - 0/2)2)% do’ (15)

A(f) = 2#// 0 fle) = fla) ol . (16)

a1 —a))? + (a2 — ah)?)

for f € LP(R?), where 1 < p < o0, o/ = (], ab). The integrals take the Cauchy principal value.
In [23], Stein proved that the Riesz transformations have the following spectral representations:

_ —i& .

Hf = Wfa (17)
_— ity s

ol = g’ .
Af = (E+8)F, (19)

if (¢1,&) # (0,0), and H;f = 0 if (¢&1,&2) = (0,0). Here f stands for the Fourier transformation of
f € L?(R?). From (17)-(19), we can prove the following Lemma directly.

Lemma 3.1 Assume that f € H'Y(R?) and f(0) = 0, where H'(R?) is the Sobolev H' space on R>
and f is the Fourier transform of f. Then the following equalities hold:

HiHs(f) HyH:(f), (20)

H1Dy(f) = HaDi(f), (21)

(HT + H3)(f) = -, (22)
(H1Dy + HaDo)(f) = A(f) (23)

where Dy (D3) stands for derivative operator with respect to a1 (ag).

Up to now, we have defined the Riesz transforms for L? functions in the infinite domain. We
would like to extend the definition to periodic functions. This can be implemented in two ways. One



is to use the Fourier representations, in which the Fourier transforms in (17) and (18) will be written
in the form of Fourier coefficients for periodic functions. This can be done for Lipschitz continuous
functions Lip, ([0, 27] x [0, 271]) because of the fact that Lip,([0, 27] x [0,2x]) C L2([0,2x] x [0, 27]).

Another way to extend the definition is to modify the integral kernel. We denote by K (a1, as)
the integral kernel of the Riesz transform, and assume that f is periodic with period of 27 x 27
and

™ T
/ flai, az)dardas =0 . (24)
—TJ =T

The Riesz transform with kernel K (a1, as) can be written as:

m(ne) = [ J £(C — @)K (@)dordas

2n1 —|—1)71’ (2n2—|—1
= lim / — a)K(a)daijday

T1,M2 300 (2n1—|—1 (2n24+1)m
2k1+1 2k2+1
= lim / / — a)K(a)dajdas
T 1,M2—>00 klf—nl [—— 2k1 1)ﬂ_ ka 1
= lim f (¢ — o) [K(a)
7n1,N2—00 Py S
(n1,m2)
+ Z K(a1 — 2k17T, a9 — 2k27r)]da1da2
(k1,k2)=(—n1,—n2)
Ic1,k2)7é(0 0)
= okim - _Wf —a)[K(a)
(n1,n2)
+ Z (K(a — 2km) — K(—2km))]dardas ,
(k1,k2)=(—n1,—n2)

(kl )k2)‘7£(070)
(25)

where a = (a1,a2), ( = ((1,(2), and k = (k1,k2) with k1, k2 both being integers. We have used
the fact that f[_w a2 f(a)da = 0 in the last step.
If for the kernel K («), the sum

(n1,m2)

> (K (o — 2km) — K (—2km))
(k1,K2)=(—n1,—n2)
(k1,k2)#(0,0)

converges absolutely and uniformly for a € [0,27] x [0, 27], we can take the limit into the integral



and define:

K*(a) = K(a)+ Y [K(o+2kr)— K(2kr)]

= K(a)+K(a), (26)

for each (a1, a2) € [0,27] x [0, 27].

It is well-known [9] that the sum K (a1, ap) does converge absolutely and uniformly to a bounded
function for each (a1, as) € [0,27] x [0,2n]. Particularly, K* converges to 3 cot(3a) if K is the
kernel of the Hilbert transform in one dimension. This shows that the Riesz transform for periodic
functions is well-defined. Thus, we can write the integral of the Riesz transform either over one
period with the periodic kernel or over the infinite domain with its original kernel; both forms are
equivalent.

We derive similarly the periodic kernel of the vortex sheet integral. The result is analogous to
obtaining the kernel 3 cot("‘;z') in one-dimensional space.

Denote:

G

z(e) —z(a ()
where a = (a1, a9) and ¢ = ((1,(2). Since z has the form of (12), the denominator can be re-written
as:

K (a, 00— () (27)

G1 Si(@) = Si(a—¢) \ |°
lz(@) —z(a = QP = || ¢ |+ | Sa) = Sala—() - (28)
0 S3(a) — S3(a — ()
Using the periodicity of Sy, So and S3, one can show that
|2(e) — z2(a — (¢ + 2km))]® =
1+ 2k Si(a) = Si(a—¢) \ °
Co+2kom | + | Sa2(a) — Sa(a— ) , (29)
0 S3(a) — S3(a — ()
where k = (k1, k2). Consequently, we can define:
Kzl*(aa a — C)
= Ki(wa—+ Y (Ki(a,a—(+2kn) - K'(2km))
k#(0,0)
= Ki(aa—()+Kl(a,a-) (30)
where K! is the kernel of the Riesz transform in the «;-direction,
G
K'(¢) =5

Similarly to equation (26), K_; converges absolutely and uniformly to a bounded function for
every (ai,asz) € [0,2n] x [0, 2] provided that the perturbation from z to a flat plane is sufficiently
small.



We illustrate the above idea for the Hilbert transform, where

1
Keloa=0 = @0
_ 1
Cts@) —s@—0)
and .
K(a)= o

After some manipulations, we can obtain a closed form for the periodic kernel K} (a, o — ¢):

K (a, a—C)

= )+ Z (o, — (¢ + 2km)) — K (2km))
P,

1 1 1
- z(a) — z(a =) +Z <2k7r+z(oz) —2(a=¢) 2k7r>

k£0
_ %cot (%(z(a) — 2a— O)) . (31)

Remarks: 1. By using the periodic kernel mentioned above, the vortex sheet integral can be
rewritten as an integral over one period.

2. As we will show rigorously in the last section, if z is a small perturbation of a flat plane
under the Lipschitz norm, i.e. ,

z~ (o, a2,0)T + O(e) ,

the vortex sheet kernel K1*(, a — ¢) defined in (30) is close to the Riesz transform kernel K'*(«)
defined in (26) under the same Lipschitz norm. This observation will be used extensively in the
following derivation.

3. All the derivations in this section are formal. We write the remaining terms as O(g?) since
they are, as we will show later, of smaller amplitude. At the end of this section, we denote them
as Ry, Ry and R3 respectively.

Next we derive our leading order system. Based on the assumptions stated in the last section,
equation (10) can be re-written as:

L A

ot |z — /|3
1 Sla% 1 +IS{O¢1
= e )| S
S3a2 S3a1
Y, o
a1 Oéll + Sl } da'
X a2_052+32_52 e
S5 — 84 [z — =
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Since S; ~ O(g) (see Theorem 2.1), it is reasonable to consider the linear terms in the numerator
of the integrand in the above interface equation as the leading order terms. By writing down every
component separately and keeping only the linear terms, we obtain the equations for 51, Ss and
S3 as follows:

% _ // '71 1+ 52042 72Séa1)(53 - S{Ii)
ot |z — 23
(7153a2 — 72534, ) (@2 — o + S2 — 55) o
- o
5= P
1 // Y1(S3 — 83) — (715340 — 12534, ) (02 — 03) o
= —— o
o — o
+0(e?) (32)
8, 1 // (71530, — 1253a,) (01 — 01 + 81 — 51)
ot |z — /|3
ja—a?
i 1 // '72(83 - Sé) + (718éa2 - fYQSéal)(al - all) do!
= —— o
4 |z — 2|3
+0(e?) (33)
and
% _ // 7151042 Y2 1+Sia1))(a2_a12+52_sé)
ot 1z — 23
'71 1+52a2) ’)’2‘32()41)(@1 C¥11+S1—Si)d '
o
oo
_ // (71514, — 7251a1)(042 o)
- Z _ Z/|3
7152042 72S2a1)(a1 Il)
o=l
_ o —a) + 81— 57) + (a2 — a5 + S — 5)) do!
o= al
+0(e?) . (34)

Guided by the stability analysis by Hou and Zhang in [14], we introduce the following change

11



of variables:

Y1 = H(S1) — Hi(S2) , (35)
Yo = Hi(S1)+ Ha(S2) - (36)

The ill-posedness or instability will become more apparent using these new variables. In particular,
we will show that using this change of variables, we can remove the Kelvin-Helmholtz instabil-
ity from the 1)1 variable to the leading order. The Kelvin-Helmholtz instability is only present
through the coupling between 15 and S3 along certain one-dimensional direction. This observation
is essential for us to obtain a nearly optimal existence result.

It follows from Lemma 3.1 that (S7,S2) can be represented by (11,12) through the following
equations:

51 = —Hz(’(ﬁl) — Hl(’lﬁg)—l- < Sl >, (37)
Sy = Hl(’lﬁl) — H2(¢2)+ < Sy >, (38)

where < §; >= [ [ _S;(a)da. Therefore, it follows from differentiating equation (35) and (36)
with respect to time ¢ that

0 oS aS
% = H2(a—tl) - 1(8—152) ) (39)
0 oS aS
% = H1(6—;)+H2(8—;) . (40)

To derive the leading order terms of the evolution equation for v, we substitute (32) and (33)
into (39) to obtain

3¢1 851 852
grL Ho (22 _ go2
p” o) — Hil77)
B 1 [ 71(S3 = 85) = (71534, —712530,) (@2 — 0)
= HQ(_E/ |z—zl|3 da)
1 [ 72(S3 — 85) + (71534, — 12550, ) (1 — o))
g [ o 7P )
+0(?) . (41)

Further, we observe that the vortex sheet kernel is close to the Riesz transform kernel under the
Lipschitz norm. Thus one can show that

0 1
% = —5H2(1ASs — 1 H2D283 + 12 HzD153)
1
+ §H1(72A53 + y1H1 D9S3 — ¥ H1 D1 S3) + O(?)
1
= —§H2(71H1D153 + v2H2 D1 S3)
1 2
+ §H1(’)/1H1DQS3 + ’YQHQDQS{;) + O(E )
= 0(%), (42)
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where we have applied Lemma 3.1 and performing integration by parts in the last step.
Similarly, to derive the leading order terms in the evolution equation of 12, we substitute (32)
and (33) into (40) and get

8¢2 851 852
hi 2 H (22 ez
ot (T )+ Ha()0)
B 1 [ 71(S3 = 85) = (71534, —712530,) (@2 — )
— Hl(_y/‘ |Z_Z/|3 da)
n HQ(—i / Y2(S3 — 83) + (71534, — 72534, ) (01 — ) do!)
4m |z — 2|3
+0(€?) . (43)

Using that |z — 2’| ~ |a — | to the leading order, we can further simplify the above expression to

On

1
o — —EHl(’YlAS?) — v1H2D9S3 + v2H2D1S3)

1
— EHQ(’YQAS?, + ’)’1H1D253 — ’72H1D153) + 0(82)
1
= —§H1(71H1D1S3 + 72 H2D1S53)
1
— §H2(71H1D253 + ’YQHQDQSg) + 0(62) . (44)

By applying Lemma 3.1, we reduce the above equation to

ol 1
% = ——’lel(HlHl + H2H2)53
t 2
1
— E'YQDZ(HlHl + H2H2)S3 + 0(62)
1
= S(MmD1+72D2)S3 + O(?) . (45)

For the evolution equation of S3, we substitute (37) and (38) into (34), and extract the leading
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order terms:

08 _ 1 Y1(—=Ha(9]) — H1(15))a, (2 — )
ot 47r// : |z—z’\?” :
4 Yo(Ho (1) + H1(15))a, (2 — )
|z — 2|3
N Yo(H1 (1) — Ha(15))a, (1 — )
|z —2'|3
~ n(Hi(yy) — Ha(¥5))an (1 — )
|z — 2|3
~ e(Hi(r — 1) — Ha(y2 — 95))
|z — 2|3
_ n(=Ho(y — 1) — Hi(y2 — )
|z — 2|3
_mlen— o) tp(ee—ay) 40 0(c?) (46)
|z — 2|3 )

By using Lemma 3.1, and the fact that |z — 2’| ~ |a — &/| to the leading order, we obtain

0853

1 1 1 1
E = 571H22D2¢1 + 5’71H2H1D2’¢2 - 5’)’2H22D1¢1 - 572H2H1D1¢2

1 1 1 1
+ 5’71H12D2¢1 — 5’71H1H2D2¢2 - 5’72H12D1¢1 + 572H1H2D1¢2

1 1 1 1
+ 572AH1¢1 - 572AH2¢2 - 571AH2¢1 - 5’71AH1¢2
1 [y —ah) +vi(a; —af) do + O(c?)

+ 4 |z — 2|3
1
= 5(711)1 + v2D3) 12
1 [ ylaz—ay) +y(n—ay) 2
— . 4
+ i P da’ + O(e”) (47)

It is necessary to analyze the integral term of equation (47) and extract the leading order
contributions. By further expanding the integral in terms of S;’s, we find that the leading order
terms are:

1 [ (a2 —ah) +71(1 — o) o

4m |z —2'|3
_ 3 / Y2(e2 — ) [(S1 — 1)1 — @) + (S2 — 53) (a2 — ob)]
4r |z — 2'|°
+ 0%, (48)

where we have applied the matrix equality of

1( I _3(z—z')(z—z')T>

4 \ |z — 2/ |z — 2|5

VZIVzIG(Z - Z,) =
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from [13]. Therefore, we obtain using Lemma 3.1 and integration by parts that
1 /72(02 ) tn(a—)
— el
4 |z —z/|3

Y1(e1 — a))[(S1 = S7) (a1 — &) + (S2 — S5) (a2 — ab)]
|z — 2|5

+ + 0(e?)

— _%72(H1D2(Sl) + (2H2D, + H,D1)(S2))

— gDy + FaD)(81) + HiDa(S3)) + O(2) (49)

By substituting (37) and (38) into (49), we write the leading order terms in terms of 1 and 1)s:

1 [ ye(ae — ah) +7i(en — o)
4 |z — z'|3

_ —%72(H1D2)(—H2¢1 — Hiypy)

do/

1
- 572(2H2D2 + HiD1)(Hip — Haypo)

1
- 571(2H1D1 + HoDs)(—Hatp1r — Hitpa)
1
- 5’71H1D2(H1¢1 — Haypp) + O(€%) (50)
which can be further simplified to

1 [y —ay) + 7o — o)
4r |z — 2’3

1
= —§(H1D1 + HyDy)(—vy1Ha + v2 Hy )11
+ (H1D1 + HyDs)(y1 Hy + yoHa) s + O(€?)

do!

1
= —(nD1+mD2)s — 5(mD2 — 12D + O(%) . (51)
To unify our notations, we define
Y3 =53 (52)
Combining (32), (33), and (47) into a system we get

oY
- = 06, (53)
0 1
% = D1+ 72D2)ds + O(%) (54)
8’¢3 1 1 2
5 = —gMmDit D2+ S(eDr = D)y + O(e7) (55)

where D; (D) stands for differentiation with respect to the aq (ag) variable.
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We compare our leading order terms to the linearized system derived in the article of Hou &
Zhang [14]. Their linearized system is

o

o
0 1 .
% = smDi+mDs)z,

0z 1 o1 ;
E = —5(')/1D1 + 72D2)¢2 + E(WQDI - 'YIDQ)(’@bl) ’

where ¢.1 ,Qﬁ.g and 2z are perturbations of 91, 99 and z respectively. This comparison confirms that our
linear system does capture the leading order terms of the three-dimensional vortex sheet equation
when perturbed around an equilibrium state.

Since 71 and -y are constants, we introduce a change of variables from (a1, a2) to (81, 52) as
follows:

1
f1 = ———=(—7a1 +ma), (56)
i+
1
B2 = ———=(ma1i+raw). (57)
i+

Upon substitution of this variable change into system (53) — (55), we obtain the leading order
system as

o

at = 0(62) ) (58)
0 1

% = 57Dps +0() (59)
0 1 1

% = —57Dpt2 = 57Dpu 1 + GOl (60)

where v = \/¥2 + v2. In the new coordinates, we can see that the system will suffer from the Kelvin-
Helmholtz instability because of the coupling of (59) and (60). It also shows that the 5 direction is
the unstable direction responsible for generating Kelvin-Helmholtz instability. Moreover, since the
B2 direction is the tangential velocity jump direction between the upper and lower layers of fluid,
the leading order terms confirm that the tangential velocity jump is the physical driving force of
the instability of the three-dimensional vortex sheet.

During the above derivation, we write down only the leading order terms. As we will show
later, the remaining terms on the right-hand side of the equations are of smaller magnitude. We
denote them as R, Ry, and R3 and define them as:

o

R1(¢13¢27¢3) = ot 3 (61)
R2(¢13¢27"/}3) = % - %7D,32¢3 ) (62)
Ry, ¥ats) = 9%+ Dptha + 5¥Dpth - (63)



Next, we extend the independent variables 8; and [, into the complex domain. We remark
that it is important that we complexify 8; and [y variables instead of a; and ay variables. The
leading order singular structure will become more apparent using the complexification of #; and
B2 variables. As a result of this complexification of the independent variables, we can analytically
continue the system into the two-dimensional complex domain. We assume that S;, So, and S
are initially small analytic functions within a strip of max(|Im(a1)|,|[Im(az2)|) < p, where the strip
width p depends on their initial amplitude . Since %1, 1o are Riesz transforms of S; and Sy, it
can be shown that 1; and 1, are also analytic functions within the same strip, since the Riesz
transforms preserve analyticity. Therefore, from the fact that y; and 7, are constants, we conclude
that 11, 19, and 13 are initially analytic functions in the strip of max(|Im(81)|, |[Im(52)]) < po,
where py and p are of the same order.

By analytically extending system (61) — (63) into the complex domain, the system can be consid-
ered as a hyperbolic system with complex characteristic speeds. Furthermore, simple calculations
show that the characteristic speeds of the linear system are 0 and +7%. Later, we will prove that
these are the leading order terms of the characteristic speed of the nonlinear system.

Remark: Even though we will analyze a complex system instead of a real system, the domain
of interest is the real (01, 82) plane. This means that we have the flexibility to shrink the imaginary
strip without affecting the physical solution.

As was done in [7], we differentiate the governing equation (61) to reduce a nonlinear system to
a quasilinear system. The resulting system is larger, but more amenable for error control for the
high order terms. Specifically, we differentiate (61)—(63) in space and derive a system of the space
derivatives of 1, 19 and 3. Define

ot — aqél iy = fﬁél (64)
ot — g_zéf , oz = g_iéz , (65)
P31 = g—zf Va2 = g_g ' “
Then equations (61) - (63) become:
Bgtn = BZ 1(%1, 2, 93) (67)
s AT (0%)
82&;1 _ ’YDﬂ1¢32 n (Z o (1, 9, s) | (69)
agt” _ Dﬁ2¢32 + {-)Z (¢1,¢2,¢3) ; (70)
5 - «pw?ww "
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This is our target nonlinear system. Further, we define

0 0
By=-2R. Ep=-2R, 73
n =g f 12 = g R (73)
0 0
Eyy = — FEoo = — 4
21 aﬂlRZ’ 22 (9,62R2’ (74)
0 0
By = 2Ry, FE3=-2Rs. 75
3= 55, 1 32 = 55,1 (75)

Assuming that Ej;s are given, to solve system (67) — (72), we can first solve system (67), (68), (70),
(72) by integrating along the characteristic lines, and then substituting the calculated solutions into
system (69), (71) and solve the resulting O.D.E.. The procedure will be used in the last section
where we prove a lemma on energy estimates. Furthermore, without loss of generality, we assume
that v = 1 for the rest of the paper. In this case, the leading order term of the characteristic speed

becomes %

4 The Existence Proof

In this section, we prove the main result of this paper, the nearly optimal existence of the three-
dimensional vortex sheet equation. The main idea is to separate the governing equation (67) —
(72) into a leading order linear system and a smaller nonlinear system. The linear system can
be analyzed easily. We will apply the extension of the abstract Cauchy-Kowalewski Theorem
introduced by Caflisch & Orellana [7] to estimate the nonlinear system. This requires estimates of
the nonlinear terms in system (67) — (72). Since the estimation itself is rather technical, to show
a clearer outline of our main proof, we just state the results in this section and leave the detailed
derivation to the next section.

The subsections in this section are arranged as follows. In the next subsection, we present two
lemmas about error estimates and energy estimates respectively. The proofs of the lemmas are
deferred to the next section. In subsection 2, we state the extended abstract Cauchy-Kowalewski
theorem. Furthermore, we devote subsection 3 to solving the linear system with full initial condition
as the first part of the solution to the full nonlinear system. The existence of the second part of
the solution will be proved in the last subsection.

4.1 Results on Error Estimates and Linear Systems

In this subsection, we state two lemmas related to the error estimates and energy estimates respec-
tively. First of all, it is necessary to define the following Lipschitz norms:

|f|,0 = sup |f(’<'1a’€2)| ’ (76)
[Im(k1)|<p
[Tm(k2)|<p
_ T
||f||a,p _ |f|p + sup ‘f(,‘ﬁ‘,l, "72) f(F‘"la H2)| ’ (77)

Il
[Im(k1)|<p, [Im(k2)|<p ‘(Hl”%?) - (Hl”%2)|a
[Tm(x7)[<p, [Im(k})|<p
(K1,K2) (K] ,K5)
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f(B1,62) — f(KY, K
s . £ (1.2) = (5]

[Im(k1)|<p, |Im(k2)|<p (K1, ko) — (K1, K5)|*
[Im(k7)|<p, [Im(k3)|<p
Im(k1)=Im(x}), Im(k2)=Im(k})
(’{'15’{'2)#('%’15”"2)

where 0 < @ < 1 and |(k1, k2) — (K], K5)| = /(51 — K})? + (k2 — Kk5)2. We also define || - ||1,q,) and

/1

; (78)

Il - l2,a,p @s the || - ||a,p norm on the aq and ao directions respectively:
_ /
1Flias = 1flo+ sup Sl ) )l ()
max(|Im (k1) Im(x}), Im(k2)])<p (k1 — K1)
K17#K)
. !
by = 1S+ sup o) o)L (g)
max(|Im(k1),| Im(r2) |, Im(K})])<p (k2 — K5)|
K2F£Kh
Similarly, we can define || - [|1,4,0+ and || - ||2,a,p+ for the || - ||o,p+ norm on the a; and ay directions
respectively:
_ !
Flaps = [fl+ sup T re) Z Tl gy
max(| (1) || Im(ep) | [Im(ea))<p (81— R
Im(k1)=Im(k})
k17K
_ /
fllsaps = 1Sl + sup Hm) = Jeml - s
max(|Im(r0)|,| Fm(s2) [ Im(x3))<p (82 = KD)]
Im(k2)=Im(k})
K2 FKY
Note that for k1 # &} and kg # Kb,
|f(h311"<'2) — f(ﬁlla h;,2)|
(K1, K2) — (K1, K5)[
< |f(’<':1”<';2) _f(’%lla";Q)' |f(’%ll,""32) _f(";ll,"'ié”
T (k1 k) = (ks mg)|e T [(K1, K2) — (K, K))[*
|f("717"$2) - f("“"llaK'Q)' + |f(’k"'lla"<‘2) — f(K’,hK‘IZ”
T (s k2) — (ks R2)[* (K, m2) — (7, K5)[¢
|f (51, 52) = F(4,m2)| | |f (83, 2) = F(K1, )| (83)
k1 — Ky |k — Kol '
We conclude that || - ||a,, is equivalent to (|| - ||1,a,p + | - [[2,a,p)- Similarly, we can show that || - ||a,p+

is equivalent to (|| - ||1,a,p+ + || - |2,a,p+)- This property will be used extensively in the later analysis.

Definitions (79), (80), (81), and (82) are natural extensions from the corresponding one-dimensional
norms. In particular, Caflisch and Orellana [7] have proved that for one-dimensional analytic func-
tions:

1£llap < €llFllaps -
1 £llap < ll fllaps -
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Therefore, for two-dimensional analytic functions, the following inequality holds,
[fllap < (Ifllnap + [1fl12,0,0) < Ul llapos + 1 ll2,0,04) < 2¢l[fllapr - (84)

In the next section, we will prove that

Lemma 4.1 Assume that x, y, z defined in (1) are small perturbations of a flat plane, and Si,
So, S3 satisfy

1. S1, So, S3 are analytic functions within the strip
{(Br, B2)| max(|Im(B1)|, [Im(B2)]) < p} ;

2. 581, So, S are periodic functions with period of (2m,2n);
3.

o 1=1,2,3,

ool

1Sjlla( +ip1, +ipg) <
where
Iflla(- +ipy, - +ipe) = sup |f (K1, K2)]

Im(k1)=p1,Im(k2)=ps
+ sup |f(’<'1a’€2) - f(’illa’i12)|

_ ! IR
Im(k1)=p1, Im(ka)=p2 |(K'1’ KQ) (h:l’ F';Q)‘
I =, Tm(ih)=pa
(nlan2)¢(n’17’€’2)

7

and (1, p2) satisfy |pa1| < p and |p2| < p.

Furthermore, we assume that v;; and ;; are two sets of functions defined in (35), (36), and (64)
- (66). Then, for 0 < p' < p and 0 < a < 1, the following inequalities hold:

2
|Eijllap < clp—p) Z Z [kkallars | (85)
k1=1ko=1
and
1B — Eijllay < clo—0) " [ D0 D Ukaks lasy + 181k llae
k1=1ko=1
3 2 ~
Z Z ||¢k1k2 _'(/thkz”a,p ) (86)
k1=1ko=1

where i,j = 1,2,3, and E;; and E;; are defined in (73) — (75).
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Lemma 4.2 Consider the following system of u = (u11, Ui2, U1, Ugo, Uzl , Uze)” with analytic forc-
ing terms g = (911, 912, 921, 922, 931, 932) ",

8’(111

ot = g1, (87)
Ou1z
ot = G122, (88)
ou 1
5 = yDauston, (89)
ou 1
i = yDsusnton (90)
8’(1,31 1 1
5 —ED,[S1U22 - EDﬂ{“ll + 931, (91)
8u32 1 1
5 —ED,B2U22 - §D52U11 + 932 , (92)
with zero initial condition
u|t:0 =0. (93)
Then, the following inequality holds,
t
fullos < 0" [ sl goacy smern (94)

forany 0 <k <1, 0 < a <1, with c being a constant.

4.2 Extended Abstract Cauchy-Kowalewski Theorem

In this subsection, we state the result of the extended abstract Cauchy-Kowalewski theorem for
future use.
Consider the equation

0
P + Llu,t] = Glu,t] , (95)

with
uli=0 =0, (96)

in which L is a linear operator on u, and G may be nonlinear. Assume that there are positive
functions py(t), p1(7,t,p), di(7,t), d2(t) and positive scalars ci, c2, c3, R and K that satisfy the
following conditions:

1. If u solves (9/0t)u + L{u,t] = g(t), with u(t = 0) = 0 for some g, then for any p < po(t),

t
@), < /0 a7, 1907 s (ot 7 (07)

21



2. 1t [u@)ll, < B, i), < R, and 0 < 4 < p < po(#), then
1G[u, ] = Gla, ]|y <
ca(p = )" (d2(®) + lu)ll, + 1G® )l (w = D)D), (98)
in which dy is an increasing function of t;
3. [|Glu=0,1]ll, < Kda(t)(po(t) — p)~" if p < po(2);

4. p is positive and decreasing for 0 < t < Tp; p1(7,t, p) is decreasing in 7 and increasing in p.
Moreover, if 0 < 7 <t and 0 < p < po(t)

p < po(T,t,p) < po(T) — (po(t) — p) ; (99)

5. If 0 <7 <t <Tj, then
dl(T, t)dg(T) < dg(t) <cg . (100)

Theorem 4.1 (Eztended Abstract Cauchy-Kowalewski Theorem) Under assumption (1)-(5) above,
equation (95) with initial condition (96) has a unique solution u for the time interval 0 < t < T.
The solution satisfies

lu@®)|lp < Bd2(t) < R (101)
for all p and t < T for which 0 <t < a(po(t) — p), where a, B, and T are any numbers satisfying

(1 +42B)a < 1, (102)
2ac1 K (3 —v(1 +2B)a)(1 —y(1+28)a) > < B, (103)
T = min(Ty, max(t : 28ds(t) < R)), (104)

with v = 8cicacs and R, dy, K, c1, o, c3, Ty defined in (1)-(5).

We refer to [20] or the Appendix C of [7] for the proof of the above extended abstract Cauchy-
Kowalewski theorem.

Remark: 1. In the proof of [7], Condition (2) was replaced by:

1GTu, 1] — G[a, ]|y <
ca(p — )7 (da(t) + u®)lly + @) )1 (uw — @) (@), - (105)

The same proof can be carried out using the Condition (2) in our statement, and this does not
effect the result.

2. The proof uses the iteration method since the system is basically a linear system with weak
nonlinear terms. Among all the constraints, Condition (1) provides the energy estimates in every
step of the iteration. Condition (2) controls the nonlinear terms during the iteration. Condition
(3) describes the nonlinear terms at the initial moment.
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3. In our case, py(t) is to describe the outer boundary where 1);; are still small and ana-
lytic at time ¢ for our nonlinear problem. The function p;(7,t,p) corresponds to the downwards
moving characteristic for the linear problem in Condition (1). Condition (4) says that the linear
characteristic stays within the domain of dependence for the nonlinear problem.

4. The inequalities (102), (103), and (104) are due to some technical estimates in the proof.
These inequalities set a bound on a, which is the speed in which the complex domain shrinks in
addition to po(%).

4.3 Linear System with Full Initial Condition

In this subsection, we study the linear system with full initial condition. Consider the following
linear system:

Bgtn = 0, (106)
agf = 0, (107)
agjl = %’YD,BNZsza (108)
W LD (109
agfl = —%VDﬁﬂZm—%VDﬂl?Zn, (110)
o M (111)

with B
Yijli=0 = Yijli=0, 1=1,2,3, j=12.

If we make a change of variables, zﬁgj = iij — &ij|t:0 and still write them as TZz’j, we get a
system as (87) — (92) in Lemma 4.2. Therefore, we can apply Lemma 4.2 to prove the existence
and estimate the boundedness of ’IZ”

Assume that 1;;\;=¢’s are analytic within the strip max(|Im(51)|, [Im(B2)|) < po with their
Lipschitz norms satisfying:

IVWijle=olla,po <€ (112)
where ¢ = 1,2,3; and 5 = 1,2. From Lemma 4.2, we know that &ij is analytic within a shrinking
domain of width

polt) = po — (5 + )t (113)

where 0 < K < 1. As we will see later, k could be taken as small as pleased provided that ¢ is
sufficiently small. Furthermore, the estimates in Lemma 4.2 show that

_ t
5 Ollapoey < ox /0 IV (Wil eo)llapodr
< ee(kt) . (114)
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We remark that po(¢) in the three-dimensional problem has an expression similar to the corre-
sponding two-dimensional problem in [7]. In addition, similar linear growth rate with respect to
time is observed in the two-dimensional vortex sheet problem.

4.4 Existence Theorem

In this subsection, we prove the existence theorem using the lemmas and the Cauchy-Kowalewski
theorem stated in previous subsections. First, we will split the solution into two parts. We define:

Vi = hig — ij
where 7 = 1,2,3, 7 = 1,2, 1;;’s are the solution of the full nonlinear system while @ij are solution

of the linear leading order system defined in the previous subsection. By substituting it into the
nonlinear system, we can derive equations for djéj as follows:

% = %R1(¢13¢25¢3) : (115)
ag;m B %Rl(‘pl’%%) ) (116)
agfl = §Dﬂ1¢§2 + %Rz(%,%ﬂﬁ:a) : (117)
6532 = 1Dﬂz¢32 + o ﬂ Ry(1, 92, 93) (118)
agfl - _§Dﬂ1¢122 Db’1¢11 + 55 85 Ry (1,92, 93) , (119)
8532 - _%DWPIZ? 5D + 8(2 Ry (11,92, 93) (120)

with
zbéj(t:()):() 1=1,2,3 7=1,2
The existence of ¢ ’s will imply the existence of S;’s. Moreover, the following theorem implies
Theorem 2.1.

Theorem 4.2 (Ezistence Theorem) Let 0 < a < 1 and py > 0. Assume that S;(f1, 52,0) satisfy

sup  (|Si(a1, a2,0)| +[V(Si(a1, az,0))|
[Im(aa)|<po
[Im(a2)|<po

2
Z Oay 0o, Silar, a2,0))]) <€, (121)
k: :
where i = 1,2,3, and ¢ is sufficiently small. Then system (67) — (72) with z = (a1, a2,0)+(s1, S92, 83)
has a solution for a time 0 <t < T where T satisfies
Po
T .
2 + K

Mw

T<L
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Here k > 0 s a parameter depending on €. It satisfies the properties that kK — 0 as ¢ — 0 and
k™2e2py — 0 as € — 0. Moreover, the corresponding functions i; satisfy

~ _ 1
Yo i) =i ()lla, < cernit < 3 (122)
i=1,2,3;j=1,2
for any p, t satisfying

0<p< t
0 — )
p=r %—Fm

where the functions z/jij are solutions of the linear system (106) — (111) with initial data corre-
sponding to S;(t = 0), and c is independent of €, k and py.

Proof: From equation (113) in the last section, we have that

po(t) = po — (% + k)t .

From Lemma 4.2, choosing any fixed ' > k, we can always derive inequality (97) such that

pr(p,t7) = p+ (5 +R)(E =)

From Lemma 4.1, the following inequalities hold:

2
3 2
1E;0,)lay < clo—p)" | D0 D Ikiksllap
k1=1ko=1
< elp—p)HenT)?, (123)

and

1B (4,1) — Eij (' i, t)

3 2
< elp=p) ettt | D0 Y (il

k1=1ko=1

a,p + ||¢k1kz||oz,p

3 2
. Z Z ||¢;<:1k2 - ¢Ik1,k2||a,p ’ (124)

k1=1ko=1

for any 0 < p’ < p < po(t). Thus, the assumptions (1) to (5) in the statement of Theorem (4.1) are
satisfied with our choice of py(t), p1(7,t, p) as above and with

di(r,t) =1 a=cl; a=g

do(t) = cetk™; K =eTk™; ¢3 = ceTr™1.
We can simply take 8 = 1 and any constant a for e sufficiently small. In particular, we take
a = k' — k to fulfill the conditions on py(t) and p1(p,t, 7). Therefore, it is straight-forward to apply
the Cauchy-Kowalewski theorem to our system. This guarantees the existence of the solution to

(10) throughout the time interval. This also proves that the magnitude of the solution remains
small since the ;;’s are small up to T for sufficiently small .
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5 Estimate on the Error Terms

Our goal in this section is to provide proofs for Lemma, 4.1 and 4.2. Since the proof for lemma 4.2
is quite straightforward, we present it in the first subsection. The proof for Lemma 4.1 is much
more complicated and we divide it into three subsubsections.

5.1 Bounds on a Linear System
Consider the linear, spatially inhomogeneous complex N X N system

0 0
au—'_Fa_yu_g(xayat) ) (127)

with
u(t=0)=0,

in which the complex N-vector g and the complex N x N matrix F' are given. Further assume that
F' is constant matrix and can be diagonalized as:

F =P AP,

A= diag(Ala' e a>‘n) .

Define the backward characteristics by

0
EYi(T,tay) - Az ) (128)

with
and for 7 < ¢, define the dependence set (7,t,y) as those y' which can be reached at time 7 going
backwards along characteristics starting from y at time , i.e. ,

Q(t,t,y) = {y}, (130)
Q(r,t,y) = {y :v =Yi(r,t,y") for some i and
for some y" € Q(t1,t,y),7 <t; <t} . (131)

Lemma 5.1 Suppose that g is analytic in © and y. Moreover, we assume that
Pl + [P Y[ <p, (132)

where |P| is the mazimal norm of matriz P. Then the solution u of (127) is analytic and satisfies

t
iz, ,8)] < ¢ / swp gz, §,7)ldr | (133)
0 geQ(7,ty)
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‘ui(x,yat) - ui(w,ylat”

t
< ¢ / sup lg(z,g,7)|dr
0

ly — o'l FEQTLy)UATby')
+C/t sup (|g($ag,7)_g(‘x,gla7-)|>d,r
0 geQ(rtay) 5 =9l ’
U274
(134)
|’UZ(.Z‘,y,t) —’U,Z'(.'El,y,t)‘ < K |g($ag77) _g(wlagaT)‘
o <cf sw gy
‘.Z‘ -z | 0 geQ(r,t,y) ‘:L‘ -z ‘

(135)

where ¢ only depends on p.

Proof: The proof of inequality (133) and (134) can be obtained by directly applying Proposition
B.1 in [7]. Therefore, we only need to prove (135). Note that in equation (127), z is only a
parameter. Therefore, if u(x,y,t) is a solution of (127),

U(.’E, Y, t) B u(xla Y, t)

|z — x'|*
is a solution of 3 5 ( . (9.0
g\r,y, —8\r,Y,
el F—u= .
8tu+ Byu |z — z'|®

And thus, by applying inequality (133), we get (135).

As we mentioned at the end of last section, if we treat the error terms in system (67) — (72)
as given functions, we can solve the equation by first solving system (67), (68), (70), (72) by
integrating along the characteristic lines, and then substituting the solution into system (69), (71)
to solve the resulting O.D.E. This was the procedure used in the proof of the extended abstract
Cauchy-Kowalewski theorem in which the following results are used to carry over the iteration [7].

Using Lemma, 5.1 as a tool, we can prove Lemma 4.2.

Proof of Lemma 4.2: Considering the following matrix

0 0
0 0
F= 0 0

oo oo
o O O

N[

_1
2

Straightforward calculation shows that its eigenvalues are 0,0, %, and —%. By applying Lemma 5.1,

27



we can show that
t
[u11(8), w12(2), w2z (8), us2 (t)lla,p < C/ 1805 T o, (ot L (1—r)) 47
0

t
S C‘/O' ||g(-, "T)||a,(p+(%—|—n)(t—7'))d’r .
(136)

Furthermore, we can solve the remaining two equations as O.D.E.’s. Taking ug; as example, we
can show that

A

t
1
L A P T

IN

tl L t
| 3% e Plagsmdr + [ gl
(137)

by applying the Cauchy Inequality. Then, it follows from the estimates on the first integral that

1 _ t
funllag < 55" e fuso o lagobnn + [ g (o7 g

1, g
< gk Orgggt/o cllgls s T lla,(prmts L —r)) 47

t
4 /0 19210y lapdr |
(138)

where we used inequality (136) in the last step. Moreover, using the monotonicity of the Lipschitz
norm, we have

IA

t t
c _
el < 557" [ I pnner g mydr + [ oDl

t
< on! /0 lg(, )]

¢
< C"él/o ||g(‘,'>7)||a,(p+(%+n)(t_7))d7- (139)

dr

a,(ptat+ 5 (t—T))

The estimate on uss can be obtained similarly.

5.2 Bound on E;

The error terms E;; are defined in system (67) — (72), which are space derivatives of the Ry’s. Since
we can apply the Cauchy inequality for analytic functions in the complex plane [1], it is sufficient
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to obtain the bounds for R;. Moreover, since the Ry’s are combinations of the Riesz transforms of
the error terms in the equations for 95;/0t’s, from the boundedness of the Riesz transforms which
we show later, we are able to derive the bounds of E;; from the bounds in the 0S;/0t equations.
Along this line, we perform the error estimates in three steps: the error estimates on the Riesz
transforms, the error estimates on the R; terms, and the error estimates on the E;; terms.
First of all, we define a special Lipschitz norm, which will be used only in this section.

1f (- +ip, - +ip)llo = sup |f(k1 +ip1, k2 +ipg)| (140)
K1,k2€ER

1fC+ipn, - +ip2)lla = 1F ¢ +ips, - +iu2)lo
|f(k1 +ipr, ko +ipo) — f(K) +ip1, k5 + iug)
|(k1,K2) — (K, K5)|*

+ sup
(":17":2)7(’€’1"§’2)€RXR

(K1,62)7 (K] ,K5)

(141)
5.2.1 Bounds on the Hilbert Transform
The following lemma has been proved by Calderon & Zygmund [9] and Taibleson [25]:
Lemma 5.2 If f has period of 2w X 2w, and satisfies
/ f(Br +ip1, B2 + ipg)dfudBr = 0,
for any p1 and pe, then
[Hef (- +ipas - +ipo)lla < el f (- +ipa, -+ ius)lla (142)

where Hy, is the Riesz transform in the k-th variable, k = 1,2, 0 < a < 1, and ¢ depends only on a.

5.2.2 Bounds on the R; Terms in System (61) — (63)

The R; terms are defined in (61) — (63). Taking equation (61) as an example, we see that R; is
the sum of the Riesz transforms of the residue terms in the % and the % equations. The same
is true for equation (62). Therefore, by the boundedness of the Riesz transform, we claim that the
boundedness of the residue terms in equations (32), (33), (34) are equivalent to the boundedness

of the R; terms. To obtain estimates for R;, we need to use the following lemmas.

Lemma 5.3 Letz, y, z be small perturbations of a flat plane. Assume that (p1, o) satisfy |p1| < p
and |p2| < p, and f, S1, So, S3 satisfy:

1. f, 81, So, S3 are analytic functions within the strip

{(By, Ba) | max(|Im(B1)], [Im(B2)|) < p} ;
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2. f, 81, Sa, Ss are periodic functions with period of (2m,27);
3.

flla(+ipr, - +ip) <

bl

| = oo

[1Sillal- + ip1, - +ip2) <

where j =1,2,3 and ||f|la(: + iu1,- + iu2) is defined as in Lemma 4.1. Further, we define:
Diff*[f, 81, 8, S5](B1 + ipsn, By + ipi2) =

. . 1 -0 1 Hip, By +i
Hyf(B1 +ip, B2 +ip2) — 2—/ (B = Bi) 1 (6 f‘fﬁ Pyt in2) ag',
s |z — Z/|
(143)
where
z = (B1+Si1(B+ip),Be+ So(B +ip),S3(B + i)t ,
Z = (B +S1(B' +in), B+ S2(8 +in), S3(B +in)"
and
B+ip = (B1+ip, P2 +iu) ,
B'+ip = (B +ipy, By +ipg) -
Then the following inequalities hold
| Diff¥[f, S1, S2, S3](- + g1, - + ip2)||la <
c(IVSilla + [IVSalla + IVSslla) | flla( + ip1, - +iu2) |
(144)
and
I(Diff*f, S1, S2, 83] — Diff*[f, 1, S, Sa)) (- + g1, - + ip2)lla < eN (e, i1, o)
(145)
for 0 < a <1, where
3
N(a,pi,p2) = (Iflla+11Flla+ D (UIVSilla + VSjlla) -
j=1
~ 3 ~
(1 = Flla +D_UVS; = Splla)) (- + i, - + i)
j=1
(146)

and k=1,2.
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Lemma 5.4 Let f, z, y, z be defined as in Lemma 5.3, then the same inequalities hold if we
re-define Diff as,

Diff*[f, S1, Sa, S3](B1 + ip1, B2 + ip2) =

1 [ (Sk=Spf a5 — i/ [(Br — B1)Sks, + (B2 — B3) Sk, | a8
2w ) |z —2P 2 |(B1, B2) — (B1, B3)[? ’
(147)
where k =1,2,3.
Lemma 5.5 Let z, y, z be given as in Lemma 5.3. Define
Dlﬂ[51, SQ; 53](51 + iubﬁ? + ZMQ) =
1 (B = B1) +7(8: — B) g
2r ) |2(B +ip) — 2(B' +ip)P
+ 72 (H1D2(S1) + (2H2 Do + H1D1)(S2))(8 + ip)
+ 71 ((2H1 Dy + HyD3)(S1) + H1D3(S2))(B +ip) (148)
where Dy (D3y) stands for the space derivative on the $1 (B2) direction, and
2 = (Bi+Si1(B+in),fo+ S2B +ip), S3(B+im)"
2 = (B + 518 +in), By + S2(B +in), S3 (B +im)"
and
B+ip = (Br+ipy,Be+ipz),
B'+ip = (B +im, By +ips) -
Then the following inequalities hold:
| Diff [S1, S2, Ss](- +ip1, - + ip2)lla <
c(IVSilla + 1VSalla + 1V S3lla)? (- + i1, +ipaz)
(149)
and
||(D2ﬁ[51, S?aS3] - Dzﬁ[gla 525 53])( +ip, -+ iU2)||a < CN(a,/'l’laMQ) ’
(150)

for 0 < a < 1, where N(a, p1, p2) is defined in (146).
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Remarks: The above lemmas confirm our observation in the previous section where we derived
our leading order system. We have proved that, if the interface is close to a flat plane, the vortex
sheet kernel is close to the Riesz transform kernel. The difference is a smaller term in the Lipschitz
norm. The proofs of the above lemmas are quite technical. Thus, we will defer them to the
Appendix.

Combining Lemma 5.3, 5.4, and Lemma 5.5, we get the following bound.

Lemma 5.6 Let x, y, z be given as that in Lemma 5.3, then the following inequalities hold:

2

3
IRE[S1, S2, Sallla(: + i1y +ing) < e | Y NIVSjlla | (- +ip,- +ip2) ,
7j=1

(151)
and
|| Rk.[S1, Sa, S3] — Rk[S1, 82, Sallal- + ip1,- +iuz) <
3 3
c Z(Hvsta +1VSjlla) Z IV(S; — Silla | (- +ipa, - +ips) ,
—1 —1
] ] (152)

where k = 1,2, 3.

Now that we have obtained the estimates of the R; terms, the bounds of FE;; terms can be
derived using the Cauchy inequality. This will be presented in the next subsection.

5.2.3 Bounds on E;;

The error terms E;; are defined in system (67) — (72), which are space derivatives of the Ry’s.
By the definition of the E;;’s and using the Cauchy inequality for analytic functions, we get:

1Bijllay < cllBijllap+
< ¢ sup |\VR[S1, S2, S3]|a(- + ip1, - + ip2)
max(|pa ], pu2])<p’
< clp—p)t sup | Rk[S1, S2, S3]lla (- + i1, - +ip2) -

max(|p1l,|p2|)<p
(153)
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It further follows from Lemma 5.6 that

3 2
1EBijllay < clp—p")7" sup (ZHVSkHa) (- +ip1, - +ipg)

max(|p1],|u2))<p \ p—1

IA

3 2
C(p - pl)_l (Z ”VSkHa,p)
k=1

3 2
C(p - pl)_l Z Z ||¢k1k2”a,ﬂ ’ (154)

k1=1ko=1

IA

where in the last step we have used the definition of ;5.
Similarly, we can get the bounds of (E;; — E;;). We conclude this part of the estimate with a
final lemma which is identical to Lemma 4.1.

Lemma 5.7 Letz,y, 2 be given as in Lemma 5.8. Suppose ¢i; and ¢ij are analytic in max(|[Im(k1)|, |Im(k2)|
p. Then for 0 < p' < p, and 0 < a < 1, the following inequalities hold:

2

3 2
1Eijllay < clo =) D0 D0 Mkamallay | (155)

k1=1ko=1
and

3 2
|Eij — Eijllay < clp—p)" (Z > Ukaka Nl + 1k ks oo

k1=1ko=1

3 2
D2 D0 Wkake — Pk allap | (156)

k1=1ko=1

where 1,7 = 1,2, 3.
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Appendix. Detailed Proof of the Error Estimates

In the Appendix, we will prove Lemma 5.3. Lemma 5.4 and Lemma 5.5 can be proved similarly.

Proof of Lemma 5.3: We only prove the inequalities for Diff!. The inequalities of Diff? can
be proved similarly. Furthermore, we suppress 1 and ps and just keep the real part 81 and (o
throughout the proof.

Note that inequality (144) can be derived from inequality (145) by taking f = 0, and S; = 0
for i = 1,2,3. Therefore, it is sufficient to prove (145).

To perform our analysis, we first write the integrals in the periodic form as

Diﬁl[f,81,52,53] = /;/ Kl* K;*(,B,,B—C))f(ﬂ—()dgld@
= o [ &' - K- )16 - O
o [ [ &0 - Ri.8- 016 - Qacrtc

Il[f,Sl,SQ,Sg](,B) +I2[f,51,52,53](,8) . (157)

>

We need to show that both I; and I satisfy (145). Since I, does not contain any singularity, it is
just a regular integral on a bounded domain. Therefore, the maximum value of Iy is bounded by
the maximum value of f, and S;’s. In addition, the Holder norm of I5 is bounded by the Hoélder
norm of f, and V.S;’s. Along this line, we can prove that I satisfy (145).

We focus on the first integral I;. What we need to prove is

(i = 1)(B)] < cN(a) (158)

and
(It = 1)(B) — (I = 1) (B)| < ¢|f = B'|*N () , (159)
where N(a) is defined in (146) with iy being suppressed.
We split the rest of our proof into three parts: the preparation, the proof of (158) and the proof
of (159).
Preparation: Before we go on to prove (158) and (159), it is necessary to analyze further the

integrand of I; and derive several inequalities for later use.
From the definition of I;, we get:

L - /_ / — KB, — O)F(B — O)dCrdcy
= T, _ﬂf(ﬁ“’ (éﬁ‘wu?— <)|3)d<1d<2

TGfB+Q) (12(B+) —=z(B) - |¢?
g P ( 2B +0) — 2B )dc a6
(160)
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where 8 = (1, 52) and ¢ = (¢1,(2).

Define
G(B,B+¢) =Ff(B+(Gi(B,B+(), (161)
e 28 +0) =B — I¢f*
A e P RO R T e
Similarly, we can also write down:
G(B,B+¢) = F(B+OG1(B,B+0) (163)
where 28 +) ~ (A — |¢P
G =L _z LT
1(8,8+¢) B+ 0 ()] (164)
Under the assumptions of Lemma 5.3, we can prove the following bounds:
2(8 +¢) —=(8)] = <[¢] (165)
3
GL(B, B+ Q) <) IVSillo (166)
i=1
3
(G1 =GB B+ < e IIVESi =Sl , (167)
i=1

(G1 = G1)(B,B+¢) — (G1 — G1)(B,8— )

3
< elgl® (ZIIW&—@)IM) ; (168)

i=1

0

G| <c|¢|t. 169
155Gl < el (169)
However, to focus on the main idea of the proof of Lemma 5.3, we will defer the verification of the
above inequalities to the end.

From (166), it is straightforward to derive the following bound:
GB,B+O < [F(B+IGL(B,8+])

3
cllfllo > IVSillo - (170)
i=1

IN

Similarly, from (167), it can be shown that

|(G—é)(ﬂ,§+§“)| i )
< (f=HNB+OINGLB, B+l + [f(B+ OI(GL = G1)(B, 8+ ()
3 3
< clf = fllo Y_IVSillo + el fllo D IIV(Si — Si)lo
i=1 i=1

< c¢N(a), (171)
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where N () again is defined in the statement of the lemma as N(«, p1, p2)-
Using an argument similar to (171), we can prove the following inequality from (168):

(G =G)B.B+() = (G=G)(B,B =) <l(|*N(e) , (172)
From (169), we can derive
3
IV5(Gr = G)(B, 8+ Q) < el¢|TH*DIV(Si = Si)lla (173)
i=1

which implies
(G1 = G1)(B,B+¢) — (G1 — G1) (B, 8 + Q)
3
< dB =BT NVSi = Si)lla - (174)

=1

Proof of (158): We are now ready to derive (158). We split the integration domain in two regions
as:

|11 —

)
|

// pCBB+0 - (ﬁ,ﬂ+C))dg‘

o
" (/W/W L)
CalG(B.5+0) = G(pp+ O] (175)
(176)
From the oddness of the kernel & | <|3, we change the variable (' = —( in the second integral and get

G G)(ﬁﬁ ¢)]d¢1ds|

2c7r // |C|3‘C|adC1dCQ ( )
< eN(a) (177)

VAN
|

where we have applied inequality (172) in the second step.
Proof of (159): Our next step is to prove

(11 = [)(B) = (I, = 1)(B)| < €|~ B'|*N(a) . (178)
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For a complicated inequality like (178), we would like to break it down into several integrals
and estimate them one by one. It can be shown that

(T = F)(8) — (1 - B8]
_ ‘// (16406155 + )~ Flp+ 16Gu(5.5 +0)) e
/:/7; (f (B'+ QG188 + ) — (B +)G1(B, 8 + ) |C|3d§‘
< ‘/_7; 7;((f )(B+CO)G1(B,B+C) = (f = NHB +OG1(B, B + ) \CI?’dC‘
‘/_:/Zfﬂ“) (@ =)B.8+0) ~ (G = G)E.A +0) |C|3dC‘
‘/_7;/7; (B+Q) = J(B'+O)(G1 = G)(B, B +0) |C|3d§‘
2 Iy + 1o+ 13 . 179)

We prove the inequalities of I;; and I1o in detail. The estimates of I13 can be obtained similar
to that of I11.

Bounds on I5: To estimate 12, we first break the integration domain into two regions, || <
|8 —p'| and || > |8 — 5],
‘ ™ QT

Rl oG él)<ﬂ,ﬂ+<)—(Gl—él)(ﬂ',ﬂ'ﬂ)]dc‘

2 </<|ﬁﬂ'|+/>|ﬂﬂ,|>

SR+ 06 - GiB.9+ 0 - G -G8 +0le| . s

For the first integral we use the oddness of the kernel in a way similar to the proof of (177), while
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for the second integral, we apply inequality (174). Therefore, it follows that

/_ﬁ ”mgfﬂu[( él)<ﬂ,ﬂ+<)—(Gl—él)(ﬂ',ﬂ'm]d(‘

/ G
icl<18-8'1 [¢[3
5 ¢

[F(B +O)((G1—G1)(B,B+¢) — (G1— G1)(B, 8 +0))
—f(B' = O((G1 = G1)(B,B—¢) — (G1 — G1) (B, ' = ¢))]dC

+1
2T

/ SR+ QG — Ga)(B.B +0)
/>58¢

—(G1 = G)(B, B+ ())d¢
c 1

ageN
21 Jig<ip-p |C|3|C| deNte)

c 1+ad N
3w [ I a8~ BN o)

< dB—=p*N(a), (181)

IA

where we have applied (168) and (174) in the above proof.
Therefore, we get
Iy < c[f - B'|*N(e) . (182)

Bounds on Ii;: It is sufficient to prove

‘/ F(B+ )G (8 ﬂ+cm3d< /_ﬂ/ﬂfﬂ"‘C)Gl(ﬂ B +0) dc‘

I<I?
< CIB—ﬂ'I“IIfIIaZIIVSiIIa, (183)

i=1
because by taking f' = f — f and still writing as f in I11, the bound satisfies
3
cB =B = flla D IVSilla < |8 = B1*N(a) .
=1

From (181), by taking G; = 0 and f = 1, we get:

o ([ o[ [ ovroe)

<clB- ﬁ'\a||f||o§j IVSilla - (184)

=1
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Therefore, to prove (183), we only need to prove that

‘/_7;/7; (B+) — FB)G1(B, B+ ¢) Sy~

\<|3
/_/_ (B +¢) - F(B)G1 (B +C) dc‘

ep
< B - 6’|“||f||02 IV Silla - (185)

i=1
For simplicity, we denote h = ' — 8 and denote its component by h = (h1, he). By changing
variable from ¢ to ¢’ as
(=C+h,

and still writing it as (, we re-write the second integral above as

w+h1 7r+h2 Cl
/ / FB+C) — 1(B)G1(B 8+ ) ac

w+h1 7T—|—h2 |C h’|3
For h sufficiently small, the integral

(Lo L) w0 - somaustioe oo

does not contain any singular points for sufficiently small h. Because the integration area is of
order O(|h|), it can be shown that

(Lonlon L) weo-somew oo

< c[hll|flo Z IVSillo < B — B'|*N(a) .

=1

Therefore, to prove (185), we only need to prove

‘/_Z/_Z(f(m 0 - £(8) [Gl(ﬁ,mc)l% ~Gi(B. B+ o%} dc‘

3
<dB=B11flo D _IVSilla (186)

=1

We denote the above integral as Is and split it into two parts:

G

L [

VAN

/ (F(B+0) — £(B) [G1(ﬂ,ﬁ+C) GBS hl] dc‘
I¢]<3]|h|

¢ = A

O
[

I3 + Iy (187)

+

/ (F(B+0) — £(B) [le,ﬁm —Gl(ﬁ',mo@_hl]dc‘ .
[¢|>3|h|

¢ —hl?
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Because the integration area is of order O(h?), we obtain

3
Iy <l =B flla Y 1VSilla (188)

=1

where we have used (166).
To estimate I30, we further split I35 into two parts:

B < [ K G186+ 0 — Gi(8 5+ Ol | de
¢I>3ln| <l
[ e+ (5 - 2 )|
¢[>3/h] 1> 1¢ Al
= I301 + I322, (189)
which were denoted as I391 and I399.
We estimate them separately. First, it can be shown that
3
Ings < clB = B/ flla Y IVSilla » (190)
i=1
since ¢ ¢ |h|
1 1—
. 191
K | < i 1o
Furthermore, the following bound can be proved.
3
Iy < c|B =B flla Y IVSilla (192)
i=1
since
G1(B,B+¢) — Gi(B, B+ Q)| < cICI vas lo s (193)

where we have applied (166), (168), and (174). The derivation of (193) is similar to that of (191).
Moreover, as we mentioned earlier, by replacing f with f — f, we can prove

3
In <cB=B1°f = flla Y 1IVSilla

i=1
which further implies that
Iy <clf—=p1*N(a)

In summary, we obtained inequality (145). Inequality (144) will follow if we take f = S, = 0.
Up to now, the only thing left is to prove (165) — (169). Since the proofs of (165) — (169) are
all very similar, we just prove the first two estimates.
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1. The proof of (165)
Basically, we need to prove

[2(8+0) ~=(8)| . .
q =

which is equivalent to

28+Q) ~2BP o

q& -
Substituting the formulation of z, ¢, and z into the left-hand side of the inequality, we get

GHSIB+) -8B\ | (L+SB8+C) S8\, (Ss(B8+¢) —S3(8)\>
( K ) +< [ ) +( ] ) ’

which is greater than

3
1-2(|VSiflo + [VSallo) = > IVSill3 -
i=1
The above quantity has a lower bound of 2—2 if

IVSillo <

| =

2. The proof of (166)
Similarly to the proof of (165), we can show that

26+ Q) ~2(8)] _
a - c

Therefore, to prove (166), we only need to show that

2(6 +¢) —=2(8)° —[¢]° <e (23: ||VSZ-||0> :

gk

This is true if

Z —Z 2= ¢P :
6+ 0 2P -1d g(:(znvsino) |
=1

because by denoting Df = z(8 + ¢) — z(f), we have

|DfFP — ¢ _ DI = ¢ 1Df* +1DFlic] + 1¢1
ISk <12 SIADFI+1S)

It comes down to show that for each S;

3
1S:(B+¢) = Si(B)| < ¢ (Z ”VSZ'HO) iq
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holds, which is obviously true. This concludes our proof.
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