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Abstract

We investigate the stabilizing effect of convection in three-dimensional incom-

pressible Euler and Navier-Stokes equations. The convection term is the main

source of nonlinearity for these equations. It is often considered destabilizing al-

though it conserves energy due to the incompressibility condition. In this paper,

we show that the convection term together with the incompressibility condition

actually has a surprising stabilizing effect. We demonstrate this by construct-

ing a new three-dimensional model that is derived for axisymmetric flows with

swirl using a set of new variables. This model preserves almost all the proper-

ties of the full three-dimensional Euler or Navier-Stokes equations except for the

convection term, which is neglected in our model. If we added the convection

term back to our model, we would recover the full Navier-Stokes equations. We

will present numerical evidence that seems to support that the three-dimensional

model may develop a potential finite time singularity. We will also analyze

the mechanism that leads to these singular events in the new three-dimensional

model and how the convection term in the full Euler and Navier-Stokes equa-

tions destroys such a mechanism, thus preventing the singularity from forming

in a finite time. c� 2008 Wiley Periodicals, Inc.

1 Introduction

The question of whether a solution of the three-dimensional incompressible

Navier-Stokes equations can develop a finite time singularity from smooth initial

data with finite energy is one of the most outstanding open problems in math-

ematics [12]. A main difficulty in obtaining the global regularity of the three-

dimensional Navier-Stokes equations is due to the presence of the vortex-stretching

term, which has a formal quadratic nonlinearity in vorticity. So far, most regularity

analyses for the three-dimensional Navier-Stokes equations use energy estimates

and require some kind of smallness assumption on the initial data [7, 23, 26, 33].

Due to the incompressibility condition, the convection term does not contribute to

the energy norm of the velocity field or any Lp (1 < p � 1) norm of the vorticity

field. As a result, the convection term has been basically ignored in the regularity
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analysis for the Navier-Stokes equations. Most of the efforts have focused on how

to use the diffusion term to control the nonlinear vortex-stretching term without

making use of the convection term explicitly.

In this paper, we show that the convection term has a surprising stabilizing

effect in the three-dimensional incompressible Euler and Navier-Stokes equations.

It plays an essential role in depleting the vortex-stretching term. We demonstrate

this stabilizing effect of convection by constructing a new three-dimensional model

for axisymmetric flows with swirl. This model is formulated in terms of a set of

new variables related to the angular velocity, the angular vorticity, and the angular

stream function. The only difference between our three-dimensional model and

the reformulated Navier-Stokes equations in terms of these new variables is that

we neglect the convection term in the model. If we add the convection term back

to the model, we will recover the full Navier-Stokes equations. This new three-

dimensional model preserves almost all the properties of the full three-dimensional

Euler or Navier-Stokes equations. In particular, the strong solution of the model

satisfies an energy identity similar to that of the full three-dimensional Navier-

Stokes equations. We also prove a nonblowup criterion of Beale-Kato-Majda type

[1] as well as a nonblowup criterion of Prodi-Serrin type [29, 31] for the model.

In a subsequent paper, we will prove a new partial regularity result for the model

[16], which is an analogue of the Caffarelli-Kohn-Nirenberg theory [2] for the full

Navier-Stokes equations.

Despite the striking similarity at the theoretical level between our model and the

Navier-Stokes equations, the former has a completely different behavior from the

full Navier-Stokes equations. We will present numerical evidence which seems to

support that the model may develop a potential finite time singularity from smooth

initial data with finite energy. By exploiting the axisymmetric geometry of the

problem, we obtain a very efficient adaptive solver with an optimal complexity

that provides effective local resolutions of order 40963 for the viscous model and

81923 for the inviscid model. With this level of resolution, we obtain an excellent

fit for the asymptotic blowup rate of maximum axial vorticity in the inviscid model.

If we denote by !´ the axial vorticity component along the ´-direction, we find

that k!´k1.t/ � C.T � t /�1 with a logarithmic correction, and the potential

singularity approaches the symmetry axis (the ´-axis) as t ! T . Moreover, our

preliminary study seems to suggest that the potential singularity is locally self-

similar and isotropic. We caution that the evidence for singularity formation of

the inviscid model is not yet conclusive with the current level of resolutions. It

requires higher numerical resolutions than what we have currently used to give

more definitive evidence.

We also present numerical evidence which seems to suggest that the viscous

model may develop a potential finite time singularity. The behavior of the nearly

singular solution is similar to that of the solution of the inviscid model. We find that

the solution of the viscous model experiences tremendous dynamic growth. The

growth rate is much faster than what has been observed for the three-dimensional
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Navier-Stokes equations. On the other hand, we observe that the solution of the

viscous model seems to be dominated by the dynamics of the inviscid model dur-

ing the time interval of our computation. In order to determine whether the three-

dimensional model actually develops a finite time singularity and to study the local

scaling property of the potential singularity, we need to solve the viscous model

much closer to the potential singularity time to capture the viscous effect accu-

rately. This would require substantially higher numerical resolutions than what

we have used in the current paper. Depending on the local scaling property of the

nearly singular solution and the balance between the vortex-stretching term and the

viscous term, it is still possible that the viscous term may eventually regularize the

nearly singular solution induced by the nonlinear vortex-stretching term. We will

investigate this issue further in our future work.

To understand the mechanism for generating the potential finite time singular-

ity, we monitor closely how the variables that contribute to the vortex-stretching

term interact dynamically. Near the support of the maximum vorticity, which is

defined as the region in which vorticity is comparable to its maximum, we find that

the physical variables that contribute to the vortex-stretching term have a strong

alignment locally. This seems to be the main mechanism for generating the poten-

tially singular solution of the model.

To see how convection depletes the mechanism for generating a potential finite

time singularity of our model, we add the convection term back to the model. We

use the solution of the viscous model at a time sufficiently close to the potential sin-

gularity time as the initial condition for the full three-dimensional Navier-Stokes

equations. Surprisingly, the solution of the three-dimensional Navier-Stokes equa-

tions immediately becomes defocused and smoother along the symmetry axis. As

time increases, the solution develops a thin jet that moves away from the symmetry

axis. As we know from the Caffarelli-Kohn-Nirenberg partial regularity theory [2]

(see also [24] for a simplified proof), the three-dimensional axisymmetric Navier-

Stokes equations cannot develop finite time singularities away from the symmetry

axis. The fact that the convection term forces the most singular part of the solution

to move away from the symmetry axis shows that convection has effectively de-

stroyed the mechanism that leads to a potential finite time blowup observed in the

model. Recent numerical study of the three-dimensional Euler equations by Hou

and Li in [14, 15] shows that the convection term tends to introduce large defor-

mation to the local vortex structure. The support of maximum vorticity becomes

severely flattened as the vortex stretching intensifies in time. This anisotropic col-

lapse of the support of maximum vorticity seems to play an essential role in de-

pleting the vortex stretching. Some progress has been made recently along this

direction; see [17].

The results presented in this paper may have some important implications for

the global regularity of the three-dimensional Navier-Stokes equations. A suc-

cessful strategy in analyzing the global regularity of the three-dimensional Navier-

Stokes equations should take advantage of the stabilizing effect of the convection
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term in an essential way. So far most of the regularity analyses for the three-dimen-

sional Navier-Stokes equations do not use the stabilizing effect of the convection

term. In many cases, the same results can also be obtained for our model. We have

presented numerical evidence in this paper which shows that the three-dimensional

model is much more singular than the corresponding three-dimensional Navier-

Stokes equations. New analytical tools that exploit the local geometric structure

of the solution and the stabilizing effect of convection may be needed to prove the

global regularity of the three-dimensional Navier-Stokes equations.

We also propose a generalized model in any dimension d with 1 � d < 1.

The three-dimensional model we discussed earlier corresponds to the special case

of d D 5 in the generalized model. Based on the balance between the vortex-

stretching term and the diffusion term, we can further classify the case of d D 4 as

the critical case, 1 � d < 4 as the subcritical case, and d > 4 as the supercritical

case. The generalized model in the supercritical case shares many difficulties found

in the full Navier-Stokes equations. Global regularity of the generalized model

in the supercritical case can be proved only for small initial data. On the other

hand, we prove the global regularity of the generalized model in the critical and

the subcritical cases.

We remark that this stabilizing effect of convection has been studied by Hou and

Li in a recent paper [18]. They showed that convection plays an essential role in

canceling the destabilizing vortex stretching in a new one-dimensional model that

can be used to construct a family of exact solutions of the three-dimensional Euler

or Navier-Stokes equations. This observation enabled them to obtain a crucial

a priori pointwise estimate for a high-order norm of solutions in their model. Using

this a priori estimate, they proved the global regularity of the three-dimensional

Navier-Stokes equations for a family of large initial data whose solutions can lead

to large dynamic growth yet have globally smooth solutions.

The stabilizing effect of convection has been also used in deriving localized

nonblowup criteria for the three-dimensional incompressible Euler equations by

Deng, Hou, and Yu in [10, 11]. By using a Lagrangian formulation and exploit-

ing the connection between vortex stretching and the local geometric regularity

of vortex lines, they showed that the latter, even in an extremely localized region

containing the maximum vorticity, can lead to depletion of vortex stretching, thus

avoiding finite time singularities. Recently Okamoto and Ohkitani [27] investi-

gated the role of the convection term in preventing the formation of singularities

by studying several one-dimensional models and a two-dimensional model derived

from the two-dimensional Euler equations. They also discussed other work where

the idea has appeared in some form or other, including the work by Constantin [6]

and by De Gregorio [8, 9], among others.

There has been some interesting development in the study of the three-dimen-

sional incompressible Navier-Stokes equations and related models. In particular,

by exploiting the special structure of the governing equations, Cao and Titi [3]
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proved the global well-posedness of the three-dimensional viscous primitive equa-

tions that model large-scale ocean and atmosphere dynamics. For the axisymmetric

Navier-Stokes equations, Chen and others [4, 5] and Koch and others [21] recently

proved that if ju.x; t/j � C�jt j�1=2 where C� is allowed to be large, then the

velocity field u is regular at time 0.

The paper is organized as follows: In Section 2, we reformulate the three-

dimensional axisymmetric Navier-Stokes equations in terms of some new vari-

ables. In Section 3, we derive our three-dimensional model and prove the energy

identity for this model. In Section 4, we generalize our model to an arbitrary space

dimension and prove its global regularity in the subcritical and critical cases. Sec-

tion 5 is devoted to the analysis of a special one-dimensional model. In Section 6,

we present numerical evidence which seems to suggest that our three-dimensional

model may develop a potential finite time singularity from some large smooth ini-

tial data with finite energy. We also analyze the mechanism for generating the

potential finite time singularity for the three-dimensional model and demonstrate

how the convection term destroys the mechanism that leads to the potential finite

time blowup of the three-dimensional model. In Sections 7 and 8, we prove two

nonblowup criteria for our model equations. The first one is an analogue of the

well-known Beale-Kato-Majda nonblowup criterion, and the second one is an ana-

logue of the Prodi-Serrin nonblowup criterion [29, 31].

2 Reformulation of the Three-Dimensional Axisymmetric

Navier-Stokes Equations

Here we consider the three-dimensional axisymmetric incompressible Navier-

Stokes equations with swirl

(2.1)

8̂<
:̂

ut C .u � r/u D �rp C ��u;

r � u D 0;

ujtD0 D u0.x/; x D .x1; x2; ´/:

Let

er D
�x1
r
;
x2

r
; 0

�
; e� D

�
�
x2

r
;
x1

r
; 0

�
; e´ D .0; 0; 1/ ;

be the three orthogonal unit vectors along the radial, the angular, and the axial

directions, respectively, r D

q
x21 C x22 . We will decompose the velocity field as

follows:

(2.2) u D ur.r; ´; t/er C u� .r; ´; t/e� C u´.r; ´; t/e´;

where ur , u� , and u´ designate the radial, angular, and axial velocity, respectively.

In particular, u� is also referred to as the swirl component of the velocity. One can
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derive the following axisymmetric form of the Navier-Stokes equations in cylin-

drical coordinates [26]:

(2.3)

8̂̂̂
<
ˆ̂̂:
@tu

� C ur@ru
� C u´@´u

� D �
�
�x � 1

r2

�
u� � uru�

r
;

@t!
� C ur@r!

� C u´@´!
� D �

�
�x � 1

r2

�
!� C @´

� .u� /2

r

�
C ur!�

r
;

�
�
�x � 1

r2

�
 � D !� ;

where

(2.4) ur D �@´ 
� ; u´ D

1

r
@r.r 

� /:

The incompressible constraint in cylindrical coordinates is given by

(2.5) @ru
r C @´u

´ C
ur

r
D 0 or @r.ru

r/C @´.ru
´/ D 0;

which is trivially satisfied in view of (2.4). In [25] Liu and Wang showed that

if u is a smooth velocity field, then u� , !� , and  � must satisfy the following

compatibility condition at r D 0:

u�
ˇ̌
rD0

D !�
ˇ̌
rD0

D  �
ˇ̌
rD0

D 0:

The vorticity can be represented in cylindrical coordinates as follows:

(2.6) ! D �.u� /´er C !�e� C
1

r
.ru� /re´:

Note that the axial vorticity component has the form

(2.7) !´ D
1

r
.ru� /r D

u�

r
C @ru

� :

The last two terms on the right-hand side have the same asymptotic limit as r ! 0

since u�
ˇ̌
rD0

D 0. Thus the variable u�

r
characterizes the axial vorticity near

r D 0.

In [18] Hou and Li introduced the variables

(2.8) u1 D
u�

r
; !1 D

!�

r
;  1 D

 �

r
;

and derived the following equivalent system that governs the dynamics of u1, !1,

and  1 as follows:

(2.9)

8̂̂̂
<
ˆ̂̂:
@tu1 C ur@ru1 C u´@´u1 D �

�
@2r C 3

r
@r C @2´

�
u1 C 2@´ 1u1;

@t!1 C ur@r!1 C u´@´!1 D �
�
@2r C 3

r
@r C @2´

�
!1 C @´

�
.u1/

2
�
;

�
�
@2r C 3

r
@r C @2´

�
 1 D !1;

where

(2.10) ur D �@´.r 1/; u´ D
1

r
@r.r

2 1/:
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Note that in the new system (2.9)–(2.10), the convection term has absorbed one of

the vortex-stretching terms, u
r!�

r
, which originally appears in the second equation

of (2.3). In some sense, the convection term has already stabilized one of the

potentially destabilized vortex-stretching terms in the above reformulation.

Finally, we recall the basic energy identity for the Navier-Stokes equations (2.1):

(2.11)
1

2

d

dt

Z
R3

juj2 dx C �

Z
R3

jruj2 dx D 0:

Naturally, the system (2.3)–(2.4) and the new system (2.9)–(2.10) enjoy the same

energy identity (2.11).

3 A New Three-Dimensional Model and Its Properties

In this section, we introduce our three-dimensional model for axisymmetric

flows with swirl. The purpose of introducing this model is to study the stabiliz-

ing effect of the convection term in the three-dimensional incompressible Euler

or Navier-Stokes equations. Our model shares many properties with the three-

dimensional Euler or Navier-Stokes equations. First of all, it has the same nonlin-

ear vortex-stretching term. Second, it has the same type of a priori energy identity.

Third, almost all the existing nonblowup criteria for the three-dimensional Euler or

Navier-Stokes equations are also valid for our model.

A three-dimensional model that satisfies all these properties seems hard to find

in general. But in terms of the equations for the new variables, u1, !1, and  1, we

can get our three-dimensional model equations by simply dropping the convection

term from (2.9):

(3.1)

8̂̂̂
<
ˆ̂̂:
@tu1 D �

�
@2r C 3

r
@r C @2´

�
u1 C 2@´ 1u1;

@t!1 D �
�
@2r C 3

r
@r C @2´

�
!1 C @´.u

2
1/;

�
�
@2r C 3

r
@r C @2´

�
 1 D !1:

Note that (3.1) is already a closed system. The main difference between our

three-dimensional model and the original Navier-Stokes equations is that we ne-

glect the convection term in our model. If we add the convection term back to our

three-dimensional model, we will recover the Navier-Stokes equations.

Below we will derive some important properties of the model equations (3.1).

First of all, we note that there is an intrinsic incompressible structure in the

three-dimensional model equations (3.1). To see this, we define the velocity field as

(3.2) u D urer C u�e� C u´e´

with

(3.3) ur D �.r 1/´; u� D ru1; u´ D
.r2 1/r

r
:
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It is easy to check that

(3.4) r � u D @ru
r C @´u

´ C
ur

r
D 0;

which is the same incompressibility condition for the original incompressible Euler

or Navier-Stokes equations.

Next, we will prove a compatibility condition for the solution of our three-

dimensional model. This compatibility condition was first obtained by Liu and

Wang in [25] for the three-dimensional axisymmetric Euler or Navier-Stokes equa-

tions.

PROPOSITION 3.1 Any smooth solution .u1; !1;  1/ to the three-dimensional vis-

cous model equations (3.1) on 0 � t < T with � > 0 satisfies the compatibility

conditions

(3.5) @kr u
� .t; r; ´/

ˇ̌
rD0

D @kr!
� .t; r; ´/

ˇ̌
rD0

D @kr 
� .t; r; ´/

ˇ̌
rD0

D 0

for all even integers k � 0 and 0 � t < T where

(3.6) u� D ru1; !� D r!1;  � D r 1:

PROOF: Let .u1; !1;  1/ be a smooth solution of (3.1) for 0 � t < T . It is

easy to see that .u� ; !� ;  � / satisfies8̂̂̂
<
ˆ̂̂:
@tu

� D �
�
@2r C 1

r
@r C @2´ � 1

r2

�
u� C

2@´ 
�

r
u� ;

@t!
� D �

�
@2r C 1

r
@r C @2´ � 1

r2

�
!� C @´

.u� /2

r
;

�
�
@2r C 1

r
@r C @2´ � 1

r2

�
 � D !� ;

for r > 0. Multiplying each equation in (3.7) by r2 yields

(3.7)

8̂̂
<̂
ˆ̂̂:
r2@tu

� D �
�
r2@2r C r@r C r2@2´ � 1

�
u� C 2r@´ 

�u� ;

r2@t!
� D �

�
r2@2r C r@r C r2@2´ � 1

�
!� C r@´Œ.u

� /2�;

�
�
r2@2r C r@r C r2@2´ � 1

�
 � D r2!� :

Since .u1; !1;  1/ is smooth, so is .u� ; !� ;  � /. By letting r ! 0 in (3.7), we

prove the compatibility condition (3.5) for k D 0. Next we differentiate (3.7) with

respect to r twice, then let r ! 0. We can see that (3.5) is true for k D 2. By using

an induction argument, one can prove that (3.5) is true for all even k > 2. �

Remark 3.2. We remark that the above compatibility condition is necessary if we

require that the reconstructed three-dimensional velocity field using (3.2)–(3.3) be

smooth at r D 0. This is due to the fact that the unit vectors er and e� are singular

at r D 0, but r2kC1er and r2kC1e� are regular at r D 0. Thus u� , !� , and  �

must have asymptotic expansions in terms of the odd powers of r near r D 0. This

would give rise to the compatibility condition (3.5), even in the case of � D 0.
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Notation. To make it easier to compare the three-dimensional model equations

(3.1) with the axisymmetric Navier-Stokes equations (2.9)–(2.10), we recast our

three-dimensional model equations in R � R
5 and introduce some notation. We

will denote by x D .x1; x2; ´/ a point in R
3 and y D .y1; y2; y3; y4; ´/ a point in

R
5. The time derivative is denoted by @t . The space derivative with respect to x or

y is denoted by rx D .@x1
; @x2

; @´/
T in R

3 or by ry D .@y1
; @y2

; @y3
; @y4

; @´/
T in

R
5, respectively. Similarly, we will use

�x D @2x1
C @2x2

C @2´; �y D @2y1
C @2y2

C @2y3
C @2y4

C @2´:

Throughout this paper, if the function is axisymmetric, we will denote its space

variable by .r; ´/, where the ´-axis is the symmetry axis and r D

q
x21 C x22 in

R
3 and r D

q
y21 C y22 C y23 C y24 in R

5. In particular, the Laplacians using

cylindrical coordinates are

(3.8) �x D @2r C
1

r
@r C @2´; �y D @2r C

3

r
@r C @2´:

Now we state the important energy identity of the three-dimensional model

equations (3.1), which is equivalent to (2.11) of the axisymmetric Navier-Stokes

equations.

PROPOSITION 3.3 The solution of the three-dimensional model equations (3.1)

satisfies the energy identity

1

2

d

dt

Z 1

�1

Z 1

0

�
ju1j

2 C 2jry 1j
2
�
r3 dr d´

C �

Z 1

�1

Z 1

0

�
jryu1j

2 C 2j�y 1j
2
�
r3 dr d´ D 0:

(3.9)

Moreover, we have

Z 1

�1

Z 1

0

�
ju1j

2 C 2jry 1j
2
�
r3 dr d´(3.10)

D

Z 1

�1

Z 1

0

�
2juj2 � ju� j2

�
r dr d´;Z 1

�1

Z 1

0

�
jryu1j

2 C 2j�y 1j
2
�
r3 dr d´(3.11)

D

Z 1

�1

Z 1

0

�
2jrxuj2 �

�
j@ru

� j2 C j@´u
� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2��

r dr d´;
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where u is defined in (3.2)–(3.3). Furthermore, the energy identity (3.9) is equiva-

lent to that of the Navier-Stokes equations in the sense thatZ 1

�1

Z 1

0

juj2 r dr d´ �

Z 1

�1

Z 1

0

.ju1j
2 C 2jry 1j

2/r3 dr d´(3.12)

� 2

Z 1

�1

Z 1

0

juj2 r dr d´;Z 1

�1

Z 1

0

jrxuj2 r dr d´ �

Z 1

�1

Z 1

0

.jryu1j
2 C 2j�y 1j

2/r3 dr d´(3.13)

� 2

Z 1

�1

Z 1

0

jrxuj2 r dr d´:

PROOF: The energy identity (3.9) follows by the standard energy method. Ob-

serve that the diffusion operator in the three-dimensional model equations, which

is given by @2r C 3
r
@r C @2´, is actually the Laplacian operator in R

5, �y . Thus, it

would be easier to prove the energy identity by performing energy estimates in R
5.

Multiplying the first equation of (3.1) by u1 and then integrating over R
5 yields

(3.14)
1

2

d

dt

Z
R5

u21 dy C �

Z
R5

jryu1j
2 dy D

Z
R5

2@´ 1u
2
1 dy:

Multiplying the second equation in (3.1) by  1 and then integrating over R
5 yieldsZ

R5

@t!1 1 dy � �

Z
R5

 1�y!1 dy D

Z
R5

 1@´.u
2
1/dy:

Using the third equation in (3.1) and integration by parts, we have

(3.15)
1

2

d

dt

Z
R5

jry 1j
2 dy C �

Z
R5

j�y 1j
2 dy D �

Z
R5

@´ 1u
2
1 dy:

Multiplying (3.15) by 2 and adding the resulting equation to (3.14) gives (3.9).

Next, we prove (3.10)–(3.11). The equality (3.10) follows by the following

straightforward calculation:Z 1

�1

Z 1

0

�
ju1j

2 C 2jry 1j
2
�
r3 dr d´

D

Z 1

�1

Z 1

0

�
ju1j

2 C 2j@r 1j
2 C 2j@´ 1j

2
�
r3 dr d´

D

Z 1

�1

Z 1

0

�
ju� j2 C 2

ˇ̌̌
ˇ@r � �

 �

r

ˇ̌̌
ˇ
2

C 2jur j2
�
r dr d´ D
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D

Z 1

�1

Z 1

0

�
ju� j2 C 2

ˇ̌̌
ˇ@r � C

 �

r

ˇ̌̌
ˇ
2

C 2jur j2
�
r dr d´

D

Z 1

�1

Z 1

0

�
ju� j2 C 2jur j2 C 2ju´j2

�
r dr d´;

where we have used Proposition 3.1 and the identity

Z 1

�1

Z 1

0

 � @r 
� dr d´ D 0:

Using (3.10), we can easily obtain (3.12).

It remains to prove (3.11) and (3.13). First, we compute rxu as follows:

rxu D

�
er@r C

1

r
e�@� C e´@´

�
.urer C u�e� C u´e´/

D @ru
rer ˝ er C @ru

�er ˝ e� C @ru
´er ˝ e´

�
u�

r
e� ˝ er C

ur

r
e� ˝ e�

C @´u
re´ ˝ er C @´u

�e´ ˝ e� C @´u
´e´ ˝ e´:

(3.16)

Thus, by the definitions of ur and u´ in (3.3) and the incompressibility constraint

(3.4), we have

jrxuj2 D j@ru
� j2 C j@´u

� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2

C j@ru
r j2 C j@´u

r j2 C

ˇ̌̌
ˇurr

ˇ̌̌
ˇ
2

C j@ru
´j2 C j@´u

´j2

D j@ru
� j2 C j@´u

� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2

C 2

ˇ̌̌
ˇurr

ˇ̌̌
ˇ
2

� 2@ru
r@´u

´ C j@ru
´j2 C j@´u

r j2

D

�
j@ru

� j2 C j@´u
� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2�

C j@2r 
� j2 C j@2´ 

� j2

C 2j@2r´ 
� j2 C

�
@r

�
 �

r

��2
C 2

�
@´

�
 �

r

��2

C 2@2r 
�@r

�
 �

r

�
C 2@2r´ 

�@´

�
 �

r

�
:

(3.17)
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On the other hand, Proposition 3.1 and a simple computation give

(3.18)

Z 1

�1

Z 1

0

jryu1j
2 r3 dr d´ D

Z 1

�1

Z 1

0

�
j@ru

� j2 C j@´u
� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2�
r dr d´:

Note that

j�y 1j
2 D

4X
i;jD1

j@2ij 1j
2 C 2j@2r´ 1j

2 C j@2´ 1j
2

D

4X
i;jD1

j@2ij 1j
2

C
1

r2

�
j@2´ 

� j2 C 2j@2r´ 
� j2

C 2

�
@´

�
 �

r

��2
� 4@2r´ 

�@´

�
 �

r

��
:

A straightforward calculation gives

4X
i;jD1

j@2ij 1j
2 D

4X
i;jD1

ˇ̌̌
ˇ@i

�
yj

r
@r 1

�ˇ̌̌
ˇ
2

D

4X
i;jD1

ˇ̌̌
ˇıijr @r 1 �

yiyj

r3
@r 1 C

yiyj

r2
@2r 1

ˇ̌̌
ˇ
2

D

4X
i;jD1

ˇ̌̌
ˇıijr @r 1 �

3yiyj

r3
@r 1 C

yiyj

r3
@2r 

�

ˇ̌̌
ˇ
2

D
1

r2
j@2r 

� j2 C
13

r2
.@r 1/

2

C 2

4X
i;jD1

�
�
3yiyj ıij

r2
1

r2
.@r 1/

2 C
yiyj

r2
ıij

r2
@r 1@

2
r 

�

�
3yiyj

r2
yiyj

r2
1

r2
@r 1@

2
r 

�

�

D
1

r2

�
j@2r 

� j2 C 7j@r 1j
2 � 4@r 1@

2
r 

�
�
:
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Therefore, we obtain

j�y 1j
2 D

1

r2

�
j@2r 

� j2 C j@2´ 
� j2 C 2j@2r´ 

� j2

C 2

�
@´

�
 �

r

��2
C 7

�
@r

�
 �

r

��2

� 4@´

�
 �

r

�
@2r´ 

� � 4@r

�
 �

r

�
@2r 

�

�
:

(3.19)

Combining (3.18) and (3.19), we have

Z 1

�1

Z 1

0

�
jryu1j

2 C 2j�y 1j
2
�
r3 dr d´

D

Z 1

�1

Z 1

0

�
j@ru

� j2 C j@´u
� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2

C 2

�
j@2r 

� j2 C j@2´ 
� j2 C 2j@2r´ 

� j2

C 2

�
@´

�
 �

r

��2
C 7

�
@r

�
 �

r

��2

� 4@´

�
 �

r

�
@2r´ 

� � 4@r

�
 �

r

�
@2r 

�

��
r dr d´:

(3.20)

By comparing (3.17) with (3.20), we have

Z 1

�1

Z 1

0

.jryu1j
2 C 2j�y 1j

2/r3 dr d´

D

Z 1

�1

Z 1

0

�
2jrxuj2 �

�
j@ru

� j2 C j@ru
� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2��

r dr d´

C 12

Z 1

�1

Z 1

0

��
@r

�
 �

r

��2

� @´

�
 �

r

�
@2r´ 

� � @r

�
 �

r

�
@2r 

�

�
r dr d´:

(3.21)

Thus to prove (3.11), it suffices to show that

Z 1

�1

Z 1

0

��
@r

�
 �

r

��2

� @´

�
 �

r

�
@2r´ 

� � @r

�
 �

r

�
@2r 

�

�
r dr d´ D 0:

(3.22)
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Indeed, direct calculations giveZ 1

�1

Z 1

0

��
@r

�
 �

r

��2
� @´

�
 �

r

�
@2r´ 

� � @r

�
 �

r

�
@2r 

�

�
r dr d´

D

Z 1

�1

Z 1

0

��
@r

�
 �

r

��2
r C

 �

r
@2r 

�

�
1

2
@r Œj@r 

� j2 C j@´ 
� j2�

�
dr d´

D

Z 1

�1

Z 1

0

��
@r

�
 �

r

��2
r � @r

�
 �

r

�
@r

�
 �

r
r

��
dr d´

C

Z 1

�1

�
1

2
j@r 

� j2 �
 �

r
@r 

�

�
rD0C

d´

D �
1

2

Z 1

�1

Z 1

0

@r

�
 �

r

�2
dr d´

C

Z 1

�1

�
1

2
j@r 

� j2 �
 �

r
@r 

�

�
rD0C

d´

D
1

2

Z 1

�1

�
 �

r
� @r 

�

�2 ˇ̌̌
ˇ
rD0C

d´ D 0;

(3.23)

where f
ˇ̌
rD0C

D limr!0C f .r/. This proves (3.11). The second inequality of

(3.13) follows immediately from (3.11).

It remains to prove the first inequality of (3.13). Using (3.20), (3.17), and an

argument similar to that of proving (3.23), we obtainZ 1

�1

Z 1

0

.jryu1j
2 C 2j�y 1j

2/r3 dr d´ �

Z 1

�1

Z 1

0

jrxuj2r dr d´

D

Z 1

�1

Z 1

0

�
j@2r 

� j2 C j@2´ 
� j2 C 2j@2r´ 

� j2 C 2

�
@´

�
 �

r

��2

C 13

�
@r

�
 �

r

��2
� 10@´

�
 �

r

�
@2r´ 

�

� 10@r

�
 �

r

�
@2r 

�

�
r dr d´

D

Z 1

�1

Z 1

0

�
j@2r 

� j2 C j@2´ 
� j2 C 2j@2r´ 

� j2 C 2

�
@´

�
 �

r

��2�
r dr d´

C 3

Z 1

�1

Z 1

0

�
@r

�
 �

r

��2
r dr d´ � 0:

This completes the proof of Proposition 3.3. �
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4 Generalized Model Equations in an Arbitrary Space Dimension

In this section, we generalize our three-dimensional model (3.1) to an arbitrary

space dimension. On one hand, the generalized model improves our understanding

of the original three-dimensional model. On the other hand, the result we obtain

for the generalized model is of independent interest in itself.

Let n � �1 be an integer and denote y D .y1; : : : ; ynC1; ´/ 2 R
nC2. The

generalized model is given by the following system of equations:

(4.1)

8̂<
:̂
@tu1 D ��nC2u1 C 2@´ 1u1;

@t!1 D ��nC2!1 C ..u1/
2/´;

��nC2 1 D !1;

where �nC2 D @2y1
C � � � C @2ynC1

C @2´.

The three-dimensional model we introduced in the previous section corresponds

to the case of n D 3, which can also be considered as a model in five space dimen-

sions. It is easy to check that (3.14) and (3.15) are still valid for the generalized

system (4.1). Thus we have the same energy identity

(4.2)
1

2

d

dt

Z
RnC2

.u21 C 2jry 1j
2/dy C �

Z
RnC2

.jryu1j
2 C 2j�y 1j

2/dy D 0:

The initial condition for the generalized model (4.1) is of the form

(4.3) u1.0; y/ D u10.y/; !1.0; y/ D !10.y/;  1.0; y/ D  10.y/:

Based on the balance between the diffusion term and the nonlinear vortex-

stretching term, we can classify the generalized model as subcritical if n < 2,

critical if n D 2, and supercritical if n > 2. Like the three-dimensional Navier-

Stokes equations, our three-dimensional model, which corresponds to n D 3, is

supercritical. In the following, we prove the global regularity of the generalized

model for the subcritical and the critical cases.

THEOREM 4.1 Assume that �1 � n � 2 and .u10; !10;  10/ satisfies

!10 D ��y 10; u10;r 10 2 H 1.RnC2/:

Then there exists a globally smooth solution to system (4.1) with the initial

data (4.3).

PROOF: We first consider the critical case of n D 2. Applying ry to the first

equation in (4.1) and then taking the L2 inner product of the resulting equation
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with ryu1, we have

1

2

d

dt

Z
R4

jryu1j
2 dy C �

Z
R4

j�yu1j
2 dy

D �2

Z
R4

@´ 1u1r
2
yu1 dy

�
1

2
�k�yu1k

2
L2.R4/

C
2

�
ku1k

2
L4.R4/

k@´ 1k
2
L4.R4/

�
1

2
�kr2yu1k

2
L2.R4/

C
C

�
kryu1k

2
L2.R4/

kry@´ 1k
2
L2.R4/

�
1

2
�kr2yu1k

2
L2.R4/

C
C

�

�
kryu1k

4
L2.R4/

C k!1k
4
L2.R4/

�
;

(4.4)

where we have used ku1kL4.R4/ � Ckryu1kL2.R4/, the Sobolev embedding in-

equality.

Similarly, taking the L2 inner product of the second equation in (4.1) with !1
and performing integration by parts, we have

1

2

d

dt

Z
R4

j!1j
2 dy C �

Z
R4

jry!1j
2 dy

�
1

2
�kry!1k

2
L2.R4/

C
2

�
ku1k

4
L4.R4/

�
1

2
�kry!1k

2
L2.R4/

C
C

�
kryu1k

4
L2.R4/

:

(4.5)

Combining (4.4)–(4.5) with the basic energy identity (4.2), we arrive at the a priori

estimateZ
R4

.jryu1j
2 C j!1j

2/dy C 2�

Z t

0

Z
R4

.j�yu1j
2 C jry!1j

2/dy ds

�

Z
R4

.jryu10j
2 C j!10j

2/dy exp

	
C

�

Z t

0

Z
R4

.jryu1j
2 C j!1j

2/dy dt




�

Z
R4

.jryu10j
2 C j!10j

2/dy exp

	
C

�2
.k.u10;ry 10/k

2
L2.R4/

/



:

(4.6)

Based on the above a priori estimate, we can easily prove the global regularity of

the solution in any high-order norm for all t > 0.
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The case of n D 1 can be proved similarly. The a priori estimate now reads

(4.7)

Z
R3

.jryu1j
2 C j!1j

2/dy C 2�

Z t

0

Z
R3

.j�yu1j
2 C jry!1j

2/dy ds �

Z
R3

.jryu10j
2 C j!10j

2/dy exp

	
Ct1=2

�3=2
.k.u10;ry 10/kL2.R3//



:

The cases of n D 0 and n D �1 are straightforward. We omit the proof here. �

5 A Special One-Dimensional Model

It is also interesting to consider the special case when the solution develops a

large gradient along the ´-direction and the derivative along the r-direction is rel-

atively smooth. In this case, the Laplacian operator becomes ´-dominated and can

be approximated locally by the one-dimensional Laplacian along the ´-direction.

This gives rise to the following one-dimensional model, which corresponds to the

case of n D �1 in our generalized system:

@tu1 D �@2´u1 C 2@´ 1u1;(5.1)

@t!1 D �@2´!1 C ..u1/
2/´;(5.2)

�@2´ 1 D !1:(5.3)

Further, we introduce a new variable v1 D @´ 1. By integrating equation (5.2)

with respect to ´, we obtain an evolution equation for v1 as follows:

(5.4) @tv1 D �@2´v1 � u21 C c.t/;

where c.t/ is an integration constant. If we consider a periodic boundary condition

in ´ with period 1, we can determine c explicitly by enforcing
R 1
0 v1 d´ D 0 since

v1 D @´ 1. This gives c.t/ D
R 1
0 u

2
1.t; ´/d´. Then we obtain an equivalent

system for u1 and v1 as follows:

(5.5)

(
@tu1 D �@2´u1 C 2u1v1;

@tv1 D �@2´v1 � u21 C c.t/;

where c.t/ D
R 1
0 u

2
1.t; ´/d´. It is easy to show that we have

(5.6)
1

2

d

dt
.u21 C 2v21/ D �.u1@

2
´u1 C 2v1@

2
´v1/C 2c.t/v1:
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Using (5.6) and the fact that
R 1
0 v1.t; ´/d´ D 0, we haveZ 1

0

.u21.t; ´/C 2v21.t; ´//d´

D ��

Z t

0

Z 1

0

..@´u1/
2 C .@´v1/

2/d´ dt

C

Z 1

0

.u21.0; ´/C 2v21.0; ´//d´:

(5.7)

This a priori estimate is sufficient to establish the global regularity of the one-

dimensional model for initial data u1.0; ´/; v1.0; ´/ 2 L2Œ0; 1�.

An interesting feature of this one-dimensional model is that even without any

diffusion, its solution still has global regularity. To see this, consider the inviscid

model with � D 0. Combining (5.6) with (5.7), we get

d

dt
.u21 C 2v21/ D 4c.t/v1

� .u21 C 2v21/C 2

�Z 1

0

.u21.0; ´/C 2v21.0; ´//d´

�2
:

By the Gronwall inequality, we obtain the following a priori estimate:

u21 C 2v21 � .u21.0; ´/C 2v21.0; ´//e
t

C 2.et � 1/

�Z 1

0

.u21.0; ´/C 2v21.0; ´//d´

�2
:

(5.8)

Using the above a priori estimate, we can prove global regularity in any high-

order norm. Let m � 1 be any integer. We have

d

dt

Z 1

0

.j@m´ u1j
2 C j@m´ v1j

2/d´

D

Z 1

0

Œ@m´ u1@
m
´ .2u1v1/ � @m´ v1@

m
´ .u

2
1/�d´

� C.ku1kL1 C kv1kL1/

Z 1

0

.j@m´ u1j
2 C j@m´ v1j

2/d´:

Using (5.8), one obtainsZ 1

0

.j@m´ u1j
2 C j@m´ v1j

2/d´

� exp

	Z t

0

C.ku1kL1 C kv1kL1/ds


 Z 1

0

.j@m´ u1.0; ´/j
2 C j@m´ v1.0; ´/j

2/d´

� exp.expfC?tg/

Z 1

0

.j@m´ u1.0; ´/j
2 C j@m´ v1.0; ´/j

2/d´;

(5.9)
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where C? is an absolute positive constant depending only on the L2 norm and

the L1 norm of the initial data. This proves the global regularity of the one-

dimensional inviscid model. It is interesting to observe that the growth rate of the

high-order norm is double exponential in time.

As we will see in the next section, when the solution of the original three-

dimensional model develops a strong layer along the ´-direction, the solution does

not become singular in a finite time. The analysis of the one-dimensional model

provides us with important guidance in our computational study of possible finite

time singularities.

6 Nearly Singular Behavior of the Three-Dimensional Model

In this section, we will present numerical results to demonstrate the near singu-

lar behavior of the three-dimensional model. We will also illustrate the mechanism

that leads to the formation of a potential finite time singularity of the model and

how the convection term destroys such a mechanism, preventing the formation of

the potential finite time singularity in the full Navier-Stokes equations. We caution

that the evidence for singularity formation of the three-dimensional model is not

yet conclusive. It requires substantially higher numerical resolutions than what we

have currently used to give more definitive evidence.

6.1 Setup of the Problem

We solve the three-dimensional model equation over a cylindrical domain: � D

f.´; r/ j 0 � ´ � 1
2
; 0 � r � 1g. Note that  is determined only up to a constant.

To define  uniquely, we may assume that
R 1
0  1.´; 1; t/d´ D 0 for all times. We

use periodic boundary conditions along the ´-direction with period 1
2

and no-slip,

no-flow boundary conditions at r D 1, i.e., u
ˇ̌
rD1

D 0, which is equivalent to

(6.1)
ur D u� D u´ D 0;

i.e., � r@´ 1 D ru1 D 2 1 C r@r 1 D 0 on r D 1:

Since
R 1
0  1.´; 1; t/d´ D 0, the above condition is equivalent to

(6.2) u1
ˇ̌
rD1

D 0;  1
ˇ̌
rD1

D 0;
@

@r
 1

ˇ̌̌
ˇ
rD1

D 0:

Since our three-dimensional model is formulated in the stream function-vorticity

setting, we need to derive a boundary condition for !1. Recall that

(6.3) !1 D �
@2

@´2
 1 �

@2

@r2
 1 �

3

r

@

@r
 1:

Thus the no-slip, no-flow boundary condition (6.2) implies that

(6.4) !1
ˇ̌
rD1

D �
@2

@r2
 1

ˇ̌̌
ˇ
rD1

:
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Let us discretize the domain� by aN´�Nr grid. Denote j́ D jh´, rj D jhr ,

with h´ D 1=.2N´/ and hr D 1=Nr . Further, we denote . 1/i;j �  1.´i ; rj /,

.u1/i;j � u1.´i ; rj /, and .!1/i;j � !1.´i ; rj /. We will discretize the three-

dimensional model in space by a second-order centered difference method and

discretize the three-dimensional model in time by using the classical fourth-order

Runge-Kutta method. To derive a discrete boundary condition for !1 at r D 1, we

approximate . 1/rr
ˇ̌
rD1

by a second-order finite difference method. This gives

(6.5) !1.´i ; 1/ � �
. 1/i;NrC1 � 2. 1/i;Nr C . 1/i;Nr�1

h2r
:

Using the boundary condition (6.2) for the stream function at r D 1, we conclude

that . 1/i;Nr D 0. Moreover, we can approximate the second boundary condi-

tion . 1/r
ˇ̌
rD1

D 0 by using a second-order centered difference approximation to

. 1/r
ˇ̌
rD1

. This gives

. 1/i;NrC1 � . 1/i;Nr�1

hr
D 0;

or, equivalently,

(6.6) . 1/i;NrC1 D . 1/i;Nr�1:

Substituting (6.6) into (6.5), we obtain our discrete boundary condition for !1 at

r D 1,

(6.7) .!1/i;Nr D �
2. 1/i;Nr�1

h2r
:

This is the well-known Thom’s boundary condition [28]. In [19], Hou and

Wetton proved that the second-order finite difference approximation of the Navier-

Stokes equations using the Thom’s boundary condition converges with a second-

order accuracy.

To summarize, the discrete no-slip, no-flow boundary at r D 1 is given by

(6.8) .u1/i;Nr
D 0; . 1/i;Nr

D 0; .!1/i;Nr
D �

2. 1/i;Nr�1

h2r
:

The periodic boundary condition along the ´-direction and the boundary condi-

tion (6.8) at r D 1 plus the initial condition completely determine the dynamic

evolution of the discretized system of our three-dimensional model.

The initial condition we consider in our numerical computations is given by

u1.´; r; 0/ D .1C sin.4�´//.r2 � 1/20.r2 � 1:2/30;(6.9)

 1.´; r; 0/ D 0;(6.10)

!1.´; r; 0/ D 0:(6.11)

Note that the compatibility condition (3.5) implies that u1, 1, and!1 must be even

functions of r . The above initial condition satisfies this constraint and the no-slip,

no-flow boundary condition. We choose the initial condition in such a way that its
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support is centered around r D 0 and the solution is nearly flat away from r D 0.

Since the initial value for  1 is identically equal to 0, the velocity fields along the

radial and the axial directions are all 0. Thus, the motion is induced by the swirling

component of the velocity field. Further, we note that the swirling component of

the velocity field is always nonnegative since its initial value is nonnegative.

We have used both a uniform mesh and an adaptive mesh in our computations.

Since the solution eventually becomes singular at r D 0 and is very smooth and

nearly flat away from r D 0, we use the following coordinate transformation along

the r-direction to achieve the adaptivity:

(6.12) r D f .˛/ � ˛ �
0:9 sin.�˛/

�
:

This transformation gives a change of variables from r to ˛ via r D f .˛/. Note

that f maps the unit interval Œ0; 1� into itself and is a smooth transformation. More-

over, the derivative of the map is given by

f˛ D 1 � 0:9 cos.�˛/ � 0:1:

The smallest value of f˛ is achieved at ˛ D 0 with f˛.0/ D 0:1. If we use a

uniform mesh in ˛ with a mesh size hr , then the above transformation will produce

an adaptive mesh in the original r-space with the smallest mesh size concentrated

near r D 0. The mesh size near r D 0 is proportional to hr=10. Thus, we gain an

adaptivity factor of 1
10

near r D 0.

The advantage of using this mesh adaptivity is that the mesh map is very smooth

and is time independent. We do not introduce mesh adaptivity along the ´-direction

because we would like to use the Fourier transform along it for the discrete elliptic

equation for the stream function. After applying the Fourier transform along the

´-direction, the discrete system for  1 becomes a tridiagonal system for each wave

number, which can be inverted directly. This gives rise to a very efficient elliptic

solver for the stream function  1.

We have performed a detailed resolution study using both the uniform mesh and

the above adaptive mesh. We find that the above adaptive mesh works extremely

well. Since the problem is three-dimensional, the adaptivity along the r-direction

gives a factor of 102 savings. In the inviscid computation, which is more singular

than the viscous case, the largest resolution we use is N´ D 8192 and Nr D 800

with a time step of �t D 1:25 � 10�7. This provides an effective resolution of

81923 for the corresponding three-dimensional problem with a uniform mesh. The

total number of time steps we run is over a hundred thousand. Without taking

advantage of the axisymmetry of the solution and the mesh adaptivity, we would

not have been able to afford to perform computations using this high resolution.

6.2 Nearly Singular Behavior of the Solution at an Early Time

We first study the nearly singular behavior of the solution at an early time. The

initial condition we consider is designed in such a way that it has a maximal prob-

ability of producing a finite time singularity for the corresponding inviscid model.
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FIGURE 6.1. Closeup view of u1-contour at t D 0:0177 using a uniform

mesh, N´ D 2048, Nr D 2048, �t D 10�6, � D 0.

A key property of this initial condition is that u1 is nonnegative and vanishes at

´ D 0:375. From the model equation for u1 in (3.1) in the inviscid case � D 0, we

can see that u1 remains nonnegative and vanishes at ´ D 0:375 for all times. For

this particular initial condition, the solution produces two large focusing centers

dynamically, one to the left of ´ D 0:375, and another to the right of ´ D 0:375.

As time increases, the axial velocity field near r D 0 generated by this initial con-

dition becomes large and positive for ´ < 0:375 and negative for ´ > 0:375. As

a result, the two focusing centers are attracted toward the plane of ´ D 0:375 and

may experience a head-on collision in a finite time. The potential collision of the

two focusing centers is a perfect candidate for generating a finite time singularity

at ´ D 0:375. Indeed, we find from our computations that the two focusing centers

are attracted to the plane of ´ D 0:375 and develop a thin layer parallel to the

r-axis. By t D 0:0177, the two focusing centers almost collide, and the solution

becomes severely squeezed along the ´-direction; see Figure 6.1.

We emphasize that sufficient resolution is necessary to resolve this nearly sin-

gular behavior of the solution. It is difficult to resolve the thin-layer structure of

the solution of the inviscid model around t D 0:0177. We had originally used a

uniform mesh to solve the three-dimensional model equation up to N´ � Nr D
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FIGURE 6.2. Maximum of u1 in time for the inviscid model computed

by uniform meshes N´ D Nr D 256 (dashed blue), N´ D Nr D 512

(green), and N´ D Nr D 1024 (black), and by adaptive meshes N´ �

Nr D 2048 � 256 (red) and N´ � Nr D 4096 � 400 (blue), � D 0.

The time steps used are �t D 4 � 10�6, 2 � 10�6, 10�6, 5 � 10�7, and

2:5 � 10�7, respectively.

2048 � 2048. This level of resolution is close to the limit of our computing re-

sources without going to a massively parallel cluster. Even with this large resolu-

tion, we find that the solution of the inviscid three-dimensional model is still not

well resolved near the potential singularity time. This motivates us to switch to

the adaptive mesh and concentrates our computational mesh near the most singular

region of the solution, i.e., the region close to the ´-axis. The use of an adaptive

mesh enables us to increase our local effective resolution considerably.

A careful resolution study is required to fully understand whether the solution

of the inviscid model will develop a finite time singularity around t D 0:0178.

With N´ D 256; 512, and 1024, we find that the solution experiences rapid growth

around t D 0:0178; see Figure 6.2. This seems to indicate that the solution may

become singular around t D 0:0178. On the other hand, with even higher reso-

lution (N´ � 2048), we find that the growth rate of the solution seems to slow

down.

If there were a true singularity around t D 0:0178, the time at which ku1k1

achieves its maximum should have occurred earlier as we increased the resolutions.

But this was not the case. We conjecture that this may be a faux singularity. As we

discussed earlier, the solution becomes severely flattened and ´-dominant locally

near the region of maximum of u1. In the region where u1 is comparable to the



524 T. Y. HOU AND Z. LEI

maximum of u1, the three-dimensional model can be approximated to the leading

order by the corresponding one-dimensional model along the ´-direction. As we

showed in Section 5, the solution of the one-dimensional model cannot blow up

in finite time, even in the inviscid case. This seems to provide some theoretical

support for our conjecture that the nearly singular behavior of the inviscid solution

around t D 0:0178 may be a faux singularity. After t D 0:0178, the two focusing

centers move away from each other and the maximum of u1 decreases for a short

time before it experiences another period of rapid growth.

We remark that even with our largest numerical resolution we may not com-

pletely resolve the nearly singular behavior near t D 0:0178 of the inviscid so-

lution. To demonstrate that the solution of the inviscid model is indeed smooth

around t D 0:0178, we need to perform well-resolved computations with higher

resolutions than what we have used up to now.

6.3 Nearly Singular Behavior of the Viscous Model

We now present numerical results which show that the solution of the viscous

model becomes nearly singular. We choose the viscous coefficient to be � D 0:001

and perform a series of resolution studies using the adaptive method. We have used

both uniform mesh and adaptive mesh with N´ ranging from 256 to 4096. Below

we present the computational results obtained by using the adaptive mesh with the

highest resolution N´ D 4096, Nr D 400, and �t D 2:5 � 10�7. We will also

perform a resolution study to demonstrate that our computations are well-resolved.

Numerical Evidence for a Potential Finite-Time Singularity

From our analytical study of the three-dimensional model, it follows by using

a standard energy estimate that if u1 is bounded, then the solution of the viscous

three-dimensional model cannot blow up in a finite time. Thus it is sufficient to

monitor the growth of ku1k1 in time. We will present numerical evidence which

seems to support that u1 may develop a potential finite time singularity for the

initial condition we consider. The nature of this potential singularity and the mech-

anism for generating this potential singularity will be analyzed in a later subsection.

In Figure 6.3 we plot the maximum of u1 in time over the time interval Œ0; 0:021�

using the adaptive mesh method with N´ D 4096 and Nr D 400. The time step

is chosen to be �t D 2:5 � 10�7. We can see that ku1k1 experiences a very

rapid growth in time after t D 0:02. In Figure 6.3 (bottom plot), we also plot

log.log.ku1k1// as a function of time. We can clearly see that ku1k1 grows

much faster than double exponential in time, which implies that the solution of our

model may develop a finite time singularity. We will present more careful analysis

of this potentially singular behavior later.

In Figures 6.4 through 6.6, we show a sequence of contour plots for u1 from

t D 0:014 to t D 0:021. At early times, we observe that the solution forms two

large focusing centers of u1 that approach each other. As this occurs, these rather

localized regions are squeezed and form a thin layer parallel to the r-axis and with
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FIGURE 6.3. Left figure: ku1k1 as a function of time over the interval

Œ0; 0:021�. The right figure: log.log.ku1k1// as a function of time over

the same interval. The solution is computed by the adaptive mesh with

N´ D 4096, Nr D 400, �t D 2:5 � 10�7, � D 0:001.

large gradients along the ´-direction. The two focusing centers become closest

around t D 0:0172; see also Figure 6.1 for the contour of u1 at t D 0:0177 for the

inviscid three-dimensional model.

As these regions approach each other and develop a thin layer parallel to the

r-axis, the solution becomes locally ´-dominant near the region where u1 achieves
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FIGURE 6.4. The contour plots of u1 for the viscous model at t D 0:014

(top plot) and 0:016 (bottom plot). Adaptive mesh computation with

N´ D 4096, Nr D 400, �t D 2:5 � 10�7, � D 0:001.

its maximum. In this region, the three-dimensional model can be approximated

to the leading order by the corresponding one-dimensional model along the ´-

direction that we introduced in the previous section. As we have shown before,

the solution of the one-dimensional model cannot blow up. After t D 0:0172, the

maximum of u1 starts to decrease. The two focusing centers move away from each

other and their supports become more isotropic. As time increases, we observe
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FIGURE 6.5. The contour plots of u1 for the viscous model at t D 0:018

(top plot) and 0:02 (bottom plot). Adaptive mesh computation with

N´ D 4096, Nr D 400, �t D 2:5 � 10�7, � D 0:001.

that there is a strong nonlinear interaction between u1 and . 1/´, which is induced

by the overlap between the support of the maximum of u1 and the support of the

maximum of . 1/´. By the support of the maximum of u1, we mean the region

in which u1 is comparable to its maximum. The strong alignment between u1
and . 1/´ near the support of the maximum of u1 leads to a rapid growth of the

solution that may become singular in a finite time.
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view (bottom figure) for the viscous model computed by the adaptive

mesh with N´ D 4096, Nr D 400, �t D 2:5 � 10�7, � D 0:001.

Another important observation is that as time increases, the position at which

u1 achieves its maximum also moves toward the symmetry axis. This suggests that

the potential singularity will be along the symmetry axis at the singularity time. It

is easy to see from (2.7) that limr!0C u1 D 0:5 limr!0C !
´. Thus, the blowup of

u1 characterizes the blowup of the axial vorticity !´.
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Next, we perform a detailed study for the three-dimensional model and push

our computations very close to the potential singularity time. We use a sequence

of resolutions using both uniform and adaptive mesh. For the uniform mesh, we

use resolutions for N´ � Nr ranging from 256 � 256 to 2048 � 2048 with time

steps ranging from �t D 5 � 10�6 to 5 � 10�7. For the adaptive mesh, we use

N´�Nr D 2048� 256, N´�Nr D 3072� 328, and N´�Nr D 4096� 400. The

corresponding time steps for these computations are �t D 10�6, �t D 5 � 10�7,

and �t D 2:5 � 10�7, respectively. With N´ � Nr D 4096 � 400, we achieve an

effective resolution of 4000 � 4000 near the region of r D 0 where the solution is

most singular.

To obtain further evidence for a potential finite time singularity, we use a sys-

tematic singularity form fit procedure to obtain a good fit for the possible singular-

ity of the solution. The procedure of our form fit is as follows. We look for a finite

time singularity of the form

(6.13) ku1k1 �
C

.T � t /˛
:

We have tried several ways to determine the fitting parameters T , C , and ˛. At

the end, we found that the best way is to study the inverse of ku1k1 as a func-

tion of time using a sequence of numerical resolutions. This approach was used

successfully before by van Dommelen and Shen in their study of the spontaneous

generation of the singularity in a separating laminar boundary layer [34] (see also

[20]). For each resolution, we find that the inverse of ku1k1 is almost a perfect

linear function of time; see Figures 6.7 and 6.8. By using a least square fit of the

inverse of ku1k1, we find that ˛ D 1 gives the best fit. The same least square fit

also determines the potential singularity time T and the constant C . We remark

that the O.1=.T � t // blowup rate of u1, which corresponds to the blowup rate of

the axial vorticity, is consistent with the nonblowup criterion of Beale-Kato-Majda

type; see Section 7.

To confirm that the above procedure does indeed give a good fit for the potential

singularity, we plot ku1k
�1
1 as a function of time in Figure 6.7 (top plot). We can

see that the agreement between the computed solution withN´�Nr D 4096�400

and the fitted solution is almost perfect. In the bottom box of Figure 6.7, we plot

ku1k1 computed by our adaptive method against the form fit C=.T � t / with

T D 0:02109 and C D 8:20348. The two curves are almost indistinguishable

during the final stage of the computation from t D 0:018 to t D 0:021.

In Figure 6.9, we also plot k 1´k
�1
1 as a function of time. We observe that

k 1´k
�1
1 decays almost linearly in time with a logarithmic correction. The agree-

ment between the computed solution withN´�Nr D 4096�400 and the fitted so-

lution is excellent. In the same figure (bottom plot), we compare k 1´k1 with the

fitted solution. Again, we observe very good agreement between the two curves.

We further investigate the potential singular behavior of the solution by using a

sequence of resolutions to study the limiting behavior of the computed solution as



530 T. Y. HOU AND Z. LEI

0.02 0.0202 0.0204 0.0206 0.0208 0.021 0.0212
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

Time

||
u

1
||

−
1

Asymptotic fit

N=4096

0.018 0.0185 0.019 0.0195 0.02 0.0205 0.021
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time

||
u

1
||

||u
1
||, N=4096

Fitted solution

FIGURE 6.7. Top plot: The inverse of ku1k1 (blue) versus the asymp-

totic fit (red) for the viscous model. Right plot: ku1k1 (blue) versus the

asymptotic fit (red). The asymptotic fit is of the form ku1k
�1
1 � T�t

C

with T D 0:02109 and C D 8:20348. The solution is computed

by adaptive mesh with N´ D 4096, Nr D 400, �t D 2:5 � 10�7,

� D 0:001.

we refine our resolutions. The space resolutions we use areN´�Nr D 1024�128,

2048 � 256, 3072 � 328, and 4096 � 400, respectively. The corresponding time

steps are �t D 10�6, 5 � 10�7, 3:625 � 10�7, and 2:5 � 10�7, respectively. For

each resolution, we obtain an optimal least square fit of the singularity of the form
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FIGURE 6.8. The inverse of ku1k1 in time for the viscous model. The

solution is computed by adaptive mesh with N´ D 1024, 2048, 3072,

and 4096 (ordering from top to bottom in the figure), �t D 10�6, 5 �

10�7, 3:625 � 10�7, and 2:5 � 10�7, respectively. The last curve is

the singularity fit by extrapolating the computational results obtained by

N´ D 2048, 3072, and 4096 to infinite resolution N´ D 1. The fitted

curve is of the form ku1k
�1
1 � T�t

C
, with T D 0:021083, C D 8:1901,

and � D 0:001.

ku1k
�1
1 � .T �t /=C . The results are summarized in Table 6.1. Based on the fitted

parameters T and C from the three largest resolutions, we construct a second-order

polynomial that interpolates T and C through these three data points. We then use

the polynomial to extrapolate the values of T and C to the infinite resolution limit.

The extrapolated values at h´ D 0 are T D 0:021083 and C D 8:1901. In

Figure 6.8, we plot the inverse of ku1k1 as a function of time using four different

resolutions. We can see that as we refine the resolution, the computed solution

converges to the extrapolated singularity limiting profile.

To illustrate the nature of the nearly singular solution, we show the three-

dimensional view of u1 as a function of r and ´ in Figures 6.10 and 6.11. We also

show the three-dimensional view of w1 as a function of r and ´ in Figure 6.12.

While u1 is symmetric with respect to ´ D 0:375, w1 is antisymmetric with re-

spect to ´ D 0:375. We can see that the support of the solution u1 in the most

singular region is isotropic and appears to be locally self-similar. We will further

investigate the local scaling property of the solution in Section 6.4.



532 T. Y. HOU AND Z. LEI

0.02 0.0202 0.0204 0.0206 0.0208 0.021 0.0212
0

1

2

3

x 10
−4

Time

||
ψ

1
z
||

−
1

N=4096

Asymptotic fit

0.02 0.0202 0.0204 0.0206 0.0208 0.021 0.0212
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time

||
ψ

1
z
||

N=4096

Asymptotic fit

FIGURE 6.9. Top plot: The inverse of k 1´k1 (blue) versus the asymp-

totic fit (red) for the viscous model. Bottom plot: k 1´k1 (blue) versus

the asymptotic fit (red). The asymptotic fit is of the form

k 1´k1 �
C.log.1=.T � t ///1=2

.T � t /

with T D 0:02109 and C D 1:051235. The solution is computed

by adaptive mesh with N´ D 4096, Nr D 400, �t D 2:5 � 10�7,

� D 0:001.
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FIGURE 6.10. The three-dimensional view of u1 at t D 0:02 for the

viscous model computed by the adaptive mesh with N´ D 4096, Nr D

400, �t D 2:5 � 10�7, � D 0:001.

FIGURE 6.11. The three-dimensional view of u1 at t D 0:021 for the

viscous model computed by the adaptive mesh with N´ D 4096, Nr D

400, �t D 2:5 � 10�7, � D 0:001.
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h´ T C

1=2048 0.02114 8.409

1=4096 0.0211 8.2237

1=6144 0.021093 8.20946

1=8192 0.02109 8.20348

Extrapolation to h´ D 0 0.021083 8.1901

TABLE 6.1. Resolution study of parameters T and C in the asymptotic

fit for the viscous model ku1k
�1
1 � T�t

C
using different resolutions h´ D

1=.2N´/. The resolutions we use in our adaptive computations are N´ �

Nr D 1024 � 128, 2048 � 256, 3072 � 328, and 4096 � 400. The

corresponding time steps are �t D 10�6, 5 � 10�7, 3:625 � 10�7, and

2:5 � 10�7, respectively. The last row is obtained by extrapolating the

second-order polynomial that interpolates the data obtained using h´ D

1=4096, 1=6144, and 1=8192.

FIGURE 6.12. The three-dimensional view of !1 at t D 0:02 for the

viscous model computed by the adaptive mesh with N´ D 4096, Nr D

400, �t D 2:5 � 10�7, � D 0:001.

Remark 6.1. While the numerical results presented in this subsection seem to sup-

port that the solution of the viscous model develops a potential finite time singu-

larity, we caution that this evidence is not yet conclusive. Based on the balance

between the nonlinear vortex-stretching term and the viscous term, we find that

the solution of the viscous model seems to be dominated by the dynamics of the

inviscid model during the time interval of our computation. In order to determine

whether the three-dimensional model actually develops a finite time singularity,



STABILIZING EFFECT OF CONVECTION IN 3D INCOMPRESSIBLE FLOWS 535

we need to compute much closer to the potential singularity time with resolutions

much higher than what we have used in the current paper in order to capture the

viscous effect accurately. Depending on the local scaling property of the nearly

singular solution and the balance between the vortex-stretching term and the vis-

cous term, it is still possible that the viscous term eventually regularizes the nearly

singular solution induced by the nonlinear vortex-stretching term. We plan to in-

vestigate this issue further in our future work.

Resolution Study

Finally, we perform a resolution study for our computations by comparing the

computation obtained by three different resolutions, which are N´ �Nr D 2048�

256, N´ �Nr D 3072� 328, and N´ �Nr D 4096� 400. In Figure 6.13, we plot

ku1k1 as a function of time using these three resolutions, N´ �Nr D 2048� 256

(green), N´ �Nr D 3072� 328 (red), and N´ �Nr D 4096� 400 (blue) over the

time interval Œ0; 0:021�. We can see that while the computation with N´ D 2048

underresolves the solution near the end of the computation, the solution obtained

by using N´ D 3072 gives an excellent agreement with that obtained by using

N´ D 4096.

We also compare the solution of u1 at r D 0 using three different resolu-

tions. Using the partial regularity theory for our three-dimensional model, which

we prove in [16], any singularity of our three-dimensional model must lie on the

symmetry axis, r D 0. Thus it makes sense to perform a resolution study for the

solution along the symmetry axis that is the most singular region of the solution.

In the top box of Figure 6.14, we plot the solutions obtained by two resolutions

using N´ � Nr D 2048 � 256 (�t D 5 � 10�7) and N´ � Nr D 4096 � 400

(�t D 2:5 � 10�7) on top of each other at t D 0:02. The two solutions are almost

indistinguishable. However, the computation with N´ � Nr D 2048 � 256 is not

sufficient to resolve the nearly singular behavior of the solution at t D 0:021. On

the other hand, the computation with N´ � Nr D 3072 � 328 (�t D 3:625 �

10�7) gives much improved resolution. In Figure 6.14 (right plot), we compare

the solution obtained by using N´ �Nr D 3072� 328 with that obtained by using

N´ � Nr D 4096 � 400 at t D 0:021. We observe that the agreement of the two

solutions is very good except near the points where u1 attains its maximum.

6.4 Singularity Formation for the Inviscid Model

In this subsection, we present numerical evidence which seems to suggest that

the corresponding inviscid model with the same initial condition develops a finite

time singularity. The nature of the potential singularity will be studied, and the

resolution study with effective resolution up to 81923 will be performed.

Numerical Evidence for a Potential Finite Time Singularity

The solution’s behavior of the inviscid model is qualitatively similar to that

of the viscous model with viscosity coefficient � D 0:001. At early times, the
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FIGURE 6.13. Convergence study for ku1k1 in time for the viscous

model with three resolutions: N´ � Nr D 2048 � 256, �t D 5 � 10�7

(green); N´ �Nr D 3072� 328, �t D 3:625� 10�7 (red); N´ �Nr D

4096 � 400, �t D 2:5 � 10�7 (blue). The top figure is over the time

interval Œ0; 0:021�, while the bottom figure is a closeup view over the

time interval Œ0:02; 0:021�. � D 0:001.

solution forms two large focusing centers that approach each other. Again these

two focusing centers are strongly squeezed and form a thin layer parallel to the

r-axis. We will show contour plots for u1 very close to the predicted blowup
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FIGURE 6.14. Convergence study for u1 at r D 0 and t D 0:02 and

t D 0:021 for the viscous model with different resolutions. The top

figure is the comparison between N´ � Nr D 2048 � 256 (blue) and

N´ � Nr D 4096 � 400 (red). The bottom figure is the comparison

betweenN´�Nr D 3072�328 (red) andN´�Nr D 4096�400 (blue).

� D 0:001.

time. In Figure 6.15, we plot the contours of u1 and . 1/´ at t D 0:022. The

solution already develops a nearly singular behavior at this time. This becomes

more evident by the time t D 0:0223; see Figure 6.16. This suggests that the

solution may eventually develop a finite time singularity.
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FIGURE 6.15. Contour plots of u1 (top figure) and contours of . 1/´
for the inviscid model at t D 0:022 (bottom figure) computed by the

adaptive mesh (N´ D 4096, Nr D 400), � D 0.

Next, we present further numerical evidence that seems to support the formation

of a finite time singularity. We apply the same form fit procedure described earlier

for the viscous model to the solution of the inviscid model. Our numerical study

indicates that the singularity scaling of the inviscid model is slightly different from

that of the viscous model. In particular, there seems to be a logarithmic correction
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FIGURE 6.16. The contours of u1 at t D 0:0223 (top figure) and its

closeup view (bottom figure) for the inviscid model computed by the

adaptive mesh (N´ D 4096, Nr D 400), � D 0.

in the potential blowup rate of ku1k1. We look for a finite time singularity of

the form

(6.14) ku1k1 �
C

.T � t /˛.log.1=.T � t ///ˇ
:

In Figure 6.17, we present numerical evidence which seems to imply that the

solution of the inviscid model may develop a potential finite time singularity. With
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h´ T C

1=4096 0.02241 19.50302

1=8192 0.022404 19.46807

1=16384 0.02240 19.41995

Extrapolation to h´ D 0 0.022395 19.351399

TABLE 6.2. Resolution study of parameters T and C in the asymptotic

fit for the inviscid model

ku1k
�1
1 �

.T � t /.log.1=.T � t ///1=2

C

using different resolutions h´ D 1=.2N´/, � D 0. The resolutions we

use in our adaptive computations are N´ D 2048, 4096, and 8192. The

corresponding time steps are�t D 5�10�7, 2:5�10�7, and 1:25�10�7,

respectively. The last row is obtained by extrapolating the second-order

polynomial that interpolates the three data points.

resolutionN´�Nr D 4096�400 and�t D 2:5�10�7, we find that the predicted

singularity time is at T D 0:022404, and the singularity exponent is ˛ D 1 with

a logarithmic correction (ˇ D 1
2

). The agreement between the computed solution

and the form fit solutionC=..T�t /.log.1=.T�t ///1=2/ is almost indistinguishable

in the final stage of the computation. We remark that the asymptotic blowup rate

C=..T�t /.log.1=.T�t ///1=2/ is consistent with the nonblowup criterion of Beale-

Kato-Majda type; see Section 7.

To provide further evidence of a potential finite time singularity, we use a se-

quence of resolutions to study the limiting behavior of the computed solution as we

refine our resolutions. The space resolutions we use are N´ � Nr D 2048 � 256,

4096 � 400, and 8192 � 800. The corresponding time steps are �t D 5 � 10�7,

2:5 � 10�7, and 1:25 � 10�7, respectively. We obtain an optimal least squares

singularity fit of the form ku1k1 � C=..T � t /.log.1=.T � t ///1=2/ for each

resolution. The results are summarized in Table 6.2. Based on the fitted parame-

ters T and C from these three resolutions, we construct a second-order polynomial

that interpolates T and C through these three data points. We then use the poly-

nomial to extrapolate the values of T and C to the infinite resolution limit. The

extrapolated values at h´ D 0 are T D 0:022395 and C D 19:351399.

In Figure 6.18, we plot the inverse of ku1k1 as a function of time using three

different resolutions. We can see that as we refine the resolution, the computed

solution converges to the extrapolated singularity limiting profile. This seems to

support that the solution of the inviscid model may develop a potential finite time

singularity.

Resolution Study

Now we perform a careful resolution study for our computations. We first study

the convergence between the resolution N´ �Nr D 2048� 256 and the resolution
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FIGURE 6.17. Top plot: The inverse of ku1k1 (blue) versus the singu-

larity form fit (red) for the inviscid model. Bottom plot: ku1k1 (blue)

versus the singularity form fit (red). The singularity form fit is of the

form

ku1k1 �
C

.T � t /.log.1=.T � t ///1=2

with T D 0:022404 and C D 19:46807. The solution is computed by

the adaptive mesh withN´ D 4096,Nr D 400,�t D 2:5�10�7, � D 0.
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FIGURE 6.18. The inverse of ku1k1 in time for the inviscid model. The

solution is computed by adaptive mesh withN´ D 2048, 4096, and 8192

(ordering from top to bottom in the figure), �t D 5� 10�7, 2:5� 10�7,

and 1:25 � 10�7, respectively. The last curve is the singularity fit by

extrapolating the computational results to infinite resolution N´ D 1.

The fitted curve is of the form

ku1k
�1
1 �

.T � t /.log.1=.T � t ///1=2

C
;

with T D 0:0223953 and C D 19:351399, � D 0.

N´ � Nr D 4096 � 400. In Figure 6.19 (top plot), we show the maximum of u1
in time up to t D 0:0223. We find that the agreement is quite good. However, the

N´ � Nr D 2048 � 256 resolution seems to underresolve the solution toward the

end of the computation. To make sure that N´ �Nr D 4096 � 400 is sufficient to

resolve the nearly singular solution behavior, we perform our largest computation

usingN´�Nr D 8192�800. To save computational time, we start this computation

at t D 0:02 using the numerical solution computed byN´�Nr D 4096�400 as the

initial data. We realize that restarting the computation with N´ D 8192 using the

solution at t D 0:02 obtained with N´ D 4096 is less accurate than if it had started

at t D 0. On the other hand, due to our current limited computational resources,

it would take more than two and a half months to complete the computation with

N´ D 8192 that is started at t D 0. In Figure 6.19 (bottom plot), we compare

ku1k1 computed by N´ � Nr D 4096 � 400 with that computed by N´ � Nr D

8192�800. We can see that there is almost no difference between the two solutions.

We also compare the solution of u1 at r D 0 using the two largest resolutions in

Figure 6.20 (bottom plot). We plot the solutions obtained by the two resolutions
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FIGURE 6.19. Convergence study for ku1k1 for the inviscid model

with two resolutions up to t D 0:0223. The top figure is a conver-

gence study of ku1k1 between the resolution N´ D 2048, Nr D 256,

�t D 5 � 10�7 (blue) and the resolution N´ D 4096, Nr D 400,

�t D 2:5 � 10�7 (red). The bottom figure is a convergence study of

ku1k1 between the resolutionN´ D 4096,Nr D 400,�t D 2:5�10�7

(blue) and the resolution N´ D 8192, Nr D 800, �t D 1:25 � 10�7

(red). � D 0.
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on top of each other at t D 0:0223. The agreement between the two solutions is

excellent.

We remark that the numerical evidence for singularity formation of the inviscid

model is not yet conclusive. In a subsequent paper, we will use a fully adaptive

computational method on a parallel cluster to perform well-resolved computations

with resolutions that are substantially higher than what we have used in this paper.

This is necessary to determine whether the solution will indeed develop a finite

time singularity.

Local Scaling Property of the Potential Singularity

In this subsection, we further examine the nature of the potential singularity.

Our preliminary numerical study seems to suggest that the potential singularity is

locally self-similar and isotropic. In order to study the local scaling property of the

potential singularity, we look for a dynamically rescaled profile U.�; �; t/ near the

region of a potential singularity point such that

(6.15) u1.´; r; t/ D
C

.T � t /
U

�
´ � ´0.t/

.T � t /ˇ
;

r

.T � t /ˇ
; t

�
as t ! T;

where T and C are the values in our singularity form fit

ku1k
�1
1 �

.T � t / .log.1=.T � t ///1=2

C
;

ˇ is a parameter to be determined, and ´0.t/ is the location in which ju1j achieves

its global maximum at t .

We investigate this local self-similarity property of the solution of the inviscid

model in Figure 6.21. We use the computed solution at t D 0:022 and 0:0223 with

N´ �Nr D 8192 � 800 (�t D 1:25 � 10�7) to determine the exponent ˇ. In this

case, we have T D 0:02240 and C D 19:41995 from Table 6.2. A least squares

fit gives ˇ D 3
4

. In Figure 6.21 (top plot), we show U as a function of � along the

symmetry axis � D 0. In the same figure (bottom plot), we show U as a function of

� along the cross section � D 0. As we can see, the dynamically rescaled profile U

as a function of the rescaled variables � and � seems to converge to a well-defined

profile.

We also plot the growth rate of k 1k1 in Figure 6.22. In the top figure, we plot

the inverse of k 1k1 as a function of time. We find that the computed solution

agrees well with the fitted decay rate, .T �t /1=4=.C log.1=.T �t ///. In the bottom

plot, we compare k 1k1 with the asymptotic fit and observe a good agreement.

The preliminary results we presented above seem to suggest the following local

scaling property of u1, !1, and  1 near the region of the potential singularity:

(6.16)

u1.´; r; t/ D
U.�; �; t/

.T � t /
; !1.´; r; t/ D

W.�; �; t/

.T � t /7=4
;

 1.´; r; t/ D
‰.�; �; t/

.T � t /1=4
;
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FIGURE 6.20. Convergence study of u1 at r D 0 for the inviscid model

with different resolutions. The top figure is the comparison of u1 at

t D 0:022 obtained by the resolution N´ D 2048, Nr D 256 (blue) and

the resolution N´ D 4096, Nr D 400 (red), respectively. The bottom

figure is the comparison of u1 at t D 0:0223 obtained by the resolution

N´ D 4096, Nr D 400 (blue) and the resolution N´ D 8192, Nr D 800

(red), respectively. � D 0.
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FIGURE 6.21. Rescaled profile for u1 for the inviscid model at t D

0:022 and 0:0223, respectively. The dynamically rescaled profile

U.�; �; t/ is defined through the relation

u1.´; r; t/ D U.�; �; t/
C

.T � t /.log.1=.T � t ///1=2
;

where � D ´ � ´0.t/=.T � t /3=4, � D r=.T � t /3=4, and ´0.t/ is the

location where ju1j achieves its global maximum. Here T and C are the

values in the singularity form fit given in Table 6.2 (h´ D 1=16;384). The

top figure shows U along the symmetry axis � D 0, and the bottom fig-

ure shows U along the cross section � D 0. Adaptive mesh N´ D 8192,

Nr D 800, �t D 1:25 � 10�7, � D 0.
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FIGURE 6.22. Top plot: The inverse of k 1k1 (blue) versus the as-

ymptotic fit (red) for the inviscid model (� D 0). Bottom plot: k 1k1

(blue) versus the asymptotic fit (red). The asymptotic fit is of the form

k 1k1 �
C log.1=.T � t //

.T � t /1=4

with T D 0:022404 and C D 0:9221. The solution is computed by

adaptive mesh with N´ D 4096, Nr D 400, �t D 2:5 � 10�7.
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where

� D
´ � ´0

.T � t /3=4
; � D

r

.T � t /3=4
;

and ´0 is the limiting value of ´0.t/ as t ! T . If we express the solution in terms

of the velocity field .u� ; ur ; u´/ defined in (3.2)–(3.3), we have

(6.17) ur D
U r.�; �; t/

.T � t /1=4
; u� D

U � .�; �; t/

.T � t /1=4
; u´ D

U ´.�; �; t/

.T � t /1=4
;

where

� D
´ � ´0

.T � t /3=4
; � D

r

.T � t /3=4
;

U r D ��.‰/� , U
� D �U , and U ´ D .�2‰/�=�. The scaling property presented

in (6.17) is consistent with the asymptotically self-similar scaling of the incom-

pressible three-dimensional Euler equations.

We have also studied the local scaling property of the solution of the viscous

model. Our preliminary study shows that the solution of the viscous model seems

to have a locally self-similar profile under some appropriate rescaling. However,

in order to determine the precise scaling exponent of the solution, we need to accu-

rately capture the effect of the viscous term. For this purpose, we need to perform

computation with a much higher resolution and solve the viscous model much

closer to the potential singularity time. This is beyond the scope of the current

paper and will be the subject of a future study.

6.5 Mechanism for a Finite Time Blowup

To understand the mechanism for the potential blowup of the viscous model, we

plot the solution u1 on top of . 1/´ along the symmetry axis r D 0 at t D 0:021

in Figure 6.23. We see that there is a significant overlap between the support of

the maximum of u1 and that of the maximum of . 1/´. Moreover, the solution

u1 has a strong alignment with . 1/´ near the region of the maximum of u1. The

local alignment between u1 and . 1/´ induces a strong nonlinearity on the right-

hand side of the u1 equation, which has the form . 1/´u1. This strong alignment

between u1 and . 1/´ is the main mechanism for the potential finite time blowup

of the three-dimensional model. Similar alignment between u1 and . 1/´ near the

region of maximum u1 is observed for the inviscid model; see Figure 6.24.

As we see in the next subsection, the inclusion of the convection term forces

the two focusing centers to travel toward each other. Moreover, the local alignment

between u1 and . 1/´ is destroyed. As a result, the solution becomes defocused

and smoother along the symmetry axis.

6.6 Stabilizing Effect of the Convection Term

In this subsection, we will show that by adding back the convection term to

the three-dimensional model, which recovers the original Navier-Stokes equations,

the solution behaves completely differently. The mechanism for generating the
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FIGURE 6.23. u1 (blue) versus . 1/´ (red) of the viscous model along

the symmetry axis r D 0. The top figure corresponds to t D 0:02. The

bottom figure corresponds to t D 0:021. Adaptive mesh computation

with N´ D 4096, Nr D 400, �t D 2:5 � 10�7, � D 0:001.

potential finite time singularity for the three-dimensional model is destroyed. Even

if we start with the nearly singular solution obtained by the viscous model at t D

0:02 and use it as the initial condition for the full Navier-Stokes equations, we

observe that the maximum of u1 soon decreases in time; see Figure 6.25. It is easy

to see that the three-dimensional axisymmetric Navier-Stokes equations with swirl
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FIGURE 6.24. u1 (blue) versus . 1/´ (red) of the three-dimensional in-

viscid model along the symmetry axis r D 0. The top figure corresponds

to t D 0:022, and the bottom figure corresponds to t D 0:0223. Adap-

tive mesh computation with N´ D 4096, Nr D 400, �t D 2:5 � 10�7,

� D 0.

cannot develop a finite time singularity if u1 is bounded. Thus the fact that ku1k1

is decreasing in time is a clear indication that the solution does not develop a finite

time singularity, at least over the time interval we consider here.
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FIGURE 6.25. ku1k1 in time, the full Navier-Stokes computation using

the solution of the three-dimensional viscous model at t D 0:02 as the

initial condition. Adaptive mesh computation with N´ D 2048, Nr D

1024, � D 0:001.

We also observe that the local alignment between u1 and . 1/´ near the region

of maximum u1 is destroyed by including the convection term (see Figure 6.26), as

is the focusing mechanism. The solution becomes defocused (see Figure 6.27). As

time evolves, the two focusing centers approach each other. This process creates

a strong internal layer orthogonal to the ´-axis and forms a jet that moves away

from the symmetry axis (´-axis). The jet further generates some interesting vortex

structures. This is illustrated in Figure 6.28. Since the solution of the full Navier-

Stokes equations moves away from the symmetry axis, we use a higher-resolution

adaptive mesh along the r-direction with Nr D 1024 to better resolve the layered

structure along the r-axis.

By the Caffarelli-Kohn-Nirenberg theory, the singularity of the three-dimen-

sional axisymmetric Navier-Stokes equations, if there is any, must be along the

symmetry axis. The fact that the most singular part of the solution moves away

from the symmetry axis indicates that the full Navier-Stokes equations will not

form a finite time singularity, at least not for the initial condition we consider here

over the time interval for which we compute the solution. On the other hand, the

solution of the three-dimensional model with the same initial condition seems to

develop a potential finite time singularity in an earlier time. This confirms that

convection plays an essential role in depleting the destabilizing effect induced by

vortex stretching.
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FIGURE 6.26. u1 (blue) versus . 1/´ (red) along the symmetry axis

r D 0. The top figure corresponds to t D 0:02 (the solution from the

three-dimensional viscous model), and the bottom figure corresponds to

t D 0:021 obtained by solving the full Navier-Stokes equations. Adap-

tive mesh computation with N´ D 2048, Nr D 1024, � D 0:001.

7 A Nonblowup Criterion of Beale-Kato-Majda Type

In this section, we prove a nonblowup criterion of the three-dimensional model

equations (3.1) that is an analogue of the Beale-Kato-Majda (BKM) result for the

three-dimensional Euler and Navier-Stokes equations. For the three-dimensional
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FIGURE 6.27. Top plot: The contour of u1 at t D 0:02 obtained from

the three-dimensional viscous model that serves as the initial condition

for the full Navier-Stokes equations. Bottom plot: The contour of u1 at

t D 0:021 obtained by solving the full Navier-Stokes equations. Adap-

tive mesh computation with N´ D 2048, Nr D 1024, � D 0:001.

Euler and Navier-Stokes equations, the BKM nonblowup criterion states that the

solution u blows up at time T < 1 if and only if the accumulation of vorticityR T
0 krx � ukL1.R3/dt is infinite [1]. The BKM nonblowup criterion was later

improved by Kozono and Taniuchi [22], who proved that the L1 norm can be
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FIGURE 6.28. The contours of u1 at t D 0:022 (top plot) and t D

0:0235 (bottom plot) by solving the full Navier-Stokes equations. Adap-

tive mesh computation with N´ D 2048, Nr D 1024, � D 0:001.

replaced by the norm in the BMO space. This generalization is interesting because

some crucial Sobolev embedding theorems can be applied to the BMO space, but

not to the L1 space. A nonblowup result formulated in terms of the BMO space

has a broader range of applications.

THEOREM 7.1 Let .u1; !1;  1/ be a solution of the three-dimensional model equa-

tions (3.1) that is regular for 0 � t < T ; that is, for all t 2 Œ0; T /, .u1;ry 1/ 2
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H 3.R5/. Assume that

(7.1)

Z T

0

krx � ukBMO.R3/ dt < 1I

then .u1; !1;  1/ can be uniquely extended up to a time T C ı for some ı > 0 as

a smooth solution of the three-dimensional model equations.

To prove the above theorem, we need the following lemma, which was proved

by Kozono and Taniuchi in [22]:

LEMMA 7.2 Suppose that u 2 H s.R3/ for some s > 5
2

and

rx � u D 0; rx � u D !:

Then we have

krxukL1.R3/ � C
�
1C k!kBMO.R3/ ln.1C kukH s.R3//

�
:

We also need the following well-known lemma [26]:

LEMMA 7.3 Suppose that f; g 2 H s.R5/ \ L1.R5/ for some s � 0. Then we

have

krsy.fg/kL2.R5/ � C
�
krsyf kL2.R5/ kgkL1.R5/ C krsygkL2.R5/ kf kL1.R5/

�
:

PROOF OF THEOREM 7.1: We only present the proof for the inviscid case. The

proof of the viscous case follows similarly.

Applying the differential operator r3y to the first and second equations in (3.1)

and then taking the L2 inner product of the resulting equations with r3yu1 and

r3y 1, we have

(7.2)

1

2

d

dt

�
kr3yu1k

2
L2.R5/

C kr4y 1k
2
L2.R5/

�
D

Z
R5

�
2r3y .@´ 1u1/r

3
yu1 C r3y 1r

3
y@´.u

2
1/

�
dy

D

Z
R5

�
2r3y .@´ 1u1/r

3
yu1 � r3y@´ 1r

3
y .u

2
1/

�
dy:

Using Lemma 7.3, we have

(7.3)
1

2

d

dt

�
kr3yu1k

2
L2.R5/

C kr4y 1k
2
L2.R5/

�
�

C
�
ku1kL1.R5/ C k@´ 1kL1.R5/

��
ku1k

2
H3.R5/

C kry 1k
2
H3.R5/

�
:
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By (3.17), it is easy to see that

jrxuj2 D

�
j@ru

� j2 C j@´u
� j2 C

ˇ̌̌
ˇu�r

ˇ̌̌
ˇ
2�

C

�
@2r 

� C @r

�
 �

r

��2

C j@2´ 
� j2 C j@2r´ 

� j2 C

�
@´

�
 �

r

��2

C

�
@´

�
 �

r

�
C @2r´ 

�

�2

� .ju1j
2 C j@´ 1j

2/ �
1

2
.ju1j C j@´ 1j/

2:

(7.4)

Combining the energy identity (3.9) with (7.3)–(7.4), we arrive at

(7.5)
d

dt

�
ku1k

2
H3.R5/

C kry 1k
2
H3.R5/

�
�

CkrxukL1.R3/

�
ku1k

2
H3.R5/

C kry 1k
2
H3.R5/

�
:

Invoking Lemma 7.2, we can rewrite (7.4) as

(7.6)
d

dt
ln

�
1C ku1kH3.R5/ C kry 1kH3.R5/

�
�

C
�
1C krx � ukBMO.R3/ ln

�
1C kukH3.R3/

��
:

Our next step is to prove that

(7.7) kukH3.R3/ � C
�
ku1kH3.R5/ C kry 1kH3.R5/

�
:

By (3.12) in Proposition (3.3), it suffices to prove that

(7.8) k�xrxukL2.R3/ � C
�
ku1kH3.R5/ C kry 1kH3.R5/

�
:

In fact, noting that er D .cos �; sin �/T; e� D .� sin �; cos �/T, one has

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

@2
�
.er ˝ er/ D �2er ˝ er C 2e� ˝ e� ;

@2
�
.er ˝ e� / D �2er ˝ e� � 2e� ˝ er ;

@2
�
.e� ˝ er/ D �2er ˝ e� � 2e� ˝ er ;

@2
�
.e� ˝ e� / D 2er ˝ er � 2e� ˝ e� ;

@2
�
.er ˝ e3/ D �er ˝ e3;

@2
�
.e� ˝ e3/ D �e� ˝ e3:
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It follows from (3.16) that

�xrxu D

�
@2r C

1

r
@r C

1

r2
@2� C @2´

�
rxu

D

�
�x.@ru

r/ �
2

r2
@ru

r C
2ur

r3

�
er ˝ er

C

�
�x.@ru

� / �
2

r2
@ru

� C
2u�

r3

�
er ˝ e�

�

�
�x

�
u�

r

�
C
2

r2
@ru

� �
2u�

r3

�
e� ˝ er

C

�
�x

�
ur

r

�
C
2

r2
@ru

r �
2ur

r3

�
e� ˝ e�

C

�
�x.@ru

´/ �
1

r2
@ru

´

�
er ˝ e´

C

�
�x.@´u

r/ �
1

r2
@´u

r

�
e´ ˝ er

C

�
�x.@´u

� / �
1

r2
@´u

�

�
e´ ˝ e� C�x.@´u

´/e´ ˝ e´:

(7.9)

Consequently, we have

k�xrxuk2
L2.R3/

D

Z 1

�1

Z 1

0

j�xrxuj2 r dr d´

D

� Z 1

�1

Z 1

0

�ˇ̌̌
ˇ�x.@´u� / �

1

r2
@´u

�

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x.@ru� / �

2

r2
@ru

� C
2u�

r3

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x

�
u�

r

�
C
2

r2
@ru

� �
2u�

r3

ˇ̌̌
ˇ
2�
r dr d´

�

C

� Z 1

�1

Z 1

0

�ˇ̌̌
ˇ�x

�
ur

r

�
C
2

r2
@ru

r �
2ur

r3

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x.@ru´/ �

1

r2
@ru

´

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x.@´ur/ �

1

r2
@´u

r

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x.@rur/ �

2

r2
@ru

r C
2ur

r3

ˇ̌̌
ˇ
2

C j�x.@´u
´/j2

�
r dr d´

�
D I C II:

(7.10)
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First of all, we have

(7.11)

Z 1

�1

Z 1

0

ˇ̌̌
ˇ�x.@´u� / �

1

r2
@´u

�

ˇ̌̌
ˇ
2

r dr d´ DZ 1

�1

Z 1

0

j@´�yu1j
2 r3 dr d´:

On the other hand, direct calculations show thatZ 1

�1

Z 1

0

�ˇ̌̌
ˇ�x.@ru� / �

2

r2
@ru

� C
2u�

r3

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x

�
u�

r

�
C
2

r2
@ru

� �
2u�

r3

ˇ̌̌
ˇ
2�
r dr d´

D

Z 1

�1

Z 1

0

.jr@r�yu1 C�yu1j
2 C j�yu1j

2/r dr d´

� 2

Z 1

�1

Z 1

0

j@r�yu1j
2 r3 dr d´C 3

Z 1

�1

Z 1

0

ˇ̌̌
ˇ�yu1r

ˇ̌̌
ˇ
2

r3 dr d´

� C

Z 1

�1

Z 1

0

j@r�yu1j
2 r3 dr d´;

(7.12)

where we have used the following Hardy’s inequality:

(7.13)





wr





L2.R5/

� kwrkL2.R5/; w 2 H 1.R5/;

which can be verified directly by performing integration by parts in the r-direction.

Consequently, we have

(7.14) I � Ckry�yu1k
2
L2.R5/

:

Similarly, as in (7.10), one has

(7.15)

Z 1

�1

Z 1

0

ˇ̌̌
ˇ�x.@´ur/ �

1

r2
@´u

r

ˇ̌̌
ˇ
2

r dr d´ DZ 1

�1

Z 1

0

j@´�y@´ 1j
2 r3 dr d´:

Moreover, it is easy to see thatˇ̌̌
ˇ�x.@ru´/ �

1

r2
@ru

´

ˇ̌̌
ˇ
2

D r2
ˇ̌̌
ˇ
�
@2r C

3

r
@r

�
�y 1

ˇ̌̌
ˇ
2

� r2j�2y 1j
2 C r2j@2´�y 1j

2:

(7.16)
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Finally, we computeˇ̌̌
ˇ�x

�
ur

r

�
C
2

r2
@ru

r �
2ur

r3

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x.@rur/ �

2

r2
@ru

r C
2ur

r3

ˇ̌̌
ˇ
2

C j�x.@´u
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D
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ˇ�x

�
ur

r

�
C
2

r2
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r �
2ur

r3

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ�x.@rur/ �

2

r2
@ru

r C
2ur

r3

ˇ̌̌
ˇ
2

C

ˇ̌̌
ˇ
�
�x.@ru

r/ �
2

r2
@ru

r C
2ur

r3

�

C

�
�x

�
ur

r

�
C
2

r2
@ru

r �
2ur

r3

�ˇ̌̌
ˇ
2

� 3

ˇ̌̌
ˇ�x

�
ur

r

�
C
2

r2
@ru

r �
2ur

r3

ˇ̌̌
ˇ
2

C 3

ˇ̌̌
ˇ�x.@rur/ �

2

r2
@ru

r C
2ur

r3

ˇ̌̌
ˇ
2

D 3j�y@´ 1j
2 C 3jr@r�y@´ 1 C�y@´ 1j

2

� 9j�y@´ 1j
2 C 6r2j@r�y@´ 1j

2:

(7.17)

Thus we have

(7.18) II � Ckry 1k
2
H3.R5/

:

Combining (7.14) with (7.18), we prove (7.7). The theorem now follows directly

from (7.6) and (7.7). �

8 A Nonblowup Criterion of Prodi-Serrin Type

There are many results on the global regularity of the solutions of the three-

dimensional Navier-Stokes equations under some additional conditions imposed

on the solution. In particular, the papers of Prodi [29] and Serrin [31] give the fol-

lowing Prodi-Serrin’s nonblowup criterion for the solution of the three-dimensional

Navier-Stokes equations:

Any Leray-Hopf solution u to the three-dimensional Navier-Stokes

equations (2.1) on Œ0; T � is smooth on Œ0; T � if kukLq
t L

p
x .Œ0;T ��R3/

< 1 for some p; q satisfying 3
p

C 2
q

� 1, 3 < p � 1.
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A local version was later established by Serrin [30] for 3
p

C 2
q
< 1 and by Struwe

[32] for 3
p

C 2
q

D 1. The highly nontrivial endpoint case of p D 3 was recently

established by Iskauriaza, Serëgin, and Shverak [13].

To demonstrate the similarity between the three-dimensional model equations

(3.1) and the axisymmetric Navier-Stokes equations (2.3)–(2.4), we will prove a

nonblowup criterion of the Prodi-Serrin type for our model. Here we focus only on

the whole space case with 3 < p � 1.

THEOREM 8.1 Assume that .u1; !1;  1/ is a weak solution to the three-dimen-

sional model equations (3.1) on Œ0; T �. Then .u1; !1;  1/ is smooth on Œ0; T �� R
3

if u� satisfies the condition

(8.1) ku�kLq
t L

p
x .Œ0;T ��R3/ < 1

for some p; q satisfying 3
p

C 2
q

� 1, 3 < p � 1.

PROOF: In the case of p D 1, by Hardy’s inequality (7.13) and the Calderon-

Zygmund theorem, we have

1

2

d

dt

Z
R5

.jryu1j
2 C j!1j

2/dy C

Z
R5

.j�yu1j
2 C jry!1j

2/dy

D �

Z
R5

.2@´ 1u1�yu1 C u21@´!1/dy

� ku�kL1

�
k�yu1kL2.R5/ C kry!1kL2.R5/

�

�

�



@´ 1r





L2.R5/

C





u1r





L2.R5/

�

� Cku�kL1

�
k�yu1kL2.R5/ C kry!1kL2.R5/

�

�
�
k�y 1kL2.R5/ C kryu1kL2.R5/

�

� Cku�k2L1

�
k!1kL2.R5/ C kryu1kL2.R5/

�2

C
1

2

�
k�yu1kL2.R5/ C kry!1kL2.R5/

�2
;

(8.2)

which gives

(8.3) k!1.T /kL2.R5/ C kryu1.T /kL2.R5/ �

C
�
k�y 10kL2.R5/ C kryu10kL2.R5/

�
exp

	
C

Z T

0

ku� .s/k2L1 ds



:
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Similarly, in the case of 3 < p < 1, we have

1

2

d

dt

Z
R5

.jryu1j
2 C j!1j

2/dy C

Z
R5

.j�yu1j
2 C jry!1j

2/dy

�
�
k�yu1kL2.R5/ C kry!1kL2.R5/

�
�





 u�

r2=p






Lp.R5/

�



 @´ 1

r1�2=p






L

2p
p�2 .R5/

C





 u1

r1� 2
p






L

2p
p�2 .R5/

�

� Cku�kLp.R3/

�
k@´ 1k

L
2p

p�2 .R3/
C ku1k

L
2p

p�2 .R3/

�
�

�
k�yu1kL2.R5/ C kry!1kL2.R5/

�
:

(8.4)

Further, we note thatZ 1

�1

Z 1

0

ju1j
2p

p�2 r dr d´

�
p

p � 2

Z 1

�1

Z 1

0

ju1j
pC2
p�2 j@ru1jr

2 dr d´

�
p

p � 2

� Z 1

�1

Z 1

0

ju1j
2p

p�2 r dr d´

� pC2
2p

�

� Z 1

�1

Z 1

0

jr@ru1j
2p

p�2 r dr d´

� p�2
2p

;

which givesZ 1

�1

Z 1

0

ju1j
2p

p�2 r dr d´ � C

Z 1

�1

Z 1

0

jr@ru1j
2p

p�2 r dr d´:

Observe that 2 < 2p
p�2 < 6 if 3 < p < 1. Thus, by the standard interpolation

inequality and Hardy’s inequality (7.13), we have

� Z 1

�1

Z 1

0

jr@ru1j
2p

p�2 r dr d´

� p�2
2p

� Ckr@ru1k
1�3=p

L2.R3/
kr.r@ru1/k

3=p

L2.R3/

� Ckryu1k
1�3=p

L2.R5/

�
k�yu1k

3=p

L2.R5/
C





@ru1r





3=p

L2.R5/

�

� Ckryu1k
1�3=p

L2.R5/
k�yu1k

3=p

L2.R5/
:
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Therefore, we obtain

1

2

d

dt

Z
R5

.jryu1j
2 C j!1j

2/dy C

Z
R5

.j�yu1j
2 C jry!1j

2/dy

� Cku�kLp.R3/

�
k@´ry 1kL2.R3/ C kryu1kL2.R3/

� p�3
p

�
�
k�yu1kL2.R5/ C kry!1kL2.R5/

�1C 3
p

� Cku�k
2p

p�3

Lp.R3/

�
k@´ry 1kL2.R3/ C kryu1kL2.R3/

�2
C
1

2

�
k�yu1kL2.R5/ C kry!1kL2.R5/

�2
:

(8.5)

The theorem now follows from the Gronwall inequality and the assumption of the

theorem. �
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