
RESEARCH SUMMARY

ALEX GITTENS

1. Overview

Modern scientific computing demands efficient algorithms for dealing with large datasets. Often these
datasets can be fruitfully represented and manipulated as matrices; in this case, fast low-error methods for
making basic linear algebra computations are key to efficient algorithms. Examples of such foundational
computational tools are low-rank approximations, matrix sparsification, and randomized column subset
selection.

My research focuses on ways in which randomness can be turned to our advantage in the development
of methods for dealing with these massive datasets. The underlying intuition is that when dealing with an
excess of structured data (e.g., a large matrix which has low numerical rank), then one can toss away a large
portion of this data, thereby reducing the computational load, without introducing much additional error
into the computation. I am interested in the analysis of the performance of randomized algorithms based
upon this idea of information reduction, and the development of tools to facilitate this analysis.

2. Matrix sparsification

One approach to computing with large matrices is to use classical algorithms for dealing with sparse
matrices. These algorithms have the advantage that their complexity depends more on the sparsity of
the matrix (the number of nonzero entries) than the dimension of the matrix. For instance, the classical
dense SVD scales like O(n3) on a square n × n matrix while sparse SVD computations take O(ns + nk2),
where s = #nnz(A) is the sparsity of the matrix. Since one may be dealing with a dense matrix, one
should sparsify it before using these algorithms. This leads to the question: given a sparsity level s, find
arg minÂ:#nnz(Â)=s

∥∥A−Â
∥∥
2
. Unfortunately, this does not lead to a workable algorithm, so other approaches

to sparsification must be considered.
A related problem is that of quantization, or reducing the number of bits required to store the entries

in a matrix—rather than reducing the cost of computations, the aim of quantization is to reduce the cost
of storage and transmission of datasets. Random quantization schemes are attractive because they can be
designed to allow one to trade off accuracy of the approximation with the severity of the quantization.

In joint work with Joel Tropp [GTa], I consider random matrix approximation schemes that approximate
a fixed m×n matrix A with a random matrix X having the properties that the entries of X are independent
and average to the corresponding entries of A. This investigation was initiated by the observation that
several algorithms for random matrix quantization and sparsification are based on approximations that have
these properties [AM07, AM01, AHK06]. One of our goals in [GTa] was to establish a generic framework for
the analysis of such approximation schemes that would recapitulate the known guarantees for these particular
algorithms and provide a means of quickly deriving guarantees for any schemes respecting these conditions.

We show that the spectral norm approximation error can be controlled in terms of the variances and
fourth moments of the entries of X as follows:

(1) E
∥∥A−X

∥∥
2
≤ C

max
j

(∑
k

Var(Xjk)

)1/2

+ max
k

(∑
j

Var(Xjk)

)1/2

+

(∑
jk

E(Xjk − ajk)4
)1/4

 ,
where C is a universal constant. This expectation bound was obtained by leveraging work done by Lata la
on the spectral norm of random matrices with zero mean entries [Lat05]. The results hold without any
restrictions on the size of A. The constant C is inherited from Lata la; extracting a numerical estimate of C
from his proof would require considerable effort. We leave this for the future.
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When the entries of A are bounded (so that the variances of the entries of X are small), an argument based
on a bounded difference inequality shows that the approximation error does not exceed this expectation by
much: if |Xjk| ≤ D almost surely, then

(2) P
{∥∥A−X

∥∥
2
≥ (1 + δ)E

∥∥A−X
∥∥
2

}
≤ exp

(
−
δ2(E

∥∥A−X
∥∥
2
)2

D2

)
for any δ > 0. Equation (1) identifies properties desirable in randomized approximation schemes: namely
that they minimize the maximum column and row norms of the variances of the entries, as well as the fourth
moments of all entries. Thus we have guidance in the design of future approximation schemes. As I now
demonstrate, our bounds also yield sharper analyses of current quantization and sparsification schemes.

In the seminal work [AM07, AM01], Achlioptas and McSherry propose two approximation schemes. Their
first scheme approximates A with a 1-bit quantized random matrix X whose entries satisfy

Xjk =

{
−b with probability 1

2 +
ajk
2b

b with probability 1
2 −

ajk
2b

.

Here b is the largest modulus of the entries in A.
After some algebra, (1) and (2) give the guarantee∥∥A−X

∥∥
2
≤ 8Cb

√
n

for some universal constant C (the same as above) with a success rate of at least 1− exp(−C2n). This error
guarantee is on the same order as that given in the original analysis, but our sucess rate is much higher than
the estimate 1 − exp(−19(log n)4) given in [AM07, AM01], and we eliminate a technical restriction on the
size of A that was present in the original analysis.

The second scheme proposed in the same paper sparsifies A by zeroing entries with probabilities propor-
tional to their magnitudes and a base probability p ∈ (0, 1). Essentially, the smaller the entry, the more likely
it is to be sparsified, but if a small entry is not sparsified, then it is multiplied by a large constant; this ensures
that EXjk = ajk. Achlioptas and McSherry determine that, with probability at least 1− exp(−19(log n)4),
the matrix X satisfies ∥∥A−X

∥∥ < 4b
√
n/p

and that the expected number of nonzero entries in X is smaller than

(3) pmn×Avg[(ajk/b)
2] +m(8 log n)4.

We propose a variation of this scheme with the same type of error guarantee that holds with higher probabil-
ity, and has a tighter bound on the number of nonzero entries in X. The key idea is that, in addition to the
information that b provides on the absolute spread of the entries of the matrix, we should exploit information
on the relative spread of the entries of the matrix as measured by R = maxajk 6=0 b/|ajk|. Specifically, we take

Xjk ∼


ajk
pjk

Bern(pjk), where pjk =
pa2jk

pa2jk+b
2 , ajk 6= 0

0, ajk = 0.

Then the expected number of nonzeros in X is smaller than

pnm×Avg[(ajk/b)
2]

and ∥∥A−X
∥∥ ≤ 2C(2 +

√
R)b

√
n/p

with probability at least 1 − exp(−C2(2 +
√
R)2pn/16). Thus this scheme performs better than the one

proposed in [AM07, AM01] if the spread R is not too large and the base probability p is not too small.
Arora, Hazan, and Kale consider a scheme in [AHK06] that simultaneously quantizes and sparsifies A.

We are able to recover comparable error bounds using (1) and (2).
Our second goal in [GTa] was to analyze the performance of these randomized matrix approximation

schemes as measured using non-unitary invariant norms. The literature on randomized matrix approximation
has, with few exceptions, focused on the behavior of the spectral and Frobenius norms. However, depending
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on the application, other norms are of more interest; for instance, the p→ q norms naturally arise when one
considers A as a map from `p(Rn) to `q(Rm) :

‖A‖p→q = max
x : ‖x‖p=1

‖Ax‖q.

Consider, in particular, the ∞ → 1 and ∞ → 2 norms, both of which are NP-hard to compute. The
∞ → 1 norm has applications in graph theory and combinatorics. One oft-invoked connection involves
the maxcut problem, that of determining a cut of maximum cost in a graph. This problem is known to
be NP-Hard [Roh00]. In [AN04] the authors construct a matrix ΠG, a simple extension of the classical
edge-vertex incidence matrix, that has the property that the value of the maximum cut in G is given by
1/4 ‖ΠG‖∞→1. They use this observation, in connection with Grothendieck’s inequality, to provide an
approximation algorithm for the maxcut problem.

The ∞ → 2 norm has applications in numerical linear algebra. In particular, it is a useful tool in the
column subset selection problem: that of, given a matrix A with unit norm columns, choosing a large subset
of the columns of A so that the resulting submatrix has a norm smaller than some fixed constant (larger
than one). Kashin and Tzafriri established that for some constant C such a submatrix exists, but did not
offer a procedure for obtaining this submatrix. In [Tro09], Tropp introduces a randomized algorithm for
finding such a submatrix. A key point used in this algorithm is that the spectral norm of a matrix is no
greater than a small multiple of the ∞→ 2 norm of a sufficiently large submatrix.

In a similar way that sparsification can assist in applications where the spectral norm is relevant, we
believe it can be of assistance in applications such as these where the norm of interest is a p→ q norm. Our
main result is a bound on the expected ∞→ p norm of random matrices whose entries are independent and
have mean zero:

E
∥∥Z∥∥∞→p ≤ 2E

∥∥∥∑
k
εkzk

∥∥∥
p

+ 2 max
‖u‖q=1

E
∑

k

∣∣∣∑
j
εjZjkuj

∣∣∣ .
Here ε is a vector of i.i.d. uniformly random signs, zk is the kth column of Z, and q is the conjugate exponent
of p. This implies the following bounds on the ∞→ 1 and ∞→ 2 norms:

E ‖Z‖∞→1 ≤ 2E(‖Z‖col + ‖Z‖row)

E ‖Z‖∞→2 ≤ 2E
∥∥Z∥∥

F
+ 2 min

D
E
∥∥ZD−1

∥∥
2→∞,

where the minimization is taken over the set of positive diagonal matrices satisfying trace(D2) = 1. The
norm

∥∥A∥∥
2→∞ is the largest of the Euclidean norms of the rows of the matrix,

∥∥A∥∥
F

is the Frobenius norm,

and the column norm ‖A‖col is the sum of the Euclidean norms of the columns of the matrix. Likewise,
‖A‖row, the row norm of A, is the sum of the Euclidean norms of the rows of the matrix. As in the case of
the spectral norm, a bounded differences inequality guarantees us that if the entries of Z are bounded, then
the errors concentrate about these expectations. Thus we have bounds on quantities which are NP-hard to
compute, in terms of much simpler quantities.

Both these bounds are optimal in the sense that each term can be shown to be necessary: e.g., there
are classes of random matrices whose expected ∞→ 1 norms are not comparable to their expected column
norms but are comparable to their expected row norms, and vice versa. In the case of the ∞ → 1, there is
a matching lower bound that lends our bound an interesting interpretation. Littlewood established that, as
a consequence of Khintchine’s inequality, the relation

max{‖A‖col , ‖A‖row} ≤
√

2 ‖A‖∞→1

holds for any matrix A. A standard argument establishes an inequality in the opposite direction; thus for
n× n matrices we have the equivalence

2√
n
‖A‖∞→1 ≤ ‖A‖col + ‖A‖row ≤ 2

√
2 ‖A‖∞→1 .

Call this Littlewood’s equivalence. Note that there are A for which the leftmost inequality is an equality—for
instance, the matrix of all ones. Thus, in general, as n increases, the gap between ‖A‖∞→1 and ‖A‖col +
‖A‖row increases. Our result can be interpreted as a dimensionless Littlewood’s equivalence on the vector
space of random zero-mean matrices with independent entries:

1

2
E ‖Z‖∞→1 ≤ E ‖Z‖col + E ‖Z‖row ≤ 2

√
2E ‖Z‖∞→1 .
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3. Random matrix theory

Random matrices are employed in an increasing number of applications; to mention just a few: machine
learning [Ach04], robust convex optimization [So09b, Nem07], approximation algorithms for NP hard opti-
mization problems [Sar06, So09a, RFP10], and fast computational linear algebra [HMT11, BD09]. In each of
these areas, the feasibility and efficacy of randomized algorithms is determined by the spectra of the random
matrices used. In other cases, such as covariance estimation, we investigate random matrices in their own
right. I am interested in the development of simple but versatile tools for probing the properties of random
matrices.

3.1. Eigenvalue bounds. Classical asymptotic random matrix theory tools—e.g. the method of moments
and the Stieltjes transforms—can be used to obtain results which describe, for certain ensembles of random
matrices, the limit of the spectral distributions as the matrix size approaches infinity. Unfortunately, these
results address the convergence of the empirical spectral distributions and the extreme eigenvalues, not that
of the interior eigenvalues. Furthermore, the métier of these techniques is the determination of convergence,
rather than the development of tail bounds that hold at a fixed dimension. To develop such bounds, we turn
to the complementary field of nonasymptotic random matrix theory.

In addition to providing quantitative bounds on the extreme eigenvalues of random matrices of fixed
dimensions, the tools of nonasymptotic random matrix theory apply to a wider class of matrices than
those of asymptotic random matrix theory. Perhaps the most generally applicable tool in the arsenal of
nonasymptotic random matrix theory is the matrix Laplace transform technique pioneered by Ahlswede and
Winter, which applies to sums of independent random matrices [AW02, Tro].

However, the Laplace transform technique yields bounds on only the extremal eigenvalues. In [GTb],
Joel Tropp and I introduce a simple technique, based upon the variational characterization of the eigenval-
ues of self-adjoint matrices and the Laplace transform machinery, for bounding all eigenvalues of sums of
independent random self-adjoint matrices.

The Laplace transform technique allows one to develop matrix corollaries of the classical exponential
probability inequalities for sums of independent random variables. The scalar Laplace transform technique
uses Markov’s inequality, the monotonicity of the scalar exponential mapping, and the fact that the moment-
generating function of a sum of independent random variables is the product of the individual moment-
generating functions. In the matrix case, we still have Markov’s inequality and the monotonicity of the
scalar exponential mapping; the role of the moment generating function in the scalar case is played by the
trace exponential in the matrix case. This gives the basic bound

P {λmax (Y) ≥ t} ≤ infθ>0 e−θt · E tr exp
(
eθY

)
For sums of independent random matrices Y =

∑
i Xi, we do not retain the property that the moment

generating function is the product of the summands’ moment-generating functions. Ahlswede and Winter’s
seminal approach is to use the Golden-Thompson inequality iteratively to get a weaker form of this separation.
We follow instead the approach in [Tro], which uses the fact that, when H is a fixed self-adjoint matrix, the
function

A 7→ tr exp (H + log A)

is concave on the positive-definite cone to establish the relation

E tr exp
(∑

i
θXi

)
≤ tr exp

(∑
i
logEeθXi

)
.

When one has sufficiently strong semidefinite bounds on the matrix cumulant generating functions logEeθXi

of the summands, the Laplace transform technique yields exponential probability bounds on the extreme
eigenvalues of Y =

∑
i Xi.

The minimax Laplace transform we introduce in [GTb] takes advantage of the Courant–Fischer variational
characterization of eigenvalues of self-adjoint matrices. For integers d and n satisfying 1 ≤ d ≤ n, the complex
Stiefel manifold

Vd(Cn) = {V ∈ Cn×d : V∗V = I}
is the collection of orthonormal bases for the d-dimensional subspaces of Cn, or, equivalently, the collection
of all isometric embeddings of Cd into Cn. Let A be a self-adjoint matrix with dimension n. Then we have
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the representation

λk(A) = min
V∈Vn−k+1(Cn)

λmax (V∗AV) .

This allows us to relate the behavior of the k-th eigenvalue of a random self-adjoint matrix to the behavior
of its compressions to subspaces:

P {λk(Y) ≥ t} ≤ inf
θ>0

min
V∈Vn−k+1(Cn)

{
e−θt · E tr exp

(
eθV

∗YV
)}

We then exploit the fact that, for all V with orthonormal columns, the function

A 7→ tr exp (H + log(V∗AV))

is concave on the positive-definite cone to establish the relation

E tr exp
(∑

i
θV∗XiV

)
≤ tr exp

(∑
i
logEeθV

∗XiV
)
.

Thus, when one has sufficiently strong semidefinite bounds on the matrix cumulant generating functions
logEeθV

∗XiV of the compressions of the summands Xi, the minimax Laplace transform technique yields
exponential probability bounds for all the eigenvalues of Y =

∑
i Xi.

We employ the minimax Laplace transform to produce eigenvalue Chernoff, Bennett, and Bernstein
bounds. As an example of the efficacy of this technique, we use the Chernoff bounds to find new bounds on
the interior eigenvalues of matrices formed by sampling columns from matrices with orthonormal rows. We
also demonstrate that our Bernstein bounds are powerful enough to recover known estimates on the number
of samples needed to accurately estimate the eigenvalues of the covariance matrix of a Gaussian process by
the eigenvalues of the sample covariance matrix.

4. Low-rank approximation

It is a classical result that the spectral norm distance of any matrix A from the set of rank-k matrices is
exactly σk(A), and that a rank-k matrix Ak that achieves this error can be obtained from the truncated SVD
of A. Likewise the Frobenius norm distance of A from the set of rank-k matrices is exactly (

∑
i>k σi(A)2)1/2,

and Ak also achieves this error. Such low-rank approximations are ubiquitious in scientific computation,
but classical approaches involve using a truncated SVD, which can be expensive to compute and difficult to
parallelize. Modern randomized algorithms for low-rank approximation, such as those espoused in [HMT11,
NDT09, WLRT06], can achieve comparable errors to the classical approach with low failure rates, and are
often amenable to parallelization.

4.1. Subsampled orthogonal transformations for faster low-rank approximation. In [BG], along
with my collaborator Christos Boutsidis, I offer a new analysis of the Subsampled Randomized Hadamard
Transform (SRHT) approach to low-rank approximation. This is a specific instance of a class of low-rank
approximation algorithms based on random projections. The intuition behind these methods is essentially
the same as that behind the classical subspace iteration algorithms: if A ∈ Rm×n can be approximated
well by a rank-k matrix (i.e. if A has sufficient spectral decay) then one can capture the top k-dimensional
singular spaces of A by applying A to a collection of more than k random vectors. The corresponding low-
rank approximation is then just the projection of A onto the span of these vectors. The use of more than
k random vectors allows these projection methods to find good low-rank approximations without iteration;
as the oversampling increases, the probability that the approximation returned is at least as accurate as the
optimal rank-k approximation increases.

Let ` > k be a positive integer and let S ∈ Rn×` be a matrix whose columns are random vectors, then
projection methods approximate A with PASA, which has rank at most ` (The notation PM denotes the
projection onto the range of M). The selection of the distribution of S crucial: if the entries of S are i.i.d.
standard Gaussians, then the error decreases sharply as a function of ` − k. However, one can reduce the
cost of the algorithm by using random matrices whose structure allows for fast multiplication—specifically,
one can reduce the cost of forming the product AS from O(mn`) to O(mn log `). One choice of a structured
random matrix is the (transpose of the) subsampled randomized Hadamard transform (SRHT),

S =

√
n

`
·DHTRT .
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Here, D is a diagonal matrix whose entries are independent random uniformly distributed signs, H is a
normalized Walsh-Hadamard matrix (a particular kind of orthogonal matrix, each of whose entries has
modulus n−1/2), and R is a matrix that restricts an n-dimensional vector to a random size ` subset of
its coordinates. It is not necessary that H be a normalized Walsh-Hadamard matrix; other orthogonal
transforms whose entries are on the order of n−1/2 can be used as well, such as the discrete cosine transform
or the discrete Hartley transform.

The question of how much the approximation error increases when we switch from the Gaussian distri-
bution to the SRHT model has been studied by several authors [Tro11, NDT09, HMT11]. The previous
tightest result for the spectral norm is given in [HMT11], where it is shown that∥∥A−PASA

∥∥
2
≤

(
1 +

√
7n

`

)∥∥A−Ak

∥∥
2

with probability at least 1 − O(1/k) when ` is at least on the order of k log k. If A is close to full rank
and has no significant spectral decay, this result is perhaps optimal. But in the situations where low-rank
approximation makes sense—namely, when A is rank-deficient or has fast spectral decay—, this result does
not reflect the relevant spectral properties. In fact, this error is of the same order as one would get by
näıvely sampling the same number of columns from A and approximating A with its projection onto their
span [Git]. In [BG] we show that in fact∥∥A−PASA

∥∥
2
≤ O

(√
log(kn)

log(k2)

)∥∥A−Ak

∥∥
2

+ O

(√
1

log(k2)

)∥∥A−Ak

∥∥
F

with the same probability of failure for the same number of samples. The factor in front of the optimal error
has been reduced logarithmically at the cost of the introduction of a Frobenius term. This Frobenius term is
small when A is nicely low-rank approximable. In fact, there is reason to expect that this is the correct form
for the bound: an analogous Frobenius term arises naturally in the analysis of the Gaussian case in [HMT11]
as a consequence of a Gaussian large-deviations result. We also recover a slightly improved guarantee on the
Frobenius error, that ∥∥A−PASA

∥∥
F
≤ (1 + ε)

∥∥A−Ak

∥∥
F

with probability at least 1− δ when ` is on the order of k log(k/δ).
The key consideration in bounding the errors of SRHT approximation is the interaction of S with the

singular spaces of A. Let U1 be the matrix of (normalized) right singular vectors corresponding to the top
k-dimensional right singular subspace of A,U2 span the bottom (n− k)-dimensional right singular subspace
of A, and Σ2 be the corresponding diagonal matrix of n− k singular values. Several researchers have shown
deterministic results relating the approximation errors to the behavior of the matrix UT

1 S. Specifically, if S
has enough samples that this matrix has full row-rank, then∥∥A−PASA

∥∥2
ξ
≤
∥∥A−Ak

∥∥2
ξ

+
∥∥Σ2U

T
2 S(UT

1 S)†
∥∥2
ξ
,

where ξ = 2 or ξ = F and † denotes the pseuodinversion operation. The condition that UT
1 S have full

row-rank is quite natural: geometrically, it reflects the fact that AS can only capture the top k-dimensional
singular spaces of A if S has nonzero projections onto all the relevant right singular vectors of A. This is
analogous to the fact that subspace iteration can only succeed if the starting matrix has components in the
direction of the eigenspace we are trying to recover.

In the case of ξ = 2, previous analyses have proceeded by using submultiplicativity to estimate the second

term in this bound with
∥∥Σ2

∥∥2
2

∥∥UT
2 S
∥∥2
2

∥∥(UT
1 S)†

∥∥2
2
. This throws out all possibility of accounting for spectral

decay. We avoid this trap by bounding the second term with
∥∥Σ2U

T
2 S
∥∥2
ξ

∥∥(UT
1 S)†

∥∥2
2
. We then need to

answer the question of how the singular values of products MS behave, where M is a general rectangular
matrix.

In [Tro11], Tropp considers the same question, but in the special case where M has orthogonal rows.
There he shows that the maximum column norm of a matrix with orthonormal rows to which an SRHT
matrix has been applied is, with high probability, not much larger than the root-mean squared average of
the column norms of the original matrix. We extend this result to the case where M is a general matrix. A
bound on the spectral norm of MS then follows from a matrix Chernoff bound. This allows us to obtain
our stated result on the spectral norm error of SRHT low-rank approximation.
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4.2. Positivity-preserving low-rank approximations of positive matrices. The randomized projec-
tion method just described does not preserve positivity, so in the case where A is positive and one desires
to approximate it with a positive low-rank matrix, another approach must be adopted. In [Git], I consider
the simple Nyström extension, which approximates A in terms of linear combinations of a small subset of
its columns and rows. Nyström extensions are popular in machine learning, where they are often used to
simplify computations with large dense PSD matrices [FBCM04, WDT+09, BF].

A simple Nyström extension of A is formed by sampling uniformly at random (with or without replace-
ment) ` columns of A to form a matrix C. Let W denote the `×` ‘coupling’ matrix formed by the intersection
of the columns in C and the corresponding rows in A. The matrix CW†CT is then a simple Nyström exten-
sion of A. Since W† is a principal submatrix of A, it is PSD, so the Nyström extension is also PSD. Because
of the pseudoinversion operation, the cost of forming a simple Nyström extension is O(n`2 + `3).

As in the case of projection-based low-rank approximations, the goal in forming a Nyström extension is to
achieve (spectral and Frobenius) errors comparable to the errors of the optimal rank-k approximation while
using as few column samples ` as possible. There are no available relative-error Frobenius norm bounds. [Git]
provides the first relative-error spectral norm bound (the preprint [CD] released at the same time as [Git]
contains a similar relative-error bound).

Since it is based on uniform column-sampling, the simple Nyström extension performs best when the
information in the top k-dimensional eigenspace is distributed evenly throughout the columns of A. One
way to quantify this idea uses the concept of coherence, taken from the matrix completion literature [CR09].
Let S be a k-dimensional subspace of Rn. The coherence of S is

µ(S) =
n

k
maxi(PS)ii.

The coherence of the dominant k-dimensional eigenspace of A is a measure of how much comparative
influence the individual columns of A have on this subspace: if µ is small, then all columns have essentially
the same influence; if µ is large, then it is possible that there is a single column in A which alone determines
one of the top k eigenvectors of A. We mention that if A is rank-k, then the quantities (PS)ii are known to
statisticians as the leverage scores of the columns of A [DM10].

Talwalkar and Rostamizadeh were the first to use coherence in the analysis of Nyström extensions. Let
A be exactly rank-k and µ denote the coherence of its top k-dimensional eigenspace. In [TR10], they show
that if one samples on the order of µk log(k/δ) columns to form a simple Nyström extension, then with
probability at least 1− δ ∥∥A−CW†Ct

∥∥
2

= 0.

That is, one achieves exact recovery.
My first result can be viewed as a generalization of Talwalkar’s, as I show that for a general PSD matrix

A, if one samples the same number of columns, the error of the Nyström extension satisfies∥∥A−CW†Ct
∥∥
2
≤ λk+1(A)

(
1 +

2n

`

)
with probability at least 1 − δ. This result shows that not only is exact recovery achieved if A is exactly
rank-k, but also that the approximation error is small if λk+1(A) is small. The effect of spectral decay can
also be taken into account: I also show that∥∥A−CW†Ct

∥∥
2
≤ λk+1(A) +

2

δ

∑
i>k

λi(A)

with probability at least 1 − 2δ when the same number of samples are taken. These two results show that
the performance of the simple Nyström extension is dependent on the coherence of the top k-dimensional
eigenspace of matrix it is applied to: if this coherence is small, then the simple Nyström extension will
be effective with ` = O(k log k), if it is large, then the simple Nyström extension will not be effective.
Experiments bear out this prediction.

These bounds follow from a relation between the simple Nyström extension of A and the column subset
selection problem for A1/2. Let S be a random matrix distributed as the first ` columns of a permutation
matrix chosen uniformly at random. Then we can take C = AS in the definition of the simple Nyström
extension. I show that ∥∥A−CW†CT

∥∥
2

=
∥∥A1/2 −PA1/2SA1/2

∥∥2
2
.
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The quantity on the right hand side is related to the informativity of the columns selected by S : if they are
highly informative, then the projection of A1/2 onto A1/2S should be close to A1/2 and thus this quantity
should be close to the optimal rank-k approximation error λk(A). Note that this quantity is of the same
form considered in the last section. Thus we need to consider the behavior of the matrix UT

1 S, where the
columns of U1 are orthonormal and span the top k-dimensional eigenspace of A1/2. Specifically, how many
samples are required so that this matrix has full row-rank? A matrix Chernoff argument shows that the
correct number of samples is O(µk log k), and that with this many samples, the norm of the pseudo-inverse
of UT

1 S is less than n
` . This leads to my results.

5. Current and future projects

5.1. Nystrom approximation: other norms, and algorithms for larger scale problems. I am
currently working on a manuscript proving relative error bounds for the simple Nyström extension in the
Frobenius and trace norms. The Frobenius norm is of interest to the machine learning community. The
motivation for considering the trace norm is that it seems that no truly (1 + ε) approximations can be
obtained in the spectral or Frobenius norms (instead, the multiplicative factor in front of the optimal error
is on the order of n

` ), but such bounds can be obtained for the trace norm.
As part of this manuscript, I am preparing an empirical comparison of the performance of Nyström

extensions based on several different schemes using realistic datasets. The goal of this comparison is to
provide practitioners with a set of principles for determining which Nyström extension is appropriate for
their dataset. For instance, I have observed empirically that Nyström extensions formed by sampling columns
according to their leverage scores converge to the optimal rank-k error faster (with fewer samples) than the
other Nyström extensions, but once this error level is achieved, the error does not decrease as more columns
are used in the extension. This is because leverage score sampling is biased towards selecting columns
which contain more information on the top k-dimensional eigenspace than the bottom (n − k)-dimensional
eigenspace. By way of comparison, the simple Nyström extension does not have such a bias, so its error
converges to the optimal rank-k error slower, but the error continues to decrease as more columns are used.

Prior researchers have suggested using ensemble Nyström extensions—formed by taking linear combina-
tions of several base Nyström extensions—when increased accuracy is desired, in lieu of a single large Nyström
extension. This is because forming p simple Nyström extensions each using ` columns costs O(p`3 + p`2n)
while forming a single large extension from p` columns costs O((p`)3 + (p`)2n). Another approach is to use
p` columns directly, but replace the pseudoinverse of W with the pseudoinverse of a low-rank approximation
to W. Specifically, a low-rank approximation of the form PWSWPWS, where S is a random matrix, can be
pseudoinverted in time O((p`)2r + r3). [LKL10] provides an estimate of the error incurred by this approxi-
mation of W†, but there is a large gap between their bounds and the observed behavior of this algorithm.
I am working on providing a sharper analysis of this algorithm.

5.2. Determinant approximation. It takes cubic time to compute the determinant of a matrix A. I am
interested in finding faster approximation algorithms for computing determinants.

One possible route to such an algorithm involves the identity

det(eA) = etrA.

From this identity, we see that the problem of estimating the determinant of A is equivalent to estimating
the trace of a matrix logarithm of A. Approaching it from this angle seems feasible because we may be able
to exploit results on the estimation of the trace of matrices using random sampling techniques. This would
require being able to quickly calculate the application of a logarithm of A to a given vector. In [OSV], the
authors show how to quickly calculate matrix-vector products for the matrix exponential of A; perhaps their
results can be extended to the matrix logarithm.

5.3. Screening methods. Consider the lasso problem, defined for a given matrix A, vector b, and scalar
parameter λ > 0 as follows:

x∗ = arg minx

∥∥Ax− b
∥∥
2

+ λ‖x‖1.
Because of the `1 term, the optimal solution vector x∗ is typically sparse. Thus only a few columns of A
are actually relevant to this problem, but an algorithm which solves this problem does not know in advance
which columns are relevant. This suggests that the computational cost of solving the lasso problem can
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be reduced by first running a fast procedure that winnows out the columns that do not contribute to the
solution. A few such procedures, called screening tests, are already known for the lasso problem.

There is no reason that only the lasso problem should admit screening tests. I would like to understand
the available screening tests, and see if the reasoning behind them can be extended to other problems of
interest, such as PCA, linear regression, or K-means clustering.

5.4. Approximating principal angles between subspaces, and convergence of subspaces. Consider
two matrices A and B in Rn×k. The principal angles between the subspaces spanned by A and B are defined
by their cosine values, which are the singular values of QT

AQB, or equivalently, the singular values of PAPB.
The principal angles are of interest in machine learning.

As is clear from the definition, there is a näıve QR-based algorithm for computing the principal angles
between the two subspaces that runs in O(nk2) time. If A and B are tall-and-thin matrices, then a faster
algorithm can provide additive approximations to the cosines of the principal angles. The idea is that one
can left-multiply A and B by a randomized projection matrix (e.g. an SRHT matrix) to produce k log k× k
sketches Ã and B̃, then use the principal angles between these sketches as approximations of the principal
angles between A and B. This algorithm runs in O(nk log k) time. This result is due to Avron, Boutsidis,
Toledo, and Zouzias, and has been submitted for publication to NIPS 2012.

The question I’m interested in pursuing is: what about almost square or square matrices? Is there an
efficient approximation algorithm for this case that has provable theoretical guarantees? An algorithm based
on left-multiplication would not give significant gains in computational speed. Instead, I propose dimension-
reduction using right multiplication: form the sketches Ã = PASA and B̃ = PBSB and approximate the
(top r < k) angles between A and B using the angles between these sketches. One could also use a two
step procedure, by further applying the algorithm for the tall-and-thin matrices to approximate the angles
between Ã and B̃.

The proposed algorithm is based on our intuition that the range space of PAS is well-aligned with the
top r-dimensional invariant subspace of A. This is the same intuition behind the random projection-based
low-rank approximation algorithms, but the proofs that such low-rank approximations are accurate do not
verify this intuition. It seems that the route to take toward showing the effectiveness of this algorithm would
involve quantifying this intuition. One way to do so is to consider the square of the sine of the angle between
QÃ and QAr , defined as

1− λmin

(
QT

Ar
QÃQT

Ã
QAr

)
.

Clearly if this quantity is close to zero, the range of Ã almost contains that of Ar. This seems a prerequisite
for the proposed algorithm to work. I have a deterministic expression for this angle,

1− λr(ArS(STAATS)†STAr),

that holds when ArS has rank r. Perhaps this result can be of use.

5.5. Spectral clustering. Consider a dataset consisting of m objects which we would like to divide into
k clusters of similar objects. Suppose that these objects are represented as rows of a matrix A ∈ Rm×n,
where n is the number of features used to represent each object. One approach to clustering the objects (for
the case k = 2) is to compute an m×m similarity matrix S that measures the similarity of the objects: sij
measures the similarity of object i with object j. One popular similarity matrix, the Gaussian radial basis
function kernel, is given by sij = exp(−β

∥∥Ai −Aj
∥∥
2
) for some β > 0. Here Ai denotes the ith row of A.

The eigenvectors of S contain information which can be used to cluster the objects. Specifically, the Fiedler
vector, the eigenvector corresponding to the smallest nonzero eigenvalue of S, can be used to partition the
objects. Objects whose corresponding elements of the Fiedler vector have the same sign are assigned to the
same partition. A straightforward implementation of this algorithm takes time cubic in m, but algorithms
are available which run in less time than this. Their error bounds tend to be unsatisfactory.

The question I would like to consider is: can I provide better approximation guarantees for an existing
algorithm or design an algorithm which has better approximation guarantees? In practice the spectral
clustering algorithm proposed in [FBCM04], which uses the Nyström extension technique and a similarity
kernel based on χ2 distances, performs well. I would like to analyze the theoretical performance of this
algorithm.
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