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Abstract. We reconsider randomized algorithms for the low-rank approximation of symmetric positive

semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine

learning applications. Our main results consist of an empirical evaluation of the performance quality and
running time of sampling and projection methods on a diverse suite of SPSD matrices. Our results highlight

complementary aspects of sampling versus projection methods, and they point to differences between uniform

and nonuniform sampling methods based on leverage scores. We complement our empirical results with a
suite of worst-case theoretical bounds for both random sampling and random projection methods. These

bounds are qualitatively superior to existing bounds—e.g., improved additive-error bounds for spectral and

Frobenius norm error and relative-error bounds for trace norm error.

1. Introduction

We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite
(SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning
applications. Our goal is to obtain an improved understanding, both empirically and theoretically, of the
complementary strengths of sampling versus projection methods on realistic data. Our main results consist
of an evaluation of the performance quality and running time of sampling and projection methods on a
diverse suite of dense and sparse SPSD matrices drawn both from machine learning as well as more general
data analysis applications. These results are not intended to be comprehensive but instead to be illustrative
of how Nyström-based randomized algorithms for the low-rank approximation of SPSD matrices behave in
a broad range of realistic machine learning and data analysis applications.

In addition to being of interest in their own right, our empirical results point to several directions that are
not explained well by existing theory. (For example, that the results are much better than existing worst-case
theory would suggest, and that sampling with respect to the statistical leverage scores leads to results that
are complementary to those achieved by projection-based methods.) Thus, we complement our empirical
results with a suite of worst-case theoretical bounds for both random sampling and random projection
methods. These bounds are qualitatively superior to existing bounds—e.g., improved additive-error bounds
for spectral and Frobenius norm error and relative-error bounds for trace norm error. Importantly, by
considering random sampling and random projection algorithms on an equal footing, we identify within
our analysis deterministic structural properties of the input data and sampling/projection methods that are
responsible for high-quality low-rank approximation.

In more detail, our main contributions are fourfold.

• First, we provide an empirical illustration of the complementary strengths and weaknesses of data-
independent random projection methods and data-dependent random sampling methods when ap-
plied to SPSD matrices. We do so for a diverse class of SPSD matrices drawn from machine learning
and more general data analysis applications, and we consider reconstruction error with respect to
the spectral, Frobenius, as well as trace norms. Depending on the parameter settings, the matrix
norm of interest, the data set under consideration, etc., one or the other method might be preferable.
In addition, we illustrate how these empirical properties can often be understood in terms of the
structural nonuniformities of the input data that are of independent interest.

• Second, we consider the running time of high-quality sampling and projection algorithms. For
random sampling algorithms, the computational bottleneck is typically the exact or approximate
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computation of the importance sampling distribution with respect to which one samples; and for
random projection methods, the computational bottleneck is often the implementation of the random
projection. By exploiting and extending recent work on “fast” random projections and related
recent work on “fast” approximation of the statistical leverage scores, we illustrate that high-quality
leverage-based random sampling and high-quality random projection algorithms have comparable
running times. Although both are slower than simple (and in general much lower-quality) uniform
sampling, both can be implemented more quickly than a näıve computation of an orthogonal basis
for the top part of the spectrum.

• Third, our main technical contribution is a set of deterministic structural results that hold for
any “sketching matrix” applied to an SPSD matrix. (A precise statement of these results is given in
Theorems 1, 2, and 3 in Section 4.1.) We call these “deterministic structural results” since there is no
randomness involved in their statement or analysis and since they depend on structural properties of
the input data matrix and the way the sketching matrix interacts with the input data. In particular,
they highlight the importance of the so-called statistical leverage scores (and other related structural
nonuniformities having to do with the subspace structure of the input matrix), which have proven
important in other applications of random sampling and random projection algorithms.

• Fourth, our main algorithmic contribution is to show that when the low-rank sketching matrix
represents certain random projection or random sampling operations, then we obtain worst-case
quality-of-approximation bounds that hold with high probability. (A precise statement of these
results is given in Lemmas 1, 2, 3, and 4 in Section 4.2.) These bounds are qualitatively better than
existing bounds (when nontrivial prior bounds even exist); they hold for reconstruction error of the
input data with respect to the spectral norm and trace norm as well as the Frobenius norm; and
they illustrate how high-quality random sampling algorithms and high-quality random projection
algorithms can be treated from a unified perspective.

A novel aspect of our work is that we adopt a unified approach to these low-rank approximation questions—
unified in the sense that we consider both sampling and projection algorithms on an equal footing, and that
we illustrate how the structural nonuniformities responsible for high-quality low-rank approximation in worst-
case analysis also have important empirical consequances in a diverse class of SPSD matrices. By identifying
deterministic structural conditions responsible for high-quality low-rank approximation of SPSD matrices,
we highlight complementary aspects of sampling and projection methods; and by illustrating the empirical
consequences of structural nonuniformities, we provide theory that is a much closer guide to practice than
has been provided by prior work. More generally, we should note that, although it is beyond the scope of
this paper, our deterministic structural results could be used to check, in an a posteriori manner, the quality
of a sketching method for which one cannot establish an a priori bound.

Our analysis is timely for several reasons. First, in spite of the empirical successes of Nyström-based
and other randomized low-rank methods, existing theory for the Nyström method is quite modest. For
example, existing worst-case bounds such as those of [21] are very weak, especially compared with existing
bounds for least-squares regression and general low-rank matrix approximation problems [22, 23, 45].1 More-
over, many other worst-case bounds make strong assumptions about the coherence properties of the input
data [38, 28]. Second, there have been conflicting views in the literature about the usefulness of uniform
sampling versus nonuniform sampling based on the empirical statistical leverage scores of the data in realistic
data analysis and machine learning applications. For example, some work has concluded that the statistical
leverage scores of realistic data matrices are fairly uniform, meaning that the coherence is small and thus
uniform sampling is appropriate [61, 38], while other work has demonstrated that leverage scores are often
very nonuniform in ways that render uniform sampling inappropriate and that can be essential to highlight
properties of downstream interest [53, 47]. Third, in recent years several high-quality numerical implemen-
tations of randomized matrix algorithms for least-squares and low-rank approximation problems have been
developed [3, 49, 62, 54, 48]. These have been developed from a “scientific computing” perspective, where
condition numbers, spectral norms, etc. are of greater interest [46], and where relatively strong homogeneity
assumptions can be made about the input data. In many “data analytics” applications, the questions one
asks are very different, and the input data are much less well-structured; and thus we expect that some of

1This statement may at first surprise the reader, since an SPSD matrix is an example of a general matrix, and one might

suppose that the existing theory for general matrices could be applied to SPSD matrices. While this is true, these existing

methods for general matrices do not in general respect the symmetry or positive semi-definiteness of the input.
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our results will help guide the development of algorithms and implementations that are more appropriate
for large-scale analytics applications.

In the next section, Section 2, we start by presenting some notation, preliminaries, and related prior work.
Then, in Section 3 we present our main empirical results; and in Section 4 we present our main theoretical
results. We conclude in Section 5 with a brief discussion of our results in a broader context.

2. Notation, Preliminaries, and Related Prior Work

In this section, we introduce the notation used throughout the paper, and we address several preliminary
considerations, including reviewing related prior work.

2.1. Notation. Let A ∈ Rn×n be an arbitrary SPSD matrix with eigenvalue decomposition A = UΣUT ,
where we partition U and Σ as

(1) U =
(
U1 U2

)
and Σ =

(
Σ1

Σ2

)
.

Here, U1 has k columns and spans the top k-dimensional eigenspace of A, and Σ1 ∈ Rk×k is full-rank.2

Given A and a rank parameter k, the statistical leverage scores of A relative to the best rank-k approximation
to A equal the squared Euclidean norms of the rows of the n× k matrix U1:

(2) `j = ‖(U1)j‖2.
The leverage scores provide a more refined notion of the structural nonuniformities of A than does the
notion of coherence, µ = n

k maxi∈{1,...,n} `i, which equals (up to scale) the largest leverage score; and they
have been used historically in regression diagnostics to identify particularly influential or outlying data
points. Less obviously, the statistical leverage scores play a crucial role in recent work on randomized
matrix algorithms: they define the key structural nonuniformity that must be dealt with in order to obtain
high-quality low-rank and least-squares approximation of general matrices via random sampling and random
projection methods [45]. Although Equation (2) defines them with respect to a particular basis, the statistical
leverage scores equal the diagonal elements of the projection matrix onto the span of that basis, and thus
they can be computed from any basis spanning the same space. Moreover, they can be approximated more
quickly than the time required to compute that basis with a truncated SVD or a QR decomposition [20].

We denote by S an arbitrary n × ` “sketching” matrix that, when post-multiplying a matrix A, maps
points from Rn to R`. We are most interested in the case where S is a random matrix that represents a
random sampling process or a random projection process, but we do not impose this as a restriction unless
explicitly stated. In order to provide high-quality low-rank matrix approximations, we control the error of
our approximation in terms of the interaction of the sketching matrix S with the eigenspaces of A, and thus
we let

(3) Ω1 = UT
1 S and Ω2 = UT

2 S

denote the projection of S onto the top and bottom eigenspaces of A, respectively.
Recall that, by keeping just the top k singular vectors, the matrix Ak := U1Σ1U

T
1 is the best rank-k

approximation to A, when measured with respect to any unitarily-invariant matrix norm, e.g., the spectral,
Frobenius, or trace norm. For a vector x ∈ Rn, let ‖x‖ξ, for ξ = 1, 2,∞, denote the 1-norm, the Euclidean
norm, and the ∞-norm, respectively. Then, ‖A‖2 = ‖Diag(Σ)‖∞ denotes the spectral norm of A; ‖A‖F =
‖Diag(Σ)‖2 denotes the Frobenius norm of A; and ‖A‖? = ‖Diag(Σ)‖1 denotes the trace norm (or nuclear
norm) of A. Clearly,

‖A‖2 ≤ ‖A‖F ≤ ‖A‖? ≤
√
n ‖A‖F ≤ n ‖A‖2 .

We quantify the quality of our algorithms by the “additional error” (above and beyond that incurred by the
best rank-k approximation to A). In the theory of algorithms, bounds of the form provided by (15) and (16)
below are known as additive-error bounds, the reason being that the additional error is an additive factor of
the form ε times a size scale that is larger than the “base error” incurred by the best rank-k approximation.
In this case, the goal is to minimize the “size scale” of the additional error. Bounds of this form are very
different and in general weaker than when the additional error enters as a multiplicative factor, such as when
the error bounds are of the form ‖A−Ã‖ ≤ f(n, k, η)‖A−Ak‖, where f(·) is some function and η represents

2Variants of our results hold trivially if the rank of A is k or less, and so we focus on this more general case here.
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other parameters of the problem. These latter bounds are of greatest interest when f = 1 + ε, for an error
parameter ε, as in (17) and (18) below. These relative-error bounds, in which the size scale of the additional
error equals that of the base error, provide a much stronger notion of approximation than additive-error
bounds.

2.2. Preliminaries. In machine learning applications, one is often interested in symmetric positive semi-
definite (SPSD) matrices, e.g., kernel matrices and Laplacian matrices, where this low-rank approximation
approach (in particular, the sampling-based approach) is often called the Nyström method [61, 21, 38]. The
Nyström method—both randomized and deterministic variants—has proven useful in applications where the
kernel matrices are reasonably well-approximated by low-rank matrices; and it has been applied to Gaussian
process regression, spectral clustering and image segmentation, manifold learning, and a range of other
common machine learning tasks [61, 60, 25, 56, 65, 38]. The simplest Nyström-based procedure selects actual
columns from the original data set uniformly at random and then uses those columns to construct a low-rank
SPSD approximation. Although this procedure can be effective in practice for certain input matrices, two
extensions (both of which are more expensive) can substantially improve the performance, e.g., lead to lower
reconstruction error for a fixed number of column samples, both in theory and in practice. The first extension
is to sample columns with a judiciously-chosen nonuniform importance sampling distribution; and the second
extension is to randomly mix (or combine linearly) columns before sampling them. For the random sampling
algorithms, an important question is what importance sampling distribution should be used to construct the
sample; while for the random projection algorithms, an important question is how to implement the random
projections. In either case, appropriate consideration should be paid to questions such as whether the data
are sparse or dense, how the eigenvalue spectrum decays, the nonuniformity properties of eigenvectors, e.g.,
as quantified by the statistical leverage scores, whether one is interested in reconstructing the matrix or
performing a downstream machine learning task, and so on.

The following sketching model subsumes both of these classes of methods.

• SPSD Sketching Model. Let A be an n × n positive semi-definite matrix, and let S be a matrix of
size n× `, where `� n. Take

C = AS and W = STAS.

Then CW†CT is a low-rank approximation to A with rank at most `.

We should note that the SPSD Sketching Model, formulated in this way, is not guaranteed to be numerically
stable: if W is ill-conditioned, then instabilities may arise in forming the product CW†CT . Thus, we

are also interested in CW†
kC

T , where Wk is the best rank-k approximation to W, and where k is a
rank parameter. For example, one might specify k and then “oversample” by choosing ` > k but still be
interested in an approximation that has rank no greater than k. Often, “filtering” a low-rank approximation
in this way through a (lower) rank-k space has a regularization effect: for example, relative-error CUR
matrix decompositions are implicitly regularized by letting the “middle matrix” have rank no greater than
k [22, 47]; and [15] considers a regularization of the uniform column sampling Nyström extension where,
before forming the extension, all singular values of W smaller than a threshold are truncated to zero. For
our empirical evaluation, we consider both cases, which we refer to as “non-rank-restricted” and “rank-
restricted,” respectively. For our theoretical results, for simplicity of notation, we do not describe the
generalization of our results to this rank-restricted model; but we note that our analysis could be extended
to include this, e.g., by letting the sketching matrix S be a combination of a sampling operation and an
operation that projects to the best rank-k approximation.

The choice of distribution for the sketching matrix S leads to different classes of low-rank approxima-
tions. For example, if S represents the process of sampling, either uniformly or according to a nonuniform
importance sampling distribution, then we refer to the resulting approximation as a Nyström extension; if
S consists of random linear combinations of most or all of the columns of A, then we refer to the resulting
approximation as a projection-based SPSD approximation. In this paper, we focus on Nyström extensions
and projection-based SPSD approximations that fit the above SPSD Sketching Model. In particular, we do
not consider adaptive schemes, which iteratively select columns to progressively decrease the approximation
error. While these methods often perform well in practice [10, 9, 24, 38], rigorous analyses of them are hard
to come by—interested readers are referred to the discussion in [24, 38].
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2.3. Related Prior Work. Motivated by large-scale data analysis and machine learning applications, recent
theoretical and empirical work has focused on “sketching” methods such as random sampling and random
projection algorithms; a large part of the recent body of this work on randomized matrix algorithms has been
summarized in the recent monograph of Mahoney [45] and the recent review article of Halko, Martinsson,
and Tropp [31]. Here, we note that, on the empirical side, both random projection methods (e.g., [12, 26, 59]
and [6]) and random sampling methods (e.g., [53, 47]) have been used in applications for clustering and
classification of general data matrices; and that some of this work has highlighted the importance of the
statistical leverage scores that we use in this paper [53, 47, 45, 63]. In parallel, so-called Nyström-based
methods have also been used in machine learning applications. Originally used by Williams and Seeger
to solve regression and classification problems involving Gaussian processes when the SPSD matrix A is
well-approximated by a low-rank matrix [61, 60], the Nyström extension has been used in a large body of
subsequent work. For example, applications of the Nyström method to large-scale machine learning problems
include [56, 36, 37, 43] and [66, 40, 65], and applications in statistics and signal processing include [52, 7,
11, 55, 8, 10, 9].

Much of this work has focused on new proposals for selecting columns (e.g., [66, 64, 41, 1, 40]) and/or
coupling the method with downstream applications (e.g., [5, 17, 33, 32, 42, 4]). The most detailed results are
provided by [38] (as well as the conference papers on which it is based [36, 35, 37]). Interestingly, they observe
that uniform sampling performs quite well, suggesting that in the data they considered the leverage scores
are quite uniform, which also motivated the related work [57, 50]. This is in contrast with applications in
genetics [53], term-document analysis [47], and astronomy [63], where the statistical leverage scores were seen
to be very nonuniform in ways of interest to the downstream scientist; we return to this issue in Section 3.

On the theoretical side, much of the work has followed that of Drineas and Mahoney [21], who provided
the first rigorous bounds for the Nyström extension of a general SPSD matrix. They show that when
Ω(kε−4 ln δ−1) columns are sampled with an importance sampling distribution that is proportional to the
square of the diagonal entries of A, then

(4) ‖A−CW†CT ‖ξ ≤ ‖A−Ak‖ξ + ε
∑n

k=1
(A)2ii

holds with probability 1 − δ, where ξ = 2, F represents the Frobenius or spectral norm. (Actually, they

prove a stronger result of the form given in Equation (4), except with W† replaced with W†
k, where Wk

represents the best rank-k approximation to W [21].) Subsequently, Kumar, Mohri, and Talwalkar show
that if sufficiently many columns (meaning Ω(τk ln(k/δ)) columns, where τ is a measure of the coherence of
the range of A) are sampled uniformly at random with replacement from an A that has exactly rank k, then
one achieves exact recovery, i.e., A = CW†CT , with high probability [36]. Gittens extends this to the case
where A is only approximately low-rank [28]. In particular, he shows that if Ω(µk ln k) columns are sampled
uniformly at random (either with or without replacement), then

(5)
∥∥A−CW†CT

∥∥
2
≤ ‖A−Ak‖2

(
1 +

2n

`

)
with probability exceeding 1− δ and

(6)
∥∥A−CW†CT

∥∥
2
≤ ‖A−Ak‖2 +

2

δ
· ‖A−Ak‖?

with probability exceeding 1 − 2δ. We have described these prior theoretical bounds in detail to emphasize
how strong, relative to the prior work, our new bounds are. For example, Equation (4) provides an additive-
error approximation with a very large scale; the bounds of Kumar, Mohri, and Talwalkar require a sampling
complexity that depends on the coherence of the input matrix [36], which means that unless the coherence
is very low one needs to sample essentially all the rows and columns in order to reconstruct the matrix;
Equation (5) provides a bound where the additive scale depends on n; and Equation (6) provides a spectral
norm bound where the scale of the additional error is the (much larger) trace norm. Table 1 compares the
bounds on the approximation errors of SPSD sketches derived in this work to those available in the literature.

Our bounds in Table 1 (established as Lemmas 1–4 in Section 4.2) exhibit a common structure: for
the spectral and Frobenius norms, we see that the additional error is on a larger scale than the opti-
mal error, and the trace norm bounds all guarantee relative error approximations. This follows from, as
detailed in Section 4.1, the fact that the SPSD sketching procedure can be understood as forming column-
sample/projection-based approximations to the square root of A, then squaring this approximation to obtain
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sketch type ` ‖A−CW†CT ‖2 ‖A−CW†CT ‖F ‖A−CW†CT ‖?
Prior works

[21], Nyström Ω(ε−4k) opt2 + ε
∑n
i=A

2
ii optF + ε

∑n
i=1A

2
ii –

[10], Nyström Ω(1) – – O
(
n−`
n

)
‖A‖?

[57], Nyström Ω(τr ln r) 0 0 0
[38], Nyström Ω(1) opt2 + O( 2n√

`
) ‖A‖2 optF + O(n(k` )1/4) ‖A‖2 –

This work

Nyström Ω((1− ε)−1µk ln k) opt2(1 + n
ε` ) optF (1 +

√
ε−1) + ε−1opt? opt?(1 + ε−1)

leverage-based Ω((βε)−1k ln(k/β)) opt2 + εopt? (1 +
√
ε)optF + εopt? (1 + ε)opt?

Fourier-based Ω(ε−1k lnn ln k) ε
(1−
√
ε) ln k

(
opt2 + 1

lnnopt?
)

(1 +
√
ε)optF + εopt? (1 + ε)opt?

Gaussian-based Ω(kε−1) ε ln k
k opt2 + ε

kopt? (1 +
√
ε)optF +

√
εopt? (1 + ε)opt?

Table 1. Comparison of our bounds on the approximation errors of several types of SPSD
sketches with those provided in prior works. Here, optξ is the smallest ξ-norm error possible
when approximating A with a rank-k matrix, r = rank(A), ` is the number of column
samples sufficient for the stated bounds to hold, and k is a target rank. With the exception
of [21], which samples columns with probability proportional to their Euclidean norms, and
our novel leverage-based Nyström bound, these bounds are for sampling columns or linear
combinations of columns uniformly at random. All bounds hold with constant probability.

the resulting approximation to A. The squaring process unavoidably results in potentially large additional
errors in the case of the spectral and Frobenius norms— whether or not the additional errors are large
in practice depends upon the properties of the matrix and the form of stochasticity used in the sampling
process. For instance, from our bounds it is clear that Gaussian-based SPSD sketches are expected to have
lower additional error in the spectral norm than any of the other sketches considered.

We also see, in the case of uniform Nyström extensions, a necessary dependence on the coherence of the
input matrix since columns are sampled uniformly at random. However, we also see that the scales of the
additional error of the Frobenius and trace norm bounds are substantially improved over those in prior results.
The large additional error in the spectral norm error bound is necessary in the worse case [28]. Lemmas 1, 2
and 3 in Section 4.2—which respectively address leverage-based, Fourier-based, and Gaussian-based SPSD
sketches—show that spectral norm additive-error bounds with additional error on a substantially smaller
scale can be obtained if one first mixes the columns before sampling from A or one samples from a judicious
nonuniform distribution over the columns.

Table 2 illustrates the gap between the theoretical results currently available in the literature and what
is observed in practice: it depicts the ratio between the error bounds in Table 1 and the average errors
observed over 10 runs of the SPSD approximation algorithms (the error bound from [57] is not considered in
the table, as it does not apply at the number of samples ` used in the experiments). Several trends can be
identified; among them, we note that the bounds provided in this paper for Gaussian-based sketches come
quite close to capturing the errors seen in practice, and the Frobenius and trace norm error guarantees of
the leverage-based and Fourier-based sketches tend to more closely reflect the empirical behavior than the
error guarantees provided in prior work for Nyström sketches. Overall, the trace norm error bounds are
quite accurate. On the other hand, prior bounds are sometimes more informative in the case of the spectral
norm (with the notable exception of the Gaussian sketches). Several important points can be gleaned from
these observations. First, the accuracy of the Gaussian error bounds suggests that the main theoretical
contribution of this work, the deterministic structural results given as Theorems 1 through 3, captures the
underlying behavior of the SPSD sketching process. This supports our belief that this work provides a
foundation for truly informative error bounds. Given that this is the case, it is clear that the analysis of
the stochastic elements of the SPSD sketching process is much sharper in the Gaussian case than in the
leverage-score, Fourier, and Nyström cases. We expect that, at least in the case of leverage and Fourier-
based sketches, the stochastic analysis can and will be sharpened to produce error guarantees almost as
informative as the ones we have provided for Gaussian-based sketches.
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source, sketch pred./obs. spectral error pred./obs. Frobenius error pred./obs. trace error
Enron, k = 60

[21], Nyström 3041 66.2 –
[10], Nyström – – 2.0
[38], Nyström 331.2 77.7 –
Lemma 1, leverage-based 12888 21 1.2
Lemma 2, Fourier-based 201.0 42.7 1.6
Lemma 3, Gaussian-based 10.1 5.6 1.2
Lemma 4, Nyström 9.4 385.2 5.4

Protein, k = 10
[21], Nyström 119.2 18.6 –
[10], Nyström – – 3.6
[38], Nyström 33.4 20.5 –
Lemma 1, leverage-based 42.5 6.9 2.0
Lemma 2, Fourier-based 297.5 21.7 3.1
Lemma 3, Gaussian-based 3.8 3.3 1.8
Lemma 4, Nyström 86.3 91.3 8

AbaloneD, σ = .15, k = 20
[21], Nyström 349.9 42.5 –
[10], Nyström – – 2.0
[38], Nyström 62.9 46.7 –
Lemma 1, leverage-based 235.3 14.6 1.3
Lemma 2, Fourier-based 139.4 36.9 1.7
Lemma 3, Gaussian-based 5.2 4.7 1.1
Lemma 4, Nyström 12.9 228.3 5.1

WineS, σ = 1, k = 20
[21], Nyström 422.5 41.0 –
[10], Nyström – – 2.1
[38], Nyström 72.8 44.2 –
Lemma 1, leverage-based 244.9 13.4 1.2
Lemma 2, Fourier-based 186.7 36.8 1.7
Lemma 3, Gaussian-based 6.6 4.7 1.2
Lemma 4, Nyström 13.7 222.6 5.1

Table 2. Comparison of the empirically observed approximation errors to the guarantees
provided in this and other works, for several datasets. Each approximation was formed
using ` = 6k ln k samples. To evaluate the error guarantees, δ = 1/2 was taken and all
constants present in the statements of the bounds were replaced with ones. The observed
errors were taken to be the average errors over 10 runs of the approximation algorithms. The
datasets, described in Section 3.1, are representative of several classes of matrices prevalent
in machine learning applications.

3. Empirical Aspects of SPSD Low-rank Approximation

In this section, we present our main empirical results, which consist of evaluating sampling and projection
algorithms applied to a diverse set of SPSD matrices. In addition to understanding the relative merits, in
terms of both running time and solution quality, of different sampling/projection schemes, we would like
to understand the effects of various data preprocessing decisions. The bulk of our empirical evaluation
considers two random projection procedures and two random sampling procedures for the sketching matrix
S: for random projections, we consider using SRFTs (Subsampled Randomized Fourier Transforms) as
well as uniformly sampling from Gaussian mixtures of the columns; and for random sampling, we consider
sampling columns uniformly at random as well as sampling columns according to a nonuniform importance
sampling distribution that depends on the empirical statistical leverage scores. In the latter case of leverage
score-based sampling, we also consider the use of both the (näıve and expensive) exact algorithm as well as
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a (recently-developed fast) approximation algorithm. Section 3.1 starts with a brief description of the data
sets we consider; and then Section 3.2 briefly describes the effect of various data preprocessing decisions.
Then, in Section 3.3, we present our main results on reconstruction quality for the random sampling and
random projection methods; and, in Section 3.4, we discuss running time issues, and we present our main
results for running time and reconstruction quality for both exact and approximate versions of leverage-based
sampling.

We emphasize that we don’t intend these results to be “comprehensive” but instead to be “illustrative”
case-studies—that are representative of a much wider range of applications than have been considered pre-
viously. In particular, we would like to illustrate the tradeoffs between these methods in different realistic
applications in order, e.g., to provide directions for future work. For instance, prima facie, algorithms based
on leverage-based column sampling might be expected to be more expensive than those based on uniform
column sampling or random projections, but (based on previous work for general matrices [22, 23, 45]) they
might also be expected to deliver lower approximation errors. Similarly, using approximate leverage scores
to construct the importance sampling distribution might be expected to perform worse than using exact
leverage scores, but this might be acceptable given its computational advantages. In addition to clarifying
some of these issues, our empirical evaluation also illustrates ways in which existing theory is insufficient
to explain the success of sampling and projection methods. This motivates our improvements to existing
theory that we describe in Section 4.

With respect to our computation environment, all of our computations were conducted using 64-bit
MATLAB R2012a under Ubuntu on a 2.6–GHz quad-core Intel i7 machine with 6Gb of RAM. To allow for
accurate timing comparisons, all computations were carried out in a single thread. When applied to an n×n
SPSD matrix A, our implementation of the SRFT requires O(n2 lnn) operations, as it applies MATLAB’s
fft to the entire matrix A and then it samples ` columns from the resulting matrix. We note that the
SRFT computation can be made more competitive: a more rigorous implementation of the SRFT algorithm
could reduce this running time to O(n2 ln `); but due to the complexities involved in optimizing pruned FFT
codes, we did not pursue this avenue.

3.1. Data Sets. Table 3 provides summary statistics for the data sets used in our empirical evaluation.
In order to illustrate the complementary strengths and weaknesses of different sampling versus projection
methods in a wide range of realistic applications, we consider four classes of matrices which are commonly
encountered in machine learning and data analysis applications: normalized Laplacians of very sparse graphs
drawn from “informatics graph” applications; dense matrices corresponding to Linear Kernels from machine
learning applications; dense matrices constructed from a Gaussian Radial Basis Function Kernel (RBFK);
and sparse RBFK matrices constructed using Gaussian radial basis functions, truncated to be nonzero only
for nearest neighbors. Although not exhaustive, this collection of data sets represents a wide range of data
sets with very different (sparsity, spectral, leverage score, etc.) properties that have been of interest recently
not only in machine learning but in data analysis more generally.

To understand better the Laplacian data, recall that, given a graph with weighted adjacency matrix W,
its normalized graph Laplacian is

A = I−D−1/2WD−1/2,

where D is the diagonal matrix of weighted degrees of the nodes of the graph, i.e., Dii =
∑
j 6=iWij . This

Laplacian is an SPSD matrix, but note that not all SPSD matrices can be written as the Laplacian of a graph.
Similarly, to understand better the remaining data, recall that, given a set of data points x1, . . . ,xn ∈ Rd,
the Linear Kernel matrix A corresponding to those points is given by

Aij = 〈xi,xk〉.

Given the same set of data points, one can construct more general nonlinear kernels. For example, a Gaussian
RBFK matrix Aσ is given by

Aσij = exp

(
−‖xi − xj‖22

σ2

)
,

where σ, a nonnegative number, defines the scale of the kernel. Informally, σ defines the “size scale” over
which pairs of points xi and xj “see” each other. Typically σ is determined by a global cross-validation
criterion, as Aσ is generated for some specific machine learning task; and, thus, one may have no a priori
knowledge of the behavior of the spectrum or leverage scores of Aσ as σ is varied. Accordingly, we consider
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Name Description n d %nnz

Laplacian Kernels
HEP arXiv High Energy Physics collaboration graph 9877 NA 0.06
GR arXiv General Relativity collaboration graph 5242 NA 0.12
Enron subgraph of the Enron email graph 10000 NA 0.22
Gnutella Gnutella peer to peer network on Aug. 6, 2002 8717 NA 0.09

Linear Kernels
Dexter bag of words 2000 20000 83.8
Protein derived feature matrix for S. cerevisiae 6621 357 99.7
SNPs DNA microarray data from cancer patients 5520 43 100
Gisette images of handwritten digits 6000 5000 100

Dense RBF Kernels
AbaloneD physical measurements of abalones 4177 8 100
WineD chemical measurements of wine 4898 12 100

Sparse RBF Kernels
AbaloneS physical measurements of abalones 4177 8 82.9/48.1
WineS chemical measurements of wine 4898 12 11.1/88.0

Table 3. The data sets used in our empirical evaluation ([39], [34], [30], [29], [51], [16], [2]).
Here, n is the number of data points, and d is the number of features in the input space
before kernelization. For Laplacian “kernels,” n is the number of nodes in the graph (and
thus there is no d since the graph is “given” rather than “constructed”). The %nnz for the
Sparse RBF Kernels depends on the σ parameter; see Table 4.

Gaussian RBFK matrices with different values of σ. Finally, given the same data points, x1, . . . ,xn, one can
construct sparse Gaussian RBFK matrices

A
(σ,ν,C)
ij =

[(
1−
‖xi − xj‖2

C

)ν]+
· exp

(
−‖xi − xj‖22

σ2

)
,

where [x]+ = max{0, x}. When ν is larger than (d + 1)/2, this matrix is positive semidefinite; and as the
cutoff point C decreases this matrix becomes more sparse [27]. For simplicity, in our empirical evaluation,
we fix ν = d(d+ 1)/2e and C = 3σ, and we vary σ. As with the effect of varying σ, the effect of varying the
sparsity parameter C is not obvious a priori— C is typically chosen according to a global criterion to ensure
good performance at a specific machine learning task, without consideration for its effect on the spectrum

or leverage scores of A
(σ,ν,C)
ij .

To illustrate the diverse range of properties exhibited by these four classes of data sets, consider Table 4.
Several observations are particularly relevant to our discussion below.

• All of the Laplacian Kernels drawn from informatics graph applications are extremely sparse in terms
of number of nonzeros, and they all tend to have very slow spectral decay, as illustrated both by
the quantity

⌈
‖A‖2F / ‖A‖

2
2

⌉
(this is the stable rank, which is a numerically stable (under)estimate

of the rank of A) as well as by the relatively small fraction of the Frobenius norm that is captured
by the best rank-k approximation to A. For the Laplacian Kernels we considered two values of the
rank parameter k that were chosen (somewhat) arbitrarily; many of the results we report continue
to hold qualitatively if k is chosen to be (say) an order of magnitude larger.

• Both the Linear Kernels and the Dense RBF Kernels are much denser and are much more well-
approximated by moderately to very low-rank matrices. In addition, both the Linear Kernels and
the Dense RBF Kernels have statistical leverage scores that are much more uniform—there are
several ways to illustrate this, none of them perfect, and here, we illustrate this by considering the
kth largest leverage score. For the Linear Kernels and the Dense RBF Kernels, this quantity is one
to two orders of magnitude smaller than for the Laplacian Kernels.

• For the Dense RBF Kernels, we consider two values of the σ parameter, again chosen (somewhat)
arbitrarily. For both AbaloneD and WineD, we see that decreasing σ from 1 to 0.15, i.e., letting
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Name %nnz
⌈
‖A‖2F
‖A‖22

⌉
k λk+1

λk
100

‖A−Ak‖F
‖A‖F

100
‖A−Ak‖?
‖A‖?

kth-largest
leverage score

HEP 0.06 3078 20 0.998 7.8 0.4 0.261
HEP 0.06 3078 60 0.998 13.2 1.1 0.278
GR 0.12 1679 20 0.999 10.5 0.74 0.286
GR 0.12 1679 60 1 17.9 2.16 0.289
Enron 0.22 2588 20 0.997 7.77 0.352 0.492
Enron 0.22 2588 60 0.999 12.0 0.94 0.298
Gnutella 0.09 2757 20 1 8.1 0.41 0.381
Gnutella 0.09 2757 60 0.999 13.7 1.20 0.340

Dexter 83.8 176 8 0.963 14.5 .934 0.067
Protein 99.7 24 10 0.987 42.6 7.66 0.008
SNPs 100 3 5 0.928 85.5 37.6 0.002
Gisette 100 4 12 0.90 90.1 14.6 0.005

AbaloneD (dense, σ = .15) 100 41 20 0.992 42.1 3.21 0.087
AbaloneD (dense, σ = 1) 100 4 20 0.935 97.8 59 0.012
WineD (dense, σ = 1) 100 31 20 0.99 43.1 3.89 0.107
WineD (dense, σ = 2.1) 100 3 20 0.936 94.8 31.2 0.009

AbaloneS (sparse, σ = .15) 82.9 400 20 0.989 15.4 1.06 0.232
AbaloneS (sparse, σ = 1) 48.1 5 20 0.982 90.6 21.8 0.017
WineS (sparse, σ = 1) 11.1 116 20 0.995 29.5 2.29 0.2
WineS (sparse, σ = 2.1) 88.0 39 20 0.992 41.6 3.53 0.098
Table 4. Summary statistics for the data sets from Table 3 that we used in our empirical evaluation.

data points “see” fewer nearby points, has two important effects: first, it results in matrices that
are much less well-approximated by low-rank matrices; and second, it results in matrices that have
much more heterogeneous leverage scores. For example, for AbaloneD, the fraction of the Frobenius
norm that is captured decreases from 97.8 to 42.1 and the kth largest leverage score increases from
0.012 to 0.087.

• For the Sparse RBF Kernels, there are a range of sparsities, ranging from above the sparsity of the
sparsest Linear Kernel, but all are denser than the Laplacian Kernels. Changing the σ parameter
has the same effect (although it is even more pronounced) for Sparse RBF Kernels as it has for Dense
RBF Kernels. In addition, “sparsifying” a Dense RBF Kernel also has the effect of making the matrix
less well approximated by a low-rank matrix and of making the leverage scores more nonuniform. For
example, for AbaloneD with σ = 1 (respectively, σ = 0.15), the fraction of the Frobenius norm that
is captured decreases from 97.8 (respectively, 42.1) to 90.6 (respectively, 15.4), and the kth largest
leverage score increases from 0.012 (respectively, 0.087) to 0.017 (respectively, 0.232).

As we see below, when we consider the RBF Kernels as the width parameter and sparsity are varied, we
observe a range of intermediate cases between the extremes of Linear Kernels and Laplacian Kernels.

3.2. Effects of Data Analysis Preprocessing Decisions. Before proceeding with our main empirical
results, we pause to describe the effects of various machine learning and data analysis “design decisions” on
the behavior of both Nyström-based algorithms in general as well as on the behavior of the statistical leverage
scores in particular. We should emphasize that, for “worst case” matrices, very little can be said in this
regard. Thus, these observations are based on our experiences with the diverse data sets from Section 3.1.
While not completely general, these observations are likely to hold in modified form for many other realistic
data, and they can potentially be useful as heuristic guides to practice. For example, if preprocessing does
not significantly change the leverage score distribution, then one could compute the leverage scores on the
raw data and use these to sample columns from the processed data or to certify that the data have low
coherence. Likewise, the behavior of the leverage scores as the rank parameter k is varied or as the σ scale
parameter of RBF kernels varies is of interest, as it is expensive to compute the leverage scores anew for
each value of k or σ as part of a cross-validation computation.
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One common preprocessing step is to “whiten” the data before applying a machine learning algorithm. If
the data are given in the form of X ∈ Rn×d where the ith row of X is an observation of d covariates, then
these covariates may have different means and characteristic size scales (i.e., variances). In this case, it is
often appropriate to transform the covariates so they all have zero mean and are on the same size scale. The
whitening transform generates a new matrix X̂, corresponding to these transformed covariates, by removing
the mean of each column and rescaling the columns so they all have unit norm. In our experience, whitening
modifies the statistical leverage scores, often by making them somewhat more homogeneous, but for a fixed
rank parameter k it does not change them too substantially, e.g., to within no more than a multiplicative
factor of 2. Given the sensitivity of matrix reconstruction algorithms to various structural properties of
the input data that we describe below, however, the more important observation is that whitening tends to
decrease the effective rank of the input data set, and at the same time it often tends to shrink the spectral
gaps. As shown below, this has observable consequences on the reconstruction errors of all the Nyström
methods considered, but in particular those involving approximate leverage score computations.

Another preprocessing decision has to do with the choice of rank k with which to describe the data.
This is typically determined according to an exogeneously-specified “model selection” criterion that does
not explicitly take into account the spectrum or leverage score structure of the input matrix. It enters our
discussion since we consider sampling columns with probabilities proportional to their statistical leverage
scores relative to a rank-k space, and thus the leverage scores depend on k. In our experience, increasing k
tends to uniformize or homogeneize the leverage scores, often gradually, but sometimes quite substantially.
(We should note, however, that there are exceptions to this, where one observes very strong localization on
low-order eigenvectors of data matrices [18].)

Yet another preprocessing decision has to do with the choice of the σ scale parameter in Gaussian RBFK
matrices. As with the rank parameter, the scale parameter σ in practice is determined according to an
exogeneously-specified model selection criterion that does not explicitly take into account the spectrum or
leverage score structure of the input matrix. In our experience, as σ increases, the leverage scores become
more and more uniform; and they become more heterogeneous as σ decreases. Informally, as a data point
“sees” more data points, any outlying effect is mitigated. Varying σ also has an effect on the spectrum. As
a general rule, letting σ → 0 tends to make the spectrum of Aσ flatter, i.e., decay more slowly, and letting
σ → ∞ makes Aσ lower-rank. Recall that the diagonal entries of Aσ are identically one, and as σ → ∞,
Aσ tends to the matrix of all ones. That is, increasing σ corresponds to considering all the observations xi
as being equally dissimilar, so all columns are equally noninformative. On the other hand, as σ → 0, Aσ

approaches the identity, and very dissimilar observations (in the sense that ‖xi − xj‖2 is large) are penalized
more heavily than similar observations, and thus there is some nonuniformity in the columns of Aσ. In some
cases, we observed that, as the scale σ decreases, the leverage scores stabilize, identifying the same columns
as being important or influential over a range of scales.

3.3. Reconstruction Accuracy of Sampling and Projection Algorithms. Here, we describe the per-
formances of the various Nyström-based low-rank extensions—column sampling uniformly at random without
replacement, column sampling according to the nonuniform leverage score probabilities, and sampling using
Gaussian and SRFT mixtures of the columns—in terms of reconstruction accuracy for the data sets described
in Section 3.1. We describe general observations we have made about each class of matrices in turn, and then
we summarize our observations. We consider only the use of exact leverage scores here, and we postpone
until Section 3.4 a discussion of running time issues and similar reconstruction results when approximate
leverage scores are used for the importance sampling distribution. In each case, we present results for both
the “non-rank-restricted” case as well as the “rank-restricted” case. Recall that by non-rank-restricted, we
mean that the error

(7)
∥∥A−CW†CT

∥∥
ξ
/ ‖A−Ak‖ξ

is plotted; while by rank-restricted, we mean that the error

(8)
∥∥∥A−CW†

kC
T
∥∥∥
ξ
/ ‖A−Ak‖ξ

is plotted. Note that previous work has shown that relative-error guarantees can be obtained, e.g., with CUR
matrix decompositions, not only when one projects onto the span of judiciously-chosen columns, analogously
to Eqn. (7) and as our worst-case guarantees in this paper are formulated, but also when one restricts the
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rank of the low-rank approximation to be no greater than k by projecting onto the best rank-k approximation
to the original matrix [22]. We evaluate the “rank-restricted” case of the form of Eqn. (8), that depends
on projecting onto the best rank-k approximation of the subsample (and not the original matrix) since it
is more algorithmically tractable; but we note that similar but “smoother” results (e.g., the error is much
more monotonic as a function of the number of samples, when compared with the “rank-restricted” results
we present below) are obtained empirically with this more expensive rank-restriction procedure.

Finally, we note that previous work has shown that the statistical leverage scores reflect an impor-
tant nonuniformity structure in the columns of the general data matrices [47, 45]; that randomly sam-
pling columns according to this distribution results in lower worst-case error (for problems such as least-
squares approximation and low-rank approximation of general matrices) than sampling columns uniformly
at random [22, 23, 45]; and that leverage scores have proven useful in a wide range of practical applica-
tions [53, 47, 45, 63]. In spite of this, ours is the first work to implement and evaluate leverage score
sampling for low-rank approximation of SPSD matrices.

3.3.1. Graph Laplacians. Figure 1 and Figure 2 show the reconstruction error results for sampling and
projection methods applied to several normalized graph Laplacians. The former shows GR and HEP, each
for two values of the rank parameter, and the latter shows Enron and Gnutella, again each for two values of
the rank parameter. Both figures show the spectral, Frobenius, and trace norm approximation errors, as a
function of the number of column samples `, relative to the error of the optimal rank-k approximation of A.
In both figures, the first four (i.e., top) subfigures show the results for the non-rank-restricted case, and the
last four (i.e., bottom) subfigures show the results for the rank-restricted case. In particular, in the rank-
restricted case, the low-rank approximation is “filtered” through a rank-k space, and thus the approximation
ratio is always greater than unity.

These and subsequent figures contain a lot of information, some of which is peculiar to the given data sets
and some of which is more general. In light of subsequent discussion, several observations are worth making
about the results presented in these two figures.

• All of the Nyström extensions provide quite accurate approximations—relative to the best possible
approximation factor for that norm, and relative to bounds provided by existing theory, as reviewed
in Section 2.3—even with only k column samples (or in the case of the Gaussian and SRFT mixtures,
with only k linear combinations of vectors). Upon examination, this is partly due to the extreme
sparsity and extremely slow spectral decay of these data sets which means, as shown in Table 3, that
only a small fraction of the (spectral or Frobenius or trace) mass is captured by the optimal rank
20 or 60 approximation. Thus although an SPSD sketch constructed from 20 or 60 vectors also only
captures a small portion of the mass of the matrix, the relative error is small.

• The scale of the Y axes is different between different figures and subfigures. This is to highlight
properties within a given plot, but it can hide several things. In particular, note that the scale for
the spectral norm is generally larger than for the Frobenius norm, which is generally larger than for
the trace norm, consistent with the size of those norms; and that the scale is larger for higher-rank
approximations, e.g. compare GR k = 20 with GR k = 60, also consistent with the larger amount
of mass captured by higher-rank approximations.

• Both the non-rank-restricted and rank-restricted results are the same for ` = k. For ` > k, the
non-rank-restricted errors tend to decrease (or at least not increase, as for GR and HEP the spectral
norm error is flat as a function of `), which is intuitive. While the rank-restricted errors also tend
to decrease for ` > k, the decrease is much less (since the rank-restricted plots are bounded below
by unity) and the behavior is much more complicated as a function of increasing `.

• The X axes ranges from k to 9k for the k = 20 plots and to 3k for the k = 60 plots. As a practical
matter, choosing ` between k and (say) 2k or 3k is probably of greatest interest. In this regime,
there is an interesting tradeoff for the non-rank-restricted plots: for moderately large values of ` in
this regime, the error for leverage-based sampling is moderately better than for uniform sampling or
random projections, while if one chooses ` to be much larger then the improvements from leverage-
based sampling saturate and the uniform sampling and random projection methods are better. This
is most obvious in the Frobenius norm plots, although it is also seen in the trace norm plots, and it
suggests that some combination of leverage-based sampling and uniform sampling might be best.



REVISITING THE NYSTRÖM METHOD FOR IMPROVED LARGE-SCALE MACHINE LEARNING 13

20 40 60 80 100 120 140 160 180
1.0675

1.0675

1.0675

1.0675

1.0675

l

Relative spectral error

 

 
unif
srft
gaussian
levscore

20 40 60 80 100 120 140 160 180
0.96

0.97

0.98

0.99

1

1.01

1.02

l

Relative Frobenius error

 

 
unif
srft
gaussian
levscore

20 40 60 80 100 120 140 160 180
0.96

0.98

1

1.02

1.04

l

Relative trace error

 

 
unif
srft
gaussian
levscore

(a) GR, k = 20
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(b) GR, k = 60
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(c) HEP, k = 20
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(d) HEP, k = 60
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(e) GR, k = 20
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(f) GR, k = 60
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(g) HEP, k = 20
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(h) HEP, k = 60

Figure 1. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) SPSD sketches, as a function of the number of columns samples `, for the GR and
HEP Laplacian data sets, with two choices of the rank parameter k.

• For the rank-restricted plots, in some cases, e.g., with GR and HEP, the errors for leverage-based
sampling are much better than for the other methods and quickly improve with increasing ` until they
saturate; while in other cases, e.g., with Enron and Gnutella, the errors for leverage-based sampling
improve quickly and then degrade with increasing `. Upon examination, the former phenomenon is
similar to what was observed in the non-rank-restricted case and is due to the strong “bias” provided
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(a) Enron, k = 20
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(b) Enron, k = 60
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(c) Gnutella, k = 20
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(d) Gnutella, k = 60
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(e) Enron, k = 20
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(f) Enron, k = 60
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(g) Gnutella, k = 20
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(h) Gnutella, k = 60

Figure 2. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) SPSD sketches, as a function of the number of columns samples `, for the Enron
and Gnutella Laplacian data sets, with two choices of the rank parameter k.

by the leverage score importance sampling distribution to the top part of the spectrum, allowing the
sampling process to focus very quickly on the low-rank part of the input matrix. (In some cases, this
is due to the fact that the heterogeneity of the leverage score importance sampling distribution means
that one is likely to choose the same high leverage columns multiple times, rather than increasing
the accuracy of the extension by adding new columns whose leverage scores are lower.) The latter
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phenomenon of degrading error quality as ` is increased is more complex and seems to be due to
some sort or “overfitting” caused by this strong bias and by choosing many more than k columns.

• The behavior of the approximations with respect to the spectral norm is quite different from the
behavior in the Frobenius and trace norms. In the latter, as the number of samples ` increases, the
errors tend to decrease, although in an erratic manner for some of the rank-restricted plots; while for
the former, the errors tend to be much flatter as a function of increasing ` for at least the Gaussian,
SRFT, and uniformly sampled extensions.

All in all, there seems to be quite complicated behavior for low-rank extensions for these Laplacian data
sets. Several of these observations can also be made for subsequent figures; but in some other cases the (very
sparse and not very low rank) structural properties of the data are primarily responsible.

3.3.2. Linear Kernels. Figure 3 shows the reconstruction error results for sampling and projection methods
applied to several Linear Kernels. The data sets (Dexter, Protein, SNPs, and Gisette) are all quite low-rank
and have fairly uniform leverage scores. Several observations are worth making about the results presented
in this figure.

• All of the methods perform quite similarly for the non-rank-restricted case: all have errors that
decrease smoothly with increasing `, and in this case there is little advantage to using methods
other than uniform sampling (since they perform similarly and are more expensive). Also, since the
ranks are so low and the leverage scores are so uniform, the leverage score extension is no longer
significantly distinguished by its tendency to saturate quickly.

• The scale of the Y axes is much larger than for the Laplacian data sets, mostly since the matrices
are much more well-approximated by low-rank matrices, although the scale decreases as one goes
from spectral to Frobenius to trace reconstruction error, as before.

• For SNPs and Gisette, the rank-restricted reconstruction results are very similar for all four methods,
with a smooth decrease in error as ` is increased, although interestingly using leverage scores is slightly
worse for Gisette. For Dexter and Protein, the situation is more complicated: using the SRFT always
leads to smooth decrease as ` is increased, and uniform sampling generally behaves the same way also;
Gaussian projections behave this way for Protein, but for Dexter Gaussian projections are noticably
worse than SRFT and uniform sampling; and, except for very small values of `, leverage-based
sampling is worse still and gets noticably worse as ` is increased. Even this poor behavior of leverage
score sampling on the Linear Kernels is notably worse than for the rank-restricted Laplacians, where
there was a range of moderately small ` where leverage score sampling was much superior to other
methods.

These linear kernels (and also to some extent the dense RBF kernels below that have larger σ parameter) are
examples of relatively “nice” machine learning data sets that are similar to matrices where uniform sampling
has been shown to perform well previously [56, 36, 37, 38]; and for these matrices our empirical results agree
with these prior works.

3.3.3. Dense and Sparse RBF Kernels. Figure 4 and Figure 5 present the reconstruction error results for
sampling and projection methods applied to several dense RBF and sparse RBF kernels. Several observations
are worth making about the results presented in these figures.

• For the non-rank-restricted results, all of the methods have errors that decrease with increasing `.
In particular, for larger values of σ and for denser data, the decrease is somewhat more regular, and
the four methods tend to perform similarly. For larger values of σ and sparser data, leverage score
sampling is somewhat better. This parallels what we observed with the Linear Kernels, except that
here the leverage score sampling is somewhat better for all values of `.

• For the non-rank-restricted results for the smaller values of σ, leverage score sampling tends to be
much better than uniform sampling and projection-based methods. For the sparse data, however,
this effect saturates; and we again observe (especially when σ is smaller in AbaloneS and WineS) the
tradeoff we observed previously with the Laplacian data—leverage score sampling is better when `
is moderately larger than k, while uniform sampling and random projections are better when ` is
much larger than k.

• For the rank-restricted results, we see that when σ is large, all of the results tend to perform similarly.
(The exception to this is WineS, for which leverage score sampling starts out much better than other
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(a) Dexter, k = 8
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(b) Protein, k = 10
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(c) SNPs, k = 5
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(d) Gisette, k = 12
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(e) Dexter, k = 8
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(f) Protein, k = 10

10 20 30 40 50
1

1.5

2

2.5

3

l

Relative spectral error

 

 
unif
srft
gaussian
levscore

10 20 30 40 50
1

1.2

1.4

1.6

1.8

l

Relative Frobenius error

 

 
unif
srft
gaussian
levscore

10 20 30 40 50
1.1

1.15

1.2

1.25

1.3

l

Relative trace error

 

 
unif
srft
gaussian
levscore

(g) SNPs, k = 5
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(h) Gisette, k = 12

Figure 3. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) SPSD sketches, as a function of the number of columns samples `, for the Linear
Kernel data sets.

methods and then gets worse as ` is increased.) On the other hand, when σ is small, the results are
more complex. Leverage score sampling is typically much better than other methods, although the
results are quite choppy as a function of `, and in some cases the effect diminished as ` is increased.
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(a) AbaloneD, σ = .15, k = 20
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(b) AbaloneD, σ = 1, k = 20
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(c) WineD, σ = 1, k = 20
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(d) WineD, σ = 2.1, k = 20
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(e) AbaloneD, σ = .15, k = 20
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(f) AbaloneD, σ = 1, k = 20
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(g) WineD, σ = 1, k = 20
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(h) WineD, σ = 2.1, k = 20

Figure 4. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) SPSD sketches, as a function of the number of columns samples `, for several dense
RBF data sets.

Recall from Table 4 that for smaller values of σ and for sparser kernels, the SPSD matrices are less well-
approximated by low-rank matrices, and they have more heterogeneous leverage scores. Thus, they are more
similar to the Laplacian data than the Linear Kernel data; and this suggests (as we have observed) that
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(a) AbaloneS, σ = .15, k = 20
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(b) AbaloneS, σ = 1, k = 20
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(c) WineS, σ = 1, k = 20
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(d) WineS, σ = 2.1, k = 20
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(e) AbaloneS, σ = .15, k = 20
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(f) AbaloneS, σ = 1, k = 20
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(g) WineS, σ = 1, k = 20
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(h) WineS, σ = 2.1, k = 20

Figure 5. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) SPSD sketches, as a function of the number of columns samples `, for several sparse
RBF data sets.

leverage score sampling should perform relatively better than uniform column sampling and projection-based
schemes when in these two cases. In particular, nowhere do we see that leverage score sampling performs
much worse than other methods, as we saw with the rank-restricted Linear Kernel results.
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3.3.4. Summary of Comparison of Sampling and Projection Algorithms. Before proceeding, there are several
summary observations that we can make about sampling versus projection methods for the data sets we
have considered.

• Linear Kernels and to a lesser extent Dense RBF Kernels with larger σ parameter have relatively
low-rank and relatively uniform leverage scores, and in these cases uniform sampling does quite well.
These data sets correspond most closely with those that have been studied previously in the machine
learning literature, and for these data sets our results are in agreement with that prior work.

• Sparsifying RBF Kernels and/or choosing a smaller σ parameter tends to make these kernels less
well-approximated by low-rank matrices and to have more heterogeneous leverage scores. In general,
these two properties need not be directly related—the spectrum is a property of eigenvalues, while the
leverage scores are determined by the eigenvectors—but for the data we examined they are related,
in that matrices with more slowly decaying spectra also often have more heterogeneous leverage
scores.

• For Dense RBF Kernels with smaller σ and Sparse RBF Kernels, leverage score sampling tends to
do much better than other methods. Interestingly, the Sparse RBF Kernels have many properties
of very sparse Laplacian Kernels corresponding to relatively-unstructured informatics graphs, an
observation which should be of interest for researchers who construct sparse graphs from data using,
e.g., “locally linear” methods, to try to reconstruct hypothesized low-dimensional manifolds.

• Reconstruction quality under leverage score sampling saturates, as a function of choosing more
samples `; this is seen both for non-rank-restricted and rank-restricted situations. As a consequence,
there can be a tradeoff between leverage score sampling or other methods being better, depending
on the values of ` that are chosen.

• Although they are potentially ill-conditioned, non-rank-restricted approximations behave better in
terms of reconstruction quality. Rank-constrained approximations tend to have much more com-
plicated behavior as a function of increasing the numbe of samples `, including choppier and non-
monotonic behavior. This is particularly severe for leverage score sampling, but it occurs with other
methods; and it suggests that other forms of regularization (other than what is essentially a Tikhonov
form of regularization for the rank-restricted cases) might be appropriate.

In general, all of the sampling and projection methods we considered perform much better on the SPSD
matrices we considered than previous worst-case bounds (e.g., [21, 38, 28]) would suggest. (That is, even
the worst results correspond to single-digit approximation factors in relative scale.) This observation is
intriguing, because the motivation of leverage score sampling (and, recall, that in this context random
projections should be viewed as performing uniform random sampling in a randomly-rotated basis where
the leverage scores have been approximately uniformized [45]) is very much tied to the Frobenius norm,
and so there is no a priori reason to expect its good performance to extend to the spectral or trace norms.
Motivated by this, we revisit the question of proving improved worst-case theoretical bounds in Section 4.

Before describing these improved theoretical results, however, we address in Section 3.4 running time
questions. After all, a näıve implementation of sampling with exact leverage scores is slower than other
methods (and much slower than uniform sampling). As shown below, by using the recently developed algo-
rithm of [20], not only does this approximation algorithm run in time comparable with random projections
(for certain parameter settings), but it leads to approximations that soften the strong bias that the exact
leverage scores provide toward the best rank-k approximation to the matrix, thereby leading to improved
reconstruction results in many cases.

3.4. Reconstruction Accuracy of Leverage Score Approximation Algorithms. A näıve view might
assume that computing probabilities that permit leverage-based sampling requires an O(n3) computation
of the full SVD, or at least the full computation of a partial SVD, and thus that it would be much more
expensive than recently-developed random projection methods. Indeed, an “exact” computation of the
leverage scores with a QR decomposition or truncated SVD takes roughly O(n2k) time (and the running
time results of Section 3.3 actually used this näıve procedure). Recent work, however, has shown that
relative-error approximations to all the statistical leverage scores can be computed more quickly than this
exact algorithm [20]. Here, we implement and evaluate a version of this algorithm, and we evaluate it both
in terms of running time and in terms of reconstruction quality on the diverse suite of real data matrices we
considered above. We note that ours is the first work to provide an empirical evaluation of an implementation
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Input: A ∈ Rn×d (with SVD A = UΣVT ), error parameter ε ∈ (0, 1/2].

Output: ˜̀
i, i = 1, . . . , n, approximations to the leverage scores of A.

(1) Let Π1 ∈ Rr1×n be an SRFT with

r1 = Ω(ε−2(
√
d+
√

lnn)2 ln d)

(2) Compute Π1A ∈ Rr1×d and its QR factorization Π1A = QR.
(3) Let Π2 ∈ Rd×r2 be a matrix of i.i.d. standard Gaussian random variables, where

r2 = Ω
(
ε−2 lnn

)
.

(4) Construct the product Ω = AR−1Π2.

(5) For i = 1, . . . , n compute ˜̀
i =

∥∥Ω(i)

∥∥2
2
.

Algorithm 1: Algorithm (originally Algorithm 1 in [20]) for approximating the leverage scores `i of an
n× d matrix A, where n� d, to within a multiplicative factor of 1± ε. The running time of the algorithm
is O(nd ln(

√
d+
√

lnn) + ndε−2 lnn+ d2ε−2(
√
d+
√

lnn)2 ln d).

Input: A ∈ Rn×d, a rank parameter k, and an error parameter ε ∈ (0, 1/2].

Output: ˆ̀
i, i = 1, . . . , n, approximations to the leverage scores of A filtered through its dominant

dimension-k subspace.

(1) Construct Π ∈ Rd×2k with i.i.d. standard Gaussian entries.

(2) Compute B =
(
AAT

)q
AΠ ∈ Rn×2k with

q ≥


ln
(

1 +
√

k
k−1 + e

√
2
k

√
min {n, d} − k

)
2 ln (1 + ε/10)− 1/2

 ,
(3) Approximate the leverage scores of B by calling Algorithm 1 with inputs B and ε; let ˆ̀

i

for i = 1, . . . , n be the outputs of Algorithm 1.

Algorithm 2: Algorithm (originally Algorithm 4 in [20]) for approximating the leverage scores (relative to
the best rank-k approximation to A) of a general n× d matrix A with those of a matrix that is close by in
the spectral norm. This algorithm runs in time O(ndkq)+T1, where T1 is the running time of Algorithm 1.

of the leverage score approximation algorithms of [20], illustrating empirically the tradeoffs between cost and
efficiency in a practical setting.

3.4.1. Description of the Approximation Algorithm. Algorithm 1 (which originally appeared as Algorithm 1
in [20]) takes as input an arbitrary n×dmatrix A, where n� d, and it returns as output a 1±ε approximation
to all of the statistical leverage scores of the input matrix. The original algorithm of [20] uses a subsampled
Hadamard transform and requires r1 to be somewhat larger. That an SRFT with a smaller value of r1 can
be used instead is a consequence of the fact that Lemma 3 in [20] is also satisfied by an SRFT matrix with
the given r1; this is established in [58, 13].

The running time of this algorithm, given in the caption of the algorithm, is roughly O(nd ln d) when
d = Ω(lnn). Thus Algorithm 1 generates relative-error approximations to the leverage scores of a tall and
skinny matrix A in time o(nd2), rather than the O(nd2) time that would be required to compute a QR
decomposition or a thin SVD of the n × d matrix A. The basic idea behind how Algorithm 1 works is as
follows. If we had a QR decomposition of A, then we could postmultiply A by the inverse of the “R” matrix
to obtain an orthogonal matrix spanning the column space of A; and from this n × d orthogonal matrix,
we could read off the leverage scores from the Euclidean norms of the rows. Of course, computing the QR
decomposition would require O(nd2) time. To get around this, Algorithm 1 premultiplies A by a structured
random projection Π1, computes a QR decomposition of Π1A, and postmultiplies A by R−1. Since Π1 is an
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Input: A ∈ Rn×d, a rank parameter k, and an iteration parameter q.

Output: ˆ̀
i, i ∈= 1, . . . , n, approximations to the leverage scores of A filtered through its

dominant dimension-k subspace.

(1) Construct an SRHT matrix Π ∈ Rd×r, where

r ≥
⌈
36ε−2[

√
k +

√
8 ln(kd)]2 ln(k)

⌉
.

(2) Compute B =
(
AAT

)q
AΠ ∈ Rn×r, where q ≥ 0 is an integer.

(3) Return the leverage scores of B.

Algorithm 3: Algorithm for approximating the leverage scores (relative to the best rank-k approximation
to A) of a general n × d matrix A with those of a matrix that is close by in the spectral norm. This is
a modified version of Algorithm 2, in which the random projection is implemented with an SRFT rather
than a Gaussian random matrix, and where the number of “iterations” q is prespecified. This algorithm
runs in time O(nd ln r + ndrq + nr2) since AΠ can be computed in time O(nd ln r).

SRFT, premultiplying by it takes roughly O(nd ln d) time, and Π1A needs to be post multiplied by a second
random projection in order to compute all of the leverage scores in the allotted time; see [20] for details.
This algorithm is simpler than the algorithm in which we are primarily interested that is applicable to square
SPSD matrices, but we start with it since it illustrates the basic ideas of how our main algorithm works and
since our main algorithm calls it as a subroutine. We note, however, that this algorithm is directly useful for
approximating the leverage scores of Linear Kernel matrices A = XXT , when X is a tall and skinny matrix.

Consider, next, Algorithm 2 (which originally appeared as Algorithm 4 in [20]), which takes as input an
arbitrary n× d matrix A and a rank parameter k, and returns as output a 1± ε approximation to all of the
statistical leverage scores (relative to the best rank-k approximation) of the input. An important technical
point is that the problem of computing the leverage scores of a matrix relative to a low-dimensional space is
ill-posed, essentially because the spectral gap between the kth and the (k+1)st eigenvalues can be small, and
thus Algorithm 2 actually computes approximations to the leverage scores of a matrix that is near to A in the
spectral norm (or the Frobenius norm if q = 0). See [20] for details. Basically, this algorithm uses Gaussian
sampling to find a matrix close by to A in the Frobenius norm or spectral norm and then approximates the
leverage scores of this matrix by using Algorithm 1 on the smaller, very rectangular matrix B. When A is
square, as in our applications, Algorithm 2 is typically more costly than direct computation of the leverage
scores, at least for dense matrices (but it does have the advantage that the number of iterations is bounded,
independent of properties of the matrix, which is not true for typical iterative methods to compute low-rank
approximations).

Of greater practical interest is Algorithm 3, which is a modification of Algorithm 2 in which the Gaussian
random projection is replaced with an SRFT. That is, Algorithm 3 uses an SRFT projection to find a
matrix close by to A in the Frobenius norm or spectral norm (depending on the value of q), and then exactly

computes the leverage scores of this matrix. This improves the running time to O(n2 ln(
√
k +
√

lnn) +

n2(
√
k +
√

lnn)2 ln(k)q + n(
√
k +
√

lnn)4 ln2(k)), which is o(n2k) when q = 0. Thus an important point for
Algorithm 3 (as well as for Algorithm 2) is the parameter q which describes the number of iterations. For
q = 0 iterations, we get an inexpensive Frobenius norm approximation; while for higher q, we get better
spectral norm approximations that are more expensive. This flexibility is of interest, as one may want to
approximate the leverage scores accurately or simply find crude approximations useful for obtaining SPSD
sketches with low reconstruction error.

Finally, note that although choosing the number of iterations q as we did in Algorithm 2 is convenient for
worst-case analysis, as a practical implementational matter it is easier either to choose q based on spectral
gap information revealed during the running of the algorithm or to prespecify q to be small integer, e.g., 2
or 3, before the algorithm runs. Both of these have an interpretation of accelerating the rate of decay of
the spectrum with a power iteration, but they behave somewhat differently due to the different stopping
conditions. Below, we consider both variants.
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(c) HEP, k = 20
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(e) Dexter, k = 8
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(f) Protein, k = 10
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(g) SNPs, k = 5
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(h) Gisette, k = 12
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(i) AbaloneD, σ = .15, k = 20
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(j) AbaloneD, σ = 1, k = 20
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(k) WineD, σ = 1, k = 20
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(l) WineD, σ = 2.1, k = 20
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(m) AbaloneS, σ = .15, k = 20
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(n) AbaloneS, σ = 1, k = 20
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(o) WineS, σ = 1, k = 20
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Figure 6. The times required to compute the (non-rank-restricted) SPSD sketches, as a
function of the number of columns samples ` for several data sets and two choices of the
rank parameter k.

3.4.2. Running Time Comparisons. Here, we describe the performances of the various random sampling
and random projection low-rank extensions considered in Section 3.3 in terms of their running time, where
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(b) GR, k = 60
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(c) HEP, k = 20

60 80 100 120 140 160 180
10

−3

10
−2

10
−1

10
0

10
1

l

tim
e 

(s
)

 

 
levscore
unif
power
frob lev
spectral lev

(d) HEP, k = 60
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(e) Dexter, k = 8
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(f) Protein, k = 10
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(g) SNPs, k = 5
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(h) Gisette, k = 12
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(i) AbaloneD, σ = .15, k = 20
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(j) AbaloneD, σ = 1, k = 20
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(k) WineD, σ = 1, k = 20
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(l) WineD, σ = 2.1, k = 20
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(m) AbaloneS, σ = .15, k = 20
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(n) AbaloneS, σ = 1, k = 20
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(o) WineS, σ = 1, k = 20
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Figure 7. The times required to compute the (non-rank-restricted) approximate leverage
score-based Nyström extensions, as a function of the number of columns samples ` for several
data sets.

the method that involves using the leverage scores to construct the importance sampling distribution is
implemented both by computing the leverage scores “exactly” by calling a truncated SVD, as a black box,
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(a) Protein, k = 10
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(b) SNPs, k = 5

Figure 8. The running time of (non-rank-restricted) Nyström extensions computed using
Algorithm 1 compared with that of other approximate leverage score-based Nyström ex-
tensions, as a function of the number of column samples ` for two Linear Kernel datasets.
The parameters in Algorithm 1 were taken to be r1 = ε−2 ln(dδ−1)(

√
d+

√
ln(nδ−1))2 and

r2 = ε−2(lnn+ ln δ−1) with ε = 1 and δ = 1/10.

20 40 60 80 100
0.5

1

1.5

2

2.5

l

Relative spectral error

 

 
QR lev
unif
power
frob approx lev
spectral approx lev
srft
alg 1

20 40 60 80 100
0.8

0.9

1

1.1

1.2

l

Relative Frobenius error

 

 
QR lev
unif
power
frob approx lev
spectral approx lev
srft
alg 1

20 40 60 80 100

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

l

Relative trace error

 

 
QR lev
unif
power
frob approx lev
spectral approx lev
srft
alg 1

(a) Protein, k = 10,
non-rank-restricted

20 40 60 80 100
1.6

1.8

2

2.2

2.4

l

Relative spectral error

 

 
QR lev
unif
power
frob lev
spectral lev
srft
alg 1

20 40 60 80 100
1.04

1.05

1.06

1.07

1.08

1.09

1.1

l

Relative Frobenius error

 

 
QR lev
unif
power
frob lev
spectral lev
srft
alg 1

20 40 60 80 100
1.03

1.035

1.04

1.045

1.05

1.055

1.06

l

Relative trace error

 

 
QR lev
unif
power
frob lev
spectral lev
srft
alg 1

(b) Protein, k = 10,
rank-restricted

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

l

Relative spectral error

 

 
QR lev
unif
power
frob approx lev
spectral approx lev
srft
alg 1

10 20 30 40 50
0

0.5

1

1.5

2

l

Relative Frobenius error

 

 
QR lev
unif
power
frob approx lev
spectral approx lev
srft
alg 1

10 20 30 40 50
0

0.5

1

1.5

l

Relative trace error

 

 
QR lev
unif
power
frob approx lev
spectral approx lev
srft
alg 1

(c) SNPs, k = 5,
non-rank-restricted
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Figure 9. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of Nyström extensions computed using Algorithm 1 compared with those of
other approximate leverage score-based Nyström schemes, as a function of the number of
columns samples `, for two Linear Kernel data sets. The parameters in Algorithm 1 were
taken to be r1 = ε−2 ln(dδ−1)(

√
d+

√
ln(nδ−1))2 and r2 = ε−2(lnn+ ln δ−1) with ε = 1 and

δ = 1/10.

as well as computing them approximately by using one of several versions of Algorithm 3. Our running time
results are presented in Figure 6 and Figure 7.

We start with the results described in Figure 6, which shows the running times, as a function of `, for the
low-rank approximations described in Section 3.3: i.e., for column sampling uniformly at random without
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replacement; for column sampling according to the exact nonuniform leverage score probabilities; and for
sampling using Gaussian and SRFT mixtures of the columns. Several observations are worth making about
the results presented in this figure.

• Uniform sampling is always less expensive and typically much less expensive than the other methods,
while (with one minor exception) sampling according to the exact leverage scores is always the most
expensive method.

• For most matrices, using the SRFT is nearly as expensive as exact leverage score sampling. This
is most true for the very sparse graph Laplacian Kernels, largely since the SRFT does not respect
sparsity. The main exception to this is for the dense and relatively well-behaved Linear Kernels, where
especially for large values of ` the SRFT is quite fast and usually not too much more expensive than
uniform sampling.

• The “fast Fourier” methods underlying the SRFT can take advantage of the structure of the Linear
Kernels to yield algorithms that are similar to Gaussian projections and much better than exact
leverage score computation. Note that the reason that SRFT is worse than Gaussians here is that
the matrices we are considering are not extremely large, and we are not interested in very large values
of the rank parameter. Extending in both those directions leads to Gaussian projections being slower
than SRFT, as the trends in the figures clearly indicate.

• Gaussian projections are not too much slower than uniform sampling for the extremely sparse Lapla-
cian Kernels—this is due to the sparsity of the Laplacian Kernels, since Gaussian projections can
take advantage of the fast matrix-vector multiply, while the SRFT-based scheme cannot—but this
advantage is lost for the (denser) Sparse RBF Kernels, to the extent that there is little running time
improvement relative to the Dense RBF Kernels. In addition, Gaussian projections are relatively
slower, when compared to the SRFT and uniform sampling, for the Dense RBF Kernels than for the
Linear Kernels, although both of those data sets are maximally dense.

We next turn to the results described in Figure 7, which shows the running times, as a function of `, for
several variants of approximate leverage-based sampling. For ease of comparison, the timings for uniform
sampling (“unif”) and exact leverage score sampling (“levscore”) are depicted in Figure 7 using the same
colors (black and red, respectively) as used in Figure 6. In addition to these two baselines, Figure 7 shows
running time results for the following three variants of approximate leverage score sampling: “frob lev”
(which is Algorithm 3 with q = 0 and r = 2k); “spectral lev” (Algorithm 3 with q = 4 and r = 2k); and
“power”. The “power” scheme is a version of Algorithm 3 where r = k and q is determined by monitoring
the convergence of the leverage scores of A2q+1Π and terminating when the change in the leverage scores
between iterations, as measured in the infinity norm, is smaller than 10−2. This is simply a version of
subspace iteration with a convergence criterion appropriate for the task at hand. Since “frob lev” requires
one application of an SRFT, its timing results are depicted using the same color (blue) as the SRFT timing
results in Figure 6. (There are no other correspondences between the colors in the two figures.) Several
observations are worth making about the results presented in this figure.

• These approximate leverage score-based algorithms can be orders of magnitude faster than exact
leverage score computation; but, especially for “spectral lev” when q is not prespecified to be 2 or
3, they can even be somewhat slower. Exactly which is the case depends upon the properties of the
matrix and the parameters used in the approximation algorithm, including especially the number of
power iterations.

• The “frob lev” approximation method has running time comparable to the running time of the
SRFT, which is expected, given that this computation is the theoretical bottleneck for its running
time. In particular, for larger values of ` for Linear Kernels, the running time or “frob lev” is not
too much worse than that of uniform sampling.

• The “spectral lev” and “power” approximations with q > 0 are more expensive than the q = 0 “frob
lev” approximation, which is a result of the relatively-expensive matrix-matrix multiplication. For
the Linear Kernels, both are much better than the exact leverage score computation, and for most
other data at least “power” is somewhat less expensive than the exact leverage score computation.
For example, this is particularly true for the Laplacian Kernels.

Recall that the cost associated with these SPSD sketches is two-fold: first, the cost to construct the sample
by sampling columns uniformly at random, by computing a nonuniform importance sampling distribution,
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or by performing a random projection to uniformize the leverage scores; and second, the cost to construct
the low-rank approximation from the sample. For uniform sampling, the latter step dominates the cost,
while for more sophisticated methods the former step typically dominates the cost. In particular, note that
the approximate leverage score sampling methods are still sufficiently expensive that the cost to compute
the importance sampling probabilities still dominates the cost to construct the low-rank approximation.

Finally, Algorithm 1 can be used to approximate quickly the leverage scores of matrices of the form
A = XXT , when X ∈ Rn×d is a rectangular matrix of sufficent aspect ratio, and in such cases it is faster
than Algorithm 3. Specifically, for the first dimensional reduction step in Algorithm 1 to be beneficial (i.e.,
to ensure r1 < n), the condition n = Ω(d ln d) is necessary; for the second dimensional reduction step to be
beneficial (i.e., to ensure r2 < d), the condition d = Ω(lnn) must be satisfied. Figure 8 illustrates, using the
Linear Kernel datasets Protein and SNPs (which satisfy these constraints), two points.

• Most importantly, the running time of Algorithm 1 on these rectangular matrices is faster than
performing a QR decomposition on A and is comparable to applying a SRFT to A.

• In addition, the running time of Algorithm 1 is significantly faster than the other approximate
leverage score algorithms.

Figure 9 shows that these improved running time gains can come at the cost of a slight loss in the accuracy
(relative to the exact computation of the leverage scores) of the low-rank approximations; the accuracy of
the other approximate leverage score algorithms is discussed in the following subsection.

3.4.3. Reconstruction Accuracy Results. Here, we describe the performances of the various Nyström-based
low-rank approximations that use approximate leverage scores in terms of reconstruction accuracy for the
data sets described in Section 3.1. The results are presented in Figure 10 through Figure 14. The setup for
these results parallels that for the Nyström-based low-rank approximation results described in Section 3.3,
and these figures parallel Figure 1 through Figure 5. To provide a baseline for the comparison, we also
plot the previous reconstruction errors for sampling with the exact leverage scores as well as the uniform
column sampling extension (using the same red and black colors, respectively). Several observations are
worth making about the results presented in these figures.

• For Laplacian Kernels, for the non-rank-restricted results, “frob lev” is only slightly better than
uniform sampling (although subsequent figures show that this is peculiar to the Laplacian Kernels),
while “power” and “spect lev” are substantially better than uniform sampling. Interestingly, all of
those methods also lead to better reconstruction results even than using the more expensive exact
leverage scores. This is true, both in terms of reconstruction quality for a given `, and also in that
using the approximate leverage scores does not lead to the saturation effect that we see when using
the exact leverage scores.

• For Laplacian Kernels, for the rank-restricted results, the “frob lev” results are similar to the exact
leverage score results for ` = k, but the quality degrades considerably as ` increases. On the other
hand, “power” and “spectral lev” are much better than using the exact leverage scores when ` = k,
and are slightly better or only slightly worse as ` increases.

• For the Linear Kernels, all the methods perform similarly in the non-rank-restricted case; while in
the rank-restricted case, the methods that use approximate leverage scores tend to parallel the exact
leverage score results, both when those get better and when those get worse with increasing `.

• For both the dense and sparse RBF data sets, for the non-rank-restricted case, the approximate
leverage score algorithms tend to parallel the exact leverage score algorithm, and they are not
substantially better. In particular, both “power” and “spectral lev” tend to saturate when the exact
method saturates, but in those cases “frob lev” tends not to saturate.

• For both the dense and sparse RBF data sets, for the rank-restricted case, the results depend on
the value of the σ width parameter. When σ is larger and the matrices are more homogeneous, all
the methods tend to parallel each other (although WineS is an exception). When σ is smaller, “frob
lev” is generally better than uniform sampling but worse than the other methods for ` = k, but it
degrades with increasing `; while both “power” and “spectral lev” tend to parallel the results for the
exact leverage scores.

Note that the difference between different approximate leverage score algorithms often corresponds to a
difference in the spectral gaps of the corresponding matrices. From Table 4, if we fix k and use the ap-
proximate leverage scores filtered through rank k to form a Nyström approximation to A, the accuracy of
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(a) GR, k = 20
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(b) GR, k = 60
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(c) HEP, k = 20

60 80 100 120 140 160 180
1.0807

1.0807

1.0807

1.0807

1.0807

l

Relative spectral error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

60 80 100 120 140 160 180
0.985

0.99

0.995

1

1.005

l

Relative Frobenius error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

60 80 100 120 140 160 180
0.98

0.99

1

1.01

1.02

l

Relative trace error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

(d) HEP, k = 60
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(e) GR, k = 20
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(f) GR, k = 60
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(g) HEP, k = 20
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(h) HEP, k = 60

Figure 10. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) approximate leverage score-based Nyström schemes, as a function of the number of
columns samples `, for the GR and HEP Laplacian data sets, with two choices of the rank
parameter k.

that approximation has a strong dependence on the spectral gap of A at rank k, as measured by σk

σk+1
. In

general, the larger the spectral gap, the more accurate the approximation. This phenomena can also be
understood in terms of the convergence of the approximate leverage scores: the approximation algorithms
are essentially truncated versions of the subspace iteration method for computing the top k eigenvectors of
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(a) Enron, k = 20
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(b) Enron, k = 60
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(c) Gnutella, k = 20
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(d) Gnutella, k = 60
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(e) Enron, k = 20
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(f) Enron, k = 60
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(g) Gnutella, k = 20
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(h) Gnutella, k = 60

Figure 11. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) approximate leverage score-based Nyström schemes, as a function of the number of
columns samples `, for the Enron and Gnutella Laplacian data sets, with two choices of the
rank parameter k.

A. It is a classical result that the spectral gap determines the rate of convergence of the subspace iteration
process to the desired eigenvectors: the larger it is, the fewer iterations of the process are required to get
accurate approximations of the top eigenvectors. It follows immediately that the larger the spectral gap,
the more accurate the approximate leverage scores generated by these approximation algorithms are. Our
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(a) Dexter, k = 8
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(b) Protein, k = 10
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(c) SNPs, k = 5
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(d) Gisette, k = 12
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(e) Dexter, k = 8

20 40 60 80 100
1.6

1.8

2

2.2

2.4

l

Relative spectral error

 

 
leverage
unif
power
frob lev
spectral lev

20 40 60 80 100
1.04

1.05

1.06

1.07

1.08

1.09

1.1

l

Relative Frobenius error

 

 
leverage
unif
power
frob lev
spectral lev

20 40 60 80 100
1.03

1.035

1.04

1.045

1.05

1.055

1.06

l

Relative trace error

 

 
leverage
unif
power
frob lev
spectral lev

(f) Protein, k = 10
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(g) SNPs, k = 5
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(h) Gisette, k = 12

Figure 12. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) approximate leverage score-based Nyström schemes, as a function of the number of
columns samples `, for the Linear Kernel data sets

empirical results illustrate the complexities and subtle consequences of these properties in realistic machine
learning applications.
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(a) AbaloneD, σ = .15, k = 20
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(b) AbaloneD, σ = 1, k = 20

20 40 60 80 100 120 140 160
1

1.5

2

2.5

3

l

Relative spectral error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

20 40 60 80 100 120 140 160
0.95

1

1.05

1.1

1.15

l

Relative Frobenius error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

20 40 60 80 100 120 140 160
0.95

1

1.05

l

Relative trace error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

(c) WineD, σ = 1, k = 20

20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

l

Relative spectral error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

20 40 60 80 100 120 140 160
0.5

1

1.5

2

l

Relative Frobenius error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

20 40 60 80 100 120 140 160
0.8

1

1.2

1.4

1.6

l

Relative trace error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

(d) WineD, σ = 2.1, k = 20
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(e) AbaloneD, σ = .15, k = 20
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(f) AbaloneD, σ = 1, k = 20
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(g) WineD, σ = 1, k = 20
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(h) WineD, σ = 2.1, k = 20

Figure 13. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) approximate leverage score-based Nyström schemes, as a function of the number of
columns samples `, for several dense RBF data sets.

3.4.4. Summary of Leverage Score Approximation Algorithms. Before proceeding, there are several summary
observations that we can make about the running time and reconstruction quality of approximate leverage
score sampling algorithms for the data sets we have considered.



REVISITING THE NYSTRÖM METHOD FOR IMPROVED LARGE-SCALE MACHINE LEARNING 31

20 40 60 80 100 120 140 160
0.5

1

1.5

2

l

Relative spectral error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

20 40 60 80 100 120 140 160
0.99

0.995

1

1.005

1.01

1.015

1.02

l

Relative Frobenius error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

20 40 60 80 100 120 140 160
0.96

0.97

0.98

0.99

1

1.01

1.02

l

Relative trace error

 

 
leverage
unif
power
frob approx lev
spectral approx lev

(a) AbaloneS, σ = .15, k = 20
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(b) AbaloneS, σ = 1, k = 20
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(c) WineS, σ = 1, k = 20
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(d) WineS, σ = 2.1, k = 20
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(e) AbaloneS, σ = .15, k = 20
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(f) AbaloneS, σ = 1, k = 20
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(g) WineS, σ = 1, k = 20
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(h) WineS, σ = 2.1, k = 20

Figure 14. The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several (non-rank-restricted in top panels and rank-restricted in bottom
panels) approximate leverage score-based Nyström schemes, as a function of the number of
columns samples `, for several sparse RBF data sets.

• The running time of computing the exact leverage scores is generally much worse than that of uniform
sampling and both SRFT-based and Gaussian-based random projection methods.
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• The running time of computing approximations to the leverage scores can, with appropriate choice
of parameters, be much faster than the exact computation of the leverage scores; and, especially for
“frob lev,” can be comparable to the running time of the random projection (SRFT or Gaussian)
used in the leverage score approximation algorithm. For the methods that involve q > 0 iterations
to compute stronger approximations to the leverage scores, the running time can vary considerably
depending on details of the stopping condition.

• The leverage scores computed by the “frob lev” procedure are typically very different than the
“exact” leverage scores, but they are leverage scores for a low-rank space that is near the best rank-k
approximation to the matrix. This is often sufficient for good low-rank approximation, although the
reconstruction accuracy can degrade in the rank-restricted cases as ` is increased.

• The approximate leverage scores computed from “power” and “spectral lev” approach those of the
exact leverage scores, as q is increased; and they obtain reconstruction accuracy that is no worse, and
in many cases is better, than than obtained by the exact leverage scores. This suggests that, by not
fitting exactly to the empirical statistical leverage scores, we are observing a form of regularization.

• The running time of Algorithm 1, when applied to “tall” matrices for which n � d, is faster than
the running time of performing a QR decomposition of the matrix A; and it is comparable to
the running time of applying a random projection to A (which is the computational bottleneck of
applying Algorithm 1). Thus, one could use this algorithm to compute approximations to the leverage
scores to obtain relative-error approximations to a least-squares problem involving A [22, 23, 45], or
one could use the sketch thereby obtained as a preconditioner to an iterative method to solve the
least-squares problem, in a manner analogous to how Blendenpik or LSRN does so with a random
projection [3, 49].

Previous work has showed that one can implement random projection algorithms to provide low-rank ap-
proximations with error comparable to that of the SVD in less time than state-of-the art Krylov solvers and
other “exact” numerical methods. Our empirical results show that these random projection algorithms can
be used in two complementary ways to approximate SPSD matrices of interest in machine learning: first,
they can be used directly to compute projection-based low-rank approximation; and second, they can be
used to compute approximations to the leverage scores, which can be used to compute sampling-based low-
rank approximation. With the right choice of parameters, the two complementary approaches have roughly
comparable running times, and neither one dominates the other in terms of reconstruction accuracy.

4. Theoretical Aspects of SPSD Low-rank Approximation

In this section, we present our main theoretical results, which consist of a suite of bounds on the quality
of low-rank approximation under several different sketching methods. As mentioned above, these were
motivated by our empirical observation that all of the sampling and projection methods we considered
perform much better on the SPSD matrices we considered than previous worst-case bounds (e.g., [21, 38, 28])
would suggest. We start in Section 4.1 with deterministic structural conditions for the spectral, Frobenius,
and trace norms; and then in Section 4.2 we use these results to provide our bounds for several random
sampling and random projection procedures.

4.1. Deterministic Error Bounds for Low-rank SPSD Approximation. In this section, we present
three theorems that provide error bounds for the spectral, Frobenius, and trace norm approximation errors
under the SPSD Sketching Model of Section 2.2. These are provided in Sections 4.1.1, 4.1.2, and 4.1.3,
respectively, and they are followed by several more general remarks in Section 4.1.4. Note that these bounds
hold for any, e.g., deterministic or randomized, sketching matrix S. Thus, e.g., one could use them to check,
in an a posteriori manner, the quality of a sketching method for which one cannot establish an a priori
bound. Rather than doing this, we use these results (in Section 4.2 below) to derive a priori bounds for
when the sketching operation consists of common random sampling and random projection algorithms.

4.1.1. Spectral Norm Bounds. We start with a bound on the spectral norm of the residual error. Although
this result is trivial to prove, given prior work, it highlights several properties that we use in the analysis of
our subsequent results.

Theorem 1. Let A be an n×n SPSD matrix with eigenvalue decomposition partitioned as in Equation (1),
S be a sampling matrix of size n × `, and Ω1 and Ω2 be as defined in Equation (3). Then when C = AS
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and W = STAS, the corresponding low-rank SPSD approximation satisfies∥∥A−CW†CT
∥∥
2
≤ ‖Σ2‖2 +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2
,

assuming Ω1 has full row rank.

Proof. In [28], it is shown that

(9)
∥∥A−CW†CT

∥∥
2

=
∥∥∥A1/2 −PA1/2SA1/2

∥∥∥2
2
.

Next, recall that Ωi = UT
i S, and assume that Ω1 has full row rank. It can be shown that

(10) ‖X−PXSX‖22 ≤ ‖Σ2‖22 +
∥∥∥Σ2Ω2Ω

†
1

∥∥∥2
2
,

for any arbitrary matrix X [14, 31]. The theorem follows by combining these results. �

Remark. The proof of Theorem 1 proceeds in two steps. The first step relates low-rank approximation of
an SPSD matrix A under the SPSD Sketching Model of Section 2.2 to column sketching (e.g., sampling or
projecting) from the square-root of A. A much weaker form of this was used in [21], but the stronger form
that we use here in Equation (9) was first proved in [28]. The second step is to use a deterministic structural
result that holds for sampling/projecting from an arbitrary matrix. A bound of the form of Equation (10)
was originally proven in [14] for solving the Column Subset Selection Problem, and it was improved in [31],
where it was applied to a random projection algorithm. Although the analyses of our next two results are
more complicated, they follow the same high-level two-step approach.

4.1.2. Frobenius Norm Bounds. Next, we state and prove the following bound on the Frobenius norm of the
residual error. The proof parallels that for the spectral norm bound, in that we divide it into two analogous
parts, but the analysis is somewhat more complex.

Theorem 2. Let A be an n×n SPSD matrix with eigenvalue decomposition partitioned as in Equation (1),
S be a sampling matrix of size n × `, and Ω1 and Ω2 be as defined in Equation (3). Then when C = AS
and W = STAS, the corresponding low-rank SPSD approximation satisfies∥∥A−CW†CT

∥∥
F
≤ ‖Σ2‖F +

√
2
∥∥∥Σ2Ω2Ω

†
1

∥∥∥
F

+
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2
F
,

assuming Ω1 has full row rank.

Proof. In [28], it is shown that CW†CT = A1/2PA1/2SA1/2, and from this it follows that∥∥A−CW†CT
∥∥
F

=
∥∥∥A1/2(I−PA1/2S)A1/2

∥∥∥
F
.

To bound this, we first use the unitary invariance of the Frobenius norm and the fact that PA1/2S =
UPΣ1/2UT SUT to obtain

E :=
∥∥∥A1/2(I−PA1/2S)A1/2

∥∥∥2
F

=
∥∥∥Σ1/2(I−PΣ1/2UT S)Σ1/2

∥∥∥2
F
.

Then we take

(11) Z = Σ1/2UTSΩ†1Σ
−1/2
1 =

(
I
F

)
,

where I ∈ Rk×k and F ∈ Rn−k×k is given by F = Σ
1/2
2 Ω2Ω

†
1Σ
−1/2
1 . The latter equality holds because of our

assumption that Ω1 has full row rank. Since the range of Z is contained in the range of Σ1/2UTS,

E ≤
∥∥∥Σ1/2(I−PZ)Σ1/2

∥∥∥2
F
.

In [31], it is shown that

(12) PZ �
(

I− (I + FTF)−1 −(I + FTF)−1FT

−F(I + FTF)−1 I− F(I + FTF)−1FT

)
.
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This implies that

E ≤
∥∥∥∥Σ1/2

(
I− (I + FTF)−1 −(I + FTF)−1FT

−F(I + FTF)−1 I− F(I + FTF)−1FT

)
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∥∥∥∥2
F

=
∥∥∥Σ1/2

1
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+ 2
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2
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F
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2
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I− F(I + FTF)−1FT
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Σ

1/2
2
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F

:= T1 + T2 + T3.

(13)

Next, we provide bounds for T1, T2, and T3. Using the fact that 0 � I−F(I+FTF)−1FT � I, we can bound
T3 with

T3 ≤ ‖Σ2‖2F .
Likewise, the fact that I− (I + FTF)−1 � FTF (which is shown in [31]) implies that we can bound T1 as

T1 ≤
∥∥∥Σ1/2

1 FTFΣ
1/2
1

∥∥∥2
F
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†
1
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F
.

To bound T2, we first expand in terms of the trace:

T2 = 2 Tr
(
Σ

1/2
2 F(I + FTF)−1Σ1(I + FTF)−1FTΣ

1/2
2

)
= 2 Tr
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1/2
2 FMTMFTΣ
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(14)

where

M := Σ
1/2
1 (I + FTF)−1

= Σ
1/2
1
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We observe that
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which in turn implies that
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Since ‖AB‖2 = ‖BA‖2 for any nonsingular matrices A and B, we see that∥∥∥[Σ1 +
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†
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Thus we deduce that[
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In turn, this implies that
MTM � Σ1.

Using this estimate in Equation (14), we find that

T2 ≤ 2 Tr
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Combining our estimates for T1, T2, and T3 with Equation (13) gives

E =
∥∥∥A1/2(I−PA1/2S)A1/2
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The claimed bound follows by applying the subadditivity of the square-root function:∥∥∥A1/2(I−PA1/2S)A1/2
∥∥∥
F
≤ ‖Σ2‖F +
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+
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.
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�

Remark. The quality of approximation guarantee provided by Theorem 2 depends on two quantities,∥∥∥Σ2Ω2Ω
†
1

∥∥∥
F

and
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2
F

, that depend in two slightly different ways on how the singular value struc-

ture of A interacts with the sampled version of the subspace structure. As we see in Section 4.2, the extent
to which we can bound each of these for different sketching procedures is slightly different.

4.1.3. Trace Norm Bounds. Finally, we state and prove the following bound on the trace norm of the residual
error. The proof method is analogous to that for the spectral and Frobenius norm bounds.

Theorem 3. Let A be an n×n SPSD matrix with eigenvalue decomposition partitioned as in Equation (1),
S be a sampling matrix of size n × `, and Ω1 and Ω2 be as defined in Equation (3). Then when C = AS
and W = STAS, the corresponding low-rank SPSD approximation satisfies∥∥A−CW†CT

∥∥
?
≤ Tr (Σ2) +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F
,

assuming Ω1 has full row rank.

Proof. Since A−CW†CT = A1/2(I−PA1/2S)A1/2 � 0, its trace norm simplifies to its trace. Thus∥∥A−CW†CT
∥∥
?

= Tr
(
A−CW†CT

)
= Tr

(
Σ1/2(I−PΣ1/2S)Σ1/2

)
≤ Tr

(
Σ1/2(I−PZ)Σ1/2

)
,

where Z =

(
I
F

)
is defined in Equation (11). The semidefinite upper bound on PZ supplied in Equation (12)

implies that

Tr
(
Σ1/2(I−PZ)Σ1/2

)
≤ Tr

(
Σ

1/2
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1/2
1

)
+ Tr

(
Σ

1/2
2 (I− F(I + FTF)−1FT )Σ

1/2
2

)
.

Recall the estimate I− (I+FTF)−1 � FTF (shown in [31]) and the basic estimate I−F(I+FTF)−1FT � I.
Together these imply that

Tr
(
Σ1/2(I−PZ)Σ1/2

)
≤ Tr

(
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1/2
1 FTFΣ

1/2
1

)
+ Tr (Σ2)

= Tr (Σ2) +
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2
F
.

The final equality follows from substituting the definition of F and identifying the squared Frobenius norm.
We have established the claimed bound.

�

Remark. Since the identity ‖X‖2F =
∥∥XXT

∥∥
?

holds for any matrix X, the squared Frobenius norm terms

present in the deterministic error bounds for the Frobenius and trace norm errors are on the scale of ‖Σ2‖?
when

∥∥∥Ω2Ω
†
1

∥∥∥
2

is O(1).

4.1.4. Additional Remarks on Our Deterministic Structural Results. Before applying these deterministic
structural results in particular randomized algorithmic settings, we pause to make several additional remarks
about these three theorems.
Remark. We emphasize that these theorems are deterministic structural results that bound the excess
error (beyond that of the optimal rank-k approximation) of low-rank approximations which follow our SPSD
sketching model. That is, there is no randomness in their statement or analysis. In particular, these bounds
hold for deterministic as well as randomized sketching matrices S. In the latter case, the randomness enters
only through S, and one needs to show that the condition that Ω1 has full row rank is satisfied with high
probability; conditioned on this, the quality of the bound is determined by terms that depend on how the
sketching matrix interacts with the subspace structure of the matrix A.
Remark. In particular, we remind the reader that (although it is beyond the scope of this paper to explore
this point in detail) these deterministic structural results could be used to check, in an a posteriori manner,
the quality of a sketching method for which one cannot establish an a priori bound.
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Remark. We also emphasize that the assumption that Ω1 has full row rank is very non-trivial; and
that it is false, in worst-case at least and for non-trivial parameter values, for common sketching methods
such as uniform sampling. To see that some version of leverage-based sampling is needed to ensure this
condition, recall that UT

1 U1 = I and thus that Ω1Ω
T
1 = UT

1 SSTU1 can be viewed as approximating I with
a small number of rank-1 components of UT

1 U1. The condition that Ω1 has full row rank is equivalent to∥∥UT
1 U1 −UT

1 SSTU1

∥∥
2
< 1. Work on approximating the product of matrices by random sampling shows

that to obtain non-trivial bounds one must sample with respect to the norm of the rank-1 components [19],
which here (since we are approximating the product of two orthogonal matrices) equal the statistical leverage
scores. From this perspective, random projections satisfy this condition since (informally) they rotate to a
random basis where the leverage scores of the rotated matrix are approximately uniform and thus where
uniform sampling is appropriate [23, 45].
Remark. As observed recently [4], methods that use knowledge of a matrix square root Φ (i.e., a Φ such that
A = ΦΦT ) typically lead to Ω(n2) complexity. An important feature of our approach is that we only use the
matrix square root implicitly—that is, inside the analysis, and not in the statement of the algorithm—and
thus we do not incur any such cost.

Remark. For some randomized sampling schemes, it may be difficult to obtain a sharp bound on
∥∥∥Ω2Ω

†
1

∥∥∥
ξ

for ξ = 2, F . In these situations, the bounds on the excess error supplied by Theorems 1, 2, and 3 may
be quite pessimistic. On the other hand, since A − CW†CT = A1/2(I − PA1/2S)A1/2, it follows that
0 � A−CW†CT � A. This implies that the errors of any Nyström extension, deterministic or randomized,
satisfy at least the crude bound

∥∥A−CW†CT
∥∥
ξ
≤ ‖A‖ξ.

4.2. Stochastic Error Bounds for Low-rank SPSD Approximation. In this section, we apply the
three theorems from Section 4.1 to bound the reconstruction errors for several random sampling and random
projection methods that conform to our SPSD Sketching Model. In particular, we consider two variants of
random sampling and two variants of random projections: sampling columns according to an importance
sampling distribution that depends on the statistical leverage scores (in Section 4.2.1); randomly projecting
by using subsampled randomized Fourier transformations (in Section 4.2.2); randomly projecting by uni-
formly sampling from Gaussian mixtures of the columns (in Section 4.2.3); and, finally, sampling columns
uniformly at random (in Section 4.2.4).

Before establishing these results, we pause here to provide a brief review of running time issues, some
of which were addressed empirically in Section 3. The computational bottleneck for random sampling
algorithms (except for uniform sampling that we address in Section 4.2.4, which is trivial to implement) is
often the exact or approximate computation of the importance sampling distribution with respect to which
one samples; and the computational bottleneck for random projection methods is often the implementation
of the random projection. For example, if the sketching matrix S is a random projection constructed as an
n× ` matrix of i.i.d. Gaussian random variables, as we use in Section 4.2.3, then the running time of dense
data in RAM is not substantially faster than computing U1, while the running time can be much faster
for certain sparse matrices or for computation in parallel or distributed environments. Alternately, if the
sketching matrix S is a Fourier-based projection, as we use in Section 4.2.2, then the running time for data
stored in RAM is typically O(n2 ln k), as opposed to the O(n2k) time that would be needed to compute U1.
These running times depend sensitively on the size of the data and the model of data access; see [45, 31] for
detailed discussions of these issues.

In particular, for random sampling algorithms that use a leverage-based importance sampling distribution,
as we use in Section 4.2.1, it is often said that the running time is no faster than that of computing U1.
(This O(n2k) running time claim is simply the running time of the näıve algorithm that computes U1

“exactly,” e.g., with a variant of the QR decomposition, and then reads off the Euclidean norms of the
rows.) However, the randomized algorithm of [20] that computes relative-error approximations to all of the
statistical leverage in a time that is qualitatively faster—in worst-case theory and, by using existing high-
quality randomized numerical code [3, 49, 31], in practice—gets around this bottleneck, as was shown in
Section 3. The computational bottleneck for the algorithms of [20] is that of applying a random projection,
and thus the running time for leverage-based Nyström extension is that of applying a (“fast” Fourier-based
or “slow” Gaussian-based, as appropriate) random projection to A [20]. See Section 3 or [3, 49, 31] for
additional details.
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4.2.1. Sampling with Leverage-based Importance Sampling Probabilities. Here, the columns of A are sampled
with replacement according to a nonuniform probability distribution determined by the (exact or approxi-
mate) statistical leverage scores of A relative to the best rank-k approximation to A, which in turn depend
on nonuniformity properties of the top k-dimensional eigenspace of A. To add flexibility (e.g., in case the
scores are computed only approximately with the fast algorithm of [20]), we formulate the following lemma in
terms of any probability distribution that is β-close to the leverage score distribution. In particular, consider
any probability distribution satisfying

pj ≥
β

k
‖(U1)j‖22 and

∑n

j=1
pj = 1,

where β ∈ (0, 1]. Given these (β-approximate) leverage-based probabilities, the sampling matrix is S = RD
where R ∈ Rn×` is a column selection matrix that samples columns of A from the given distribution—i.e.,
Rij = 1 iff the ith column of A is the jth column selected—and D is a diagonal rescaling matrix satisfying
Djj = 1√

`pi
iff Rij = 1. For this case, we can prove the following.

Lemma 1. Let A be an n × n SPSD matrix and S be a sampling matrix of size n × ` corresponding to a
leverage-based probability distribution derived from the top k-dimensional eigenspace of A, satisfying

pj ≥
β

k
‖(U1)j‖22 and

∑n

j=1
pj = 1,

for some β ∈ (0, 1]. Fix a failure probability δ ∈ (0, 1] and approximation factor ε ∈ (0, 1].
If ` ≥ 3200(βε2)−1k ln(4k/(βδ)), then the corresponding low-rank SPSD approximation satisfies∥∥A−CW†CT

∥∥
2
≤ ‖A−Ak‖2 + ε2 ‖A−Ak‖? ,(15) ∥∥A−CW†CT

∥∥
F
≤ (1 +

√
2ε) ‖A−Ak‖F + ε2 ‖A−Ak‖? , and(16) ∥∥A−CW†CT

∥∥
?
≤ (1 + ε2) ‖A−Ak‖? ,(17)

each with probability at least 1− 4δ − 0.4.

Proof. In [44, proof of Proposition 22] it is shown that if ` satisfies the given bound and the samples are
drawn from an approximate subspace probability distribution, then∥∥∥Σ2Ω2Ω

†
1

∥∥∥
F
≤ ε ‖Σ2‖F

with probability at least 1− 2δ − 0.2. It follows that similarly∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F
≤ ε2

∥∥∥Σ1/2
2

∥∥∥2
F

= ε2 ‖Σ2‖?

with probability at least 1−2δ−0.2. These estimates used in Theorems 2 and 3 yield the stated bounds for the

Frobenius and trace norms. The spectral norm error follows from Theorem 1, the bound on
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2
F
,

and the fact that the spectral norm of a matrix is smaller than its Frobenius norm.
�

Remark. The additive scale factors for the spectral and Frobenius norm bounds are much improved relative
to the prior results of [21]. At root, this is since the leverage score importance sampling probabilities highlight
structural properties of the data (e.g., how to satisfy the condition in Theorems 1, 2, and 3 that Ω1 has full
row rank) in a more refined way than the importance sampling probabilities of [21].
Remark. These improvements come at additional computational expense, but we remind the reader that
leverage-based sampling probabilities of the form used by Lemma 1 can be computed faster than the time
needed to compute the basis U1 [20]. The computational bottleneck of the algorithm of [20] is the time
required to perform a random projection on the input matrix.
Remark. Not surprisingly, constant factors such as 3200 (as well as other similarly large factors below)
and a failure probability bounded away from zero are artifacts of the analysis; the empirical behavior of this
sampling method is much better. This has been observed previously [22, 47].
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4.2.2. Random Projections with Subsampled Randomized Fourier Transforms. Here, the columns of A are
randomly mixed using a unitary matrix before the columns are sampled. In particular, S =

√
n
`DTR, where

D is a diagonal matrix of Rademacher random variables, T is a highly incoherent unitary matrix, and R
restricts to ` columns. For concreteness, and because it has an associated fast transform, we consider the
case where T is the normalized Fourier transform of size n× n. For this case, we can prove the following.

Lemma 2. Let A be an n × n SPSD matrix and S =
√

n
`DFR be a sampling matrix of size n × `, where

D is a diagonal matrix of Rademacher random variables, F is a normalized Fourier matrix of size n × n,
and R restricts to ` columns. Fix a failure probability δ ∈ (0, 1), approximation factor ε ∈ (0, 1), and assume
that k ≥ 4.

If ` ≥ 24ε−1[
√
k+

√
8 ln(8n/δ)]2 ln(8k/δ), then the corresponding low-rank SPSD approximation satisfies∥∥A−CW†CT
∥∥
2
≤
(

1 +
1

1−
√
ε
·
(

5 +
16 ln(n/δ)2

`

))
‖A−Ak‖2 +

2 ln(n/δ)

(1−
√
ε)`
‖A−Ak‖? ,∥∥A−CW†CT

∥∥
F
≤ (1 +

√
44ε) ‖A−Ak‖F + 22ε ‖A−Ak‖? , and∥∥A−CW†CT

∥∥
?
≤ (1 + 22ε) ‖A−Ak‖? ,(18)

each with probability at least 1− δ.

Proof. In [13, proof of Theorem 4], it is shown that for this choice of S and number of samples `,∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2
≤ 1

1−
√
ε
·
(

5
∥∥∥Σ1/2

2

∥∥∥2
2

+
ln(n/δ)

`

(∥∥∥Σ1/2
2

∥∥∥
F

+
√

8 ln(n/δ)
∥∥∥Σ1/2

2

∥∥∥
2

)2)
=

1

1−
√
ε
·
(

5 ‖Σ‖2 +
ln(n/δ)

`

(
‖Σ2‖1/2? +

√
8 ln(n/δ) ‖Σ2‖1/22

)2)
≤ 1

1−
√
ε
·
((

5 +
16 ln(n/δ)2

`

)
‖Σ2‖2 +

2 ln(n/δ)

`
‖Σ2‖?

)
and ∥∥∥Σ2Ω2Ω

†
1

∥∥∥
F
≤
√

22ε ‖Σ2‖F
with probability at least 1− δ. Likewise, with the same probability∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2
F
≤ 22ε

∥∥∥Σ1/2
2

∥∥∥2
F

= 22ε ‖Σ2‖? .

These estimates used in Theorems 1, 2, and 3 yield the stated bounds. �

Remark. Suppressing the dependence on δ and ε, the spectral norm bound ensures that when k = Ω(lnn)
and ` = Ω(k ln k), then∥∥A−CW†CT

∥∥
2

= O

(
lnn

ln k
‖A−Ak‖2 +

1

ln k
‖A−Ak‖?

)
.

This should be compared to the guarantee established in Lemma 3 below for Gaussian-based SPSD sketches
constructed using the same number of measurements:∥∥A−CW†CT

∥∥
2

= O

(
‖A−Ak‖2 +

1

k ln k
‖A−Ak‖?

)
.

Lemma 2 guarantees that errors on this order can be achieved if one increases the number of samples by a loga-
rithm factor in the dimension: specifically, such a bound is achieved when k = Ω(lnn) and ` = Ω(k ln k lnn).
The difference between the number of samples necessary for Fourier-based sketches and Gaussian-based
sketches is reflective of the differing natures of the random projections: the geometry of any k-dimensional
subspace is preserved under projection onto the span of ` = O(k) Gaussian random vectors [31], but the
sharpest analysis available suggests that to preserve the geometry of such a subspace under projection onto
the span of ` SRFT vectors, ` must satisfy ` = Ω(max{k, lnn} ln k) [58]. We note, however, that in practice
the Fourier-based and Gaussian-based SPSD sketches have similar reconstruction errors.
Remark. The structure of the Frobenius and trace norm bounds for the Fourier-based projection are
identical to the structure of the corresponding bounds from Lemma 1 for leverage-based sampling (and
the bounds could be made identical with appropriate choice of parameters). This is not surprising since
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(informally) Fourier-based (and other) random projections rotate to a random basis where the leverage
scores are approximately uniform and thus where uniform sampling is appropriate [45]. The disparity of the
spectral norm bounds suggests that leverage-based SPSD sketches should be expected to be more accurate in
the spectral norm than Fourier-based sketches; the empirical results of Section 3.3 support this interpretation.
The running times of the Fourier-based and the leverage-based algorithms are the same, to leading order, if
the algorithm of [20] (which uses the same transform S =

√
n
`DHR) is used to approximate the leverage

scores.

4.2.3. Random Projections with I.I.D. Gaussian Random Matrices. Here, the columns of A are randomly
mixed using Gaussian random variables before sampling. Thus, the entries of the sampling matrix S ∈ Rn×`
are i.i.d. standard Gaussian random variables. We consider two cases: first, when the number of samples
is comparable to and only slightly larger than the desired rank, i.e., ` = k + p for some parameter p; and
second, when the number of samples is logarithmically larger than the desired rank ` = Ω(k ln k). The former
case has proven to be a useful parameterization for certain numerical implementations [45, 31]; we already
see that the guarantees here are as good as those for the leverage-based sampling algorithm with Ω(k ln k)
samples, and better than those for Fourier-based sampling. The latter case is more expensive, but we see
that the bounds are considerably sharper, suggesting that in situations where one desires high accuracy,
one can use SPSD sketches based on Ω(k ln k) Gaussian-based samples. For these two cases, we prove the
following.

Lemma 3. Let A be an n×n SPSD matrix and S ∈ Rn×` be a matrix of i.i.d standard Gaussians. If ` = k+p
where p = kε−2 for some ε ∈ (0, 1] and k > 4, then the corresponding low-rank SPSD approximation satisfies

∥∥A−CW†CT
∥∥
2
≤
(

1 + 89ε2 + 874ε2
ln k

k

)
· ‖A−Ak‖2 + 219

ε2

k
· ‖A−Ak‖? ,

∥∥A−CW†CT
∥∥
F
≤ (1 + 7ε) · ‖A−Ak‖F + 45ε2 · ‖A−Ak‖? +

(
30ε

√
ln k

k
+ 874ε2

ln k

k

)
· ‖A−Ak‖2 ,

∥∥A−CW†CT
∥∥
?
≤ (1 + 45ε2) · ‖A−Ak‖? + 874ε2

ln k

k
· ‖A−Ak‖2

each with probability at least 1− 2k−1 − 4e−k/ε
2

.
If additionally ` ≥ 2ε−2k ln k, then

∥∥A−CW†CT
∥∥
2
≤
(

1 + 89ε2
1

ln k
+ 874ε2

1

k

)
· ‖A−Ak‖2 + 219

ε

k ln k
· ‖A−Ak‖? ,∥∥A−CW†CT

∥∥
F
≤
(

1 +
7√
ln k

ε

)
· ‖A−Ak‖F +

45

ln k
ε2 · ‖A−Ak‖? +

(
15√
k
ε+

437

k
ε2
)
· ‖A−Ak‖2∥∥A−CW†CT

∥∥
?
≤
(

1 +
45

ln k
ε2
)
· ‖A−Ak‖? +

437

k
ε2 · ‖A−Ak‖2

each with probability at least 1− 2k−1 − 4k−k/ε
2

.

As before, this result is established by bounding the quantities involved in Theorems 1, 2, and 3. The
following deviation bounds, established in [31, Section 10], are useful in that regard: if D is a diagonal
matrix, ` = k + p with p > 4 and u, t ≥ 1, then

P

{∥∥∥DΩ2Ω
†
1

∥∥∥
2
> ‖D‖2

(√
3k

p+ 1
· t+

e
√
`

p+ 1
· tu

)
+ ‖D‖F

e
√
`

p+ 1
· t

}
≤ 2t−p + e−u

2/2, and

P

{∥∥∥DΩ2Ω
†
1

∥∥∥
F
> ‖D‖F

√
3k

p+ 1
· t+ ‖D‖2

e
√
`

p+ 1
· tu

}
≤ 2t−p + e−u

2/2.(19)
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Proof. First consider the case where p = kε−2. Estimate the terms in (19) with√
3k

p+ 1
≤

√
3k

p
=
√

3ε

√
`

p+ 1
≤
ε2
√
k(1 + 1/ε2)

k
≤ ε
√

2

k

and take t = e and u =
√

2 ln k in (19) to obtain that

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2
≤

[(
√

3e + 2e2
√

ln k

k

)
ε ·
∥∥∥Σ1/2

2

∥∥∥
2

+
2e2ε√
k
·
∥∥∥Σ1/2

2

∥∥∥
F

]2

≤ 2

(
√

3e + 2e2
√

ln k

k

)2

ε2 · ‖Σ2‖2 +
4e4ε2

k
· ‖Σ2‖?

≤
(

12e2 + 16e4
ln k

k

)
ε2 · ‖Σ2‖2 +

4e4ε2

k
· ‖Σ2‖?

with probability at least 1− k−1 − 2e−k/ε
2

and∥∥∥Σ2Ω2Ω
†
1

∥∥∥
F
≤
√

3εe · ‖Σ2‖F + e2ε

√
8 ln k

k
· ‖Σ2‖2

with the same probability. Likewise,∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F
≤

(
√

3εe ·
∥∥∥Σ1/2

2

∥∥∥
F

+ e2ε

√
8 ln k

k
·
∥∥∥Σ1/2

2

∥∥∥
2

)2

≤ 6ε2e2 ·
∥∥∥Σ1/2

2

∥∥∥2
F

+ 16e4ε2
ln k

k
· ‖Σ2‖2

= 6ε2e2 · ‖Σ2‖? + 16e4ε2
ln k

k
· ‖Σ2‖2

with the same probability. These estimates used in Theorems 1, 2, and 3 yield the stated bounds for the
case where ` = k(1 + ε−2).

Now consider the case that ` ≥ 2ε−2k ln k. This implies p ≥ ε−2k ln k, so we have the estimates√
3k

p+ 1
≤

√
3k

p
≤
√

3

ln k
ε

√
`

p+ 1
≤
√
k + p

p
≤
√

ε4

k ln2 k
+

ε2

k ln k
<

√
2

k ln k
ε.

As before, take t = e and u =
√

2 ln k in (19) to obtain that
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2
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e

√
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4ε2e4
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with probability at least 1− k−1 − 2k−k/ε
2

and∥∥∥Σ2Ω2Ω
†
1
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F
≤
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3
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2e2√
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with the same probability. Likewise,∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F
≤

(√
3

ln k
εe ·

∥∥∥Σ1/2
2

∥∥∥
F

+
2e2√
k
ε ·
∥∥∥Σ1/2

2

∥∥∥
2

)2

≤ 6

ln k
ε2e2 · ‖Σ2‖? +

8e4

k
ε2 · ‖Σ2‖2

with the same probability. These estimates used in Theorems 1, 2, and 3 yield the stated bounds for the
case where ` is logarithmically larger than k. �

Remark. The way we have parameterized these bounds for Gaussian-based projections makes explicit the
dependence on various parameters, but hides the structural simplicity of these bounds. In particular, since
‖·‖2 ≤ ‖·‖F ≤ ‖·‖?, note that the Frobenius norm bounds are upper bounded by a term that depends on the
Frobenius norm of the error and a term that depends on the trace norm of the error; and that, similarly, the
trace norm bounds are upper bounded by a multiplicative factor that can be set to 1+ ε with an appropriate
choice of parameters.

4.2.4. Sampling Columns Uniformly at Random. Here, the columns of A are sampled uniformly at random
(with or without replacement). Such uniformly-at-random column sampling only makes sense when the
leverage scores of the top k-dimensional invariant subspace of the matrix are sufficiently uniform that no
column is significantly more informative than the others. For this case, we can prove the following.

Lemma 4. Let A be an n × n SPSD matrix and S be a sampling matrix of size n × ` corresponding to
sampling the columns of A uniformly at random (with or without replacement). Let µ denote the coherence
of the top k-dimensional eigenspace of A and fix a failure probability δ ∈ (0, 1) and accuracy factor ε ∈ (0, 1).
If

` ≥ 2µε−2k ln

(
k

δ

)
,

then the corresponding low-rank SPSD approximation satisfies∥∥A−CW†CT
∥∥
2
≤
(

1 +
n

(1− ε)`

)
‖A−Ak‖2 ,

∥∥A−CW†CT
∥∥
F
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(
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1

δ

√
2

1− ε
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‖A−Ak‖F +

1

δ(1− ε)
‖A−Ak‖? , and

∥∥A−CW†CT
∥∥
?
≤
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1 +
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δ(1− ε)

)
‖A−Ak‖? ,

each with probability at least 1− 4δ.

Proof. In [28], it is shown that ∥∥∥Ω†1∥∥∥2
2
≤ n

(1− ε)`
with probability at least 1− δ when ` satisfies the stated bound. Observe that ‖Ω2‖2 ≤ ‖U2‖2 ‖S‖2 ≤ 1, so∥∥∥Σ1/2
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with probability at least 1− δ. Also,
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≤
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‖Σ2Ω2‖F

with at least the same probability. Observe that since S selects ` columns uniformly at random,

E ‖Σ2Ω2‖2F = E
∥∥Σ2U

T
2 S
∥∥2
F

=
∑̀
i=1

E‖xi‖2,
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where the summands xi are distributed uniformly at random over the columns of Σ2U
T
2 . Regardless of

whether S selects the columns with replacement or without replacement, the summands all have the same
expectation:

E‖xi‖2 =
1

n

n∑
j=1

‖(Σ2U
T
2 )j)‖2 =

1

n
‖Σ2U2‖2F =

1

n
‖Σ2‖2F .

Consequently,

E ‖Σ2Ω2‖2F =
`

n
‖Σ2‖2F ,

so by Jensen’s inequality

E ‖Σ2Ω2‖F ≤
(
E ‖Σ2Ω2‖2F

)1/2
=

√
`

n
‖Σ2‖F .

Now applying Markov’s inequality to (20), we see that∥∥∥Σ2Ω2Ω
†
1

∥∥∥
F
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1
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‖Σ2‖F

with probability at least 1− 2δ. Using similar reasoning, we can conclude that∥∥∥Σ1/2
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F
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also with probability at least 1−2δ. These estimates used in Theorems 1, 2, and 3 yield the stated bounds. �

Remark. As with previous bounds for uniform sampling, e.g., [38, 28], these results for uniform sampling
are much weaker than our bounds from the previous subsections, since the sampling complexity depends
on the coherence of the input matrix. When the matrix has small coherence, however, these bounds are
similar to the bounds derived from the leverage-based sampling probabilities. Recall that, by the algorithm
of [20], the coherence of an arbitrary input matrix can be computed in roughly the time it takes to perform
a random projection on the input matrix.

5. Discussion and Conclusion

We have presented a unified approach to the Nyström-based low-rank approximation of Laplacian and
kernel matrices that arise in machine learning and data analysis applications; and in doing so we have pro-
vided qualitatively-improved worst-case theory and clarified the performance of these algorithms in practical
settings. Our theoretical and empirical results suggest several obvious directions for future work.

In general, our empirical evaluation demonstrates that, to obtain moderately high-quality low-rank ap-
proximations, as measured by minimizing the reconstruction error, depends in complicated ways on the
spectral decay, the leverage score structure, the eigenvalue gaps in relevant parts of the spectrum, etc. (Iron-
ically, our empirical evaluation also demonstrates that all the Nyström extensions are reasonably-effective
at approximating both sparse and dense, and both low-rank and high-rank matrices which arise in practice.
That is, with only roughly O(k) measurements, the spectral, Frobenius, and trace approximation errors stay
within a small multiplicative factor of around 3 of the optimal rank-k approximation errors. The reason for
this is that matrices for which uniform sampling is least appropriate tend to be those which are least well-
approximated by low-rank matrices, meaning that the residual error is much larger.) Thus, e.g., depending
on whether one is interested in ` being slightly larger or much larger than k, leverage-based sampling or a
random projection might be most appropriate; and, more generally, an ensemble-based method that draws
complementary strengths from each of these methods might be best.

In addition, we should note that, in situations where one is concerned with the quality of approximation
of the actual eigenspaces, one desires both a small spectral norm error (because by the Davis–Kahan sinΘ
theorem and similar perturbation results, this would imply that the range space of the Nyström approxima-
tion effectively captures the top k-dimensional eigenspace of A) as well as to use as few samples as possible
(because one prefers to approximate the top k-dimension eigenspace of A with as close to a k-dimensional
subspace as possible). Our results suggest that the leverage score probabilities supply the best sampling
scheme for balancing these two competing objectives.

More generally, although our empirical evaluation consists of random sampling and random projection
algorithms, our theoretical analysis clearly decouples the randomness in the algorithm from the structural
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heterogenities in the Euclidean vector space that are responsible for the poor performance of uniform sampling
algorithms. Thus, if those structural conditions can be satisfied with a deterministic algorithm, then one can
certify (after running the algorithm) that good approximation guarantees hold for particular input matrices
in less time than is required for general matrices. Moreover, this structural decomposition suggests greedy
heuristics—e.g., greedily keep some number of columns according to approximate statistical leverage scores
and “residualize.” In our experience, a procedure of this form often performs quite well in practice, although
theoretical guarantees tend to be much weaker; and thus we expect that, when coupled with our results,
such procedures will perform quite well in practice in many large-scale machine learning applications.
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