Database System Implementation Project

CS101 Section 3
Spring 2006-2007
Overview

• Opportunity to work on an interesting DB system implementation project
 – Doesn’t have to be a relational database project
 – Can include object databases, XML databases, real-time databases, etc.
 – Should be focused on DB system implementation

• 9 unit course (1-8-0)
 – One hour of lecture/discussion each week
 • Some weeks will focus on project presentations
 • Lectures for other weeks, focusing on RDBMS impl.
 – Rest of time each week is focused on design and implementation of your project
 • Need a status update every week
Overview (2)

• General process:
 – Write a proposal and design document for project
 – Dive into research, then implementation and testing
 – At end of term, give a presentation/demo of your work

• Projects can be multi-person
 – Problem scope must be scaled appropriately to number of people

• Projects must have *measurable goals*
 – Tests that demonstrate correctness/functionality
 – Performance or load tests to demonstrate scaling
 – Try to include a simple demo of these tests in your final presentation
Project Schedule

• Week 1: Write your project proposal
 – 1-2 pages describing what you want to do
 – Specify measurable goals!

• Weeks 2-3: Research, design document
 – Specify how you will implement your project
 • Language, platform, how you will demonstrate completion
 – Complete draft due at end of week 2
 – Revisions and schedule due at end of week 3

• Weeks 4-10: Implementation and testing
 – Each week: 5-minute status update in class
 – Week 5: brief presentation of project and status
 – Week 10: more in-depth presentation of results
Grading

• Course is on grades, but P/F is an option
• Final grade will be based on:
 – Design document
 – Mid-term presentation
 – Final presentation
 – Actual project code quality and functionality
• Success depends on you!
 – Lectures won’t necessarily focus on your project’s details
 – You will need to spend time researching your idea and designing your project
 – A good opportunity for you to practice these skills
Relational Database Architecture

- A general architecture for RDBMSes:
 - Diagram is not complete
 - Other components as well
- Most DBs have separate paths for DDL, DML
 - DDL involves simple manipulation of table schemas, etc.
 - DML requires more complicated machinery
RDBMS Architecture (2)

- Data is usually stored in disk files
 - (Small DBMSes might only use memory)
 - File format is driven by specific purpose of file
 - Virtually all data files are read/written using pages
 - Page/block size usually between 4KB and 64KB
 - Data dictionary stored in same way as table data, to simplify management
 - Tuple abstractions, etc. are provided to query evaluator
RDBMS Architecture (3)

- Data files manipulated by file manager
 - File access usually largest performance bottleneck
 - Buffer manager caches disk pages in memory to minimize file reads
 - Dramatically improves query performance
 - Also affects concurrency control and recovery!
 - File manager must provide a way to flush files to disk
RDBMS Architecture (4)

- Query evaluation pipeline
 - Parsing SQL and converting to execution plan is simple
 - Planner/optimizer is critical!
 - Most SQL queries have many ways of being evaluated
 - Order of selects, projects, etc.
 - Join order, join strategies
 - Rewriting subqueries as joins plus grouping/aggregation
 - Must pick a good query plan, really quickly
RDBMS Architecture (5)

• Query evaluation engine
 – Mostly straightforward component

• Complexities arise from:
 – Correlated subqueries
 – Derived relations that need to be temporarily materialized

• Handle updates and deletes using same pipeline
 – Recast updates, deletes as “select for update” and “select for deletion”
• Transaction processing and recovery
 – DBMSes have *big* requirements for consistency and durability
 – In event of failures, DB *must* be restored to a consistent state
 – Transaction manager logs all [DML] operations
 – If a failure occurs, recovery manager can use transaction logs to restore a consistent state
 – Logging adds overhead, but this can be mitigated using checkpoints
Concurrency Control

• Whether an RDBMS is single-user or multi-user has a large impact

• Single-user databases are much simpler
 – Only need to keep a single version of all data
 – No concurrency control, no lock management
 – Transaction processing is much simpler

• Multi-user databases require much more machinery
 – MVCC is most common storage technique
 – Concurrency control and lock management become critical
 – Transaction isolation must be managed carefully
Concurrency Control (2)

- Multi-user databases often follow a structure like this:
- All state must be shared across processes
- Server processes must coordinate reads/writes, transactions and locking
 - Sometimes done with separate processes, but not always
- Performance must be managed carefully
 - Resource usage in concurrent server processes also important
Example Project Ideas

• Write a file manager to store tuples on disk
 – Support variable-size tuples
 – Support single-version or MVCC records
 – Implement simple selects, inserts, updates, deletes against a single table
 – Write a simple buffer manager to cache page access

• Implement several kinds of index files
 – B-tree index, hash index
 – Provide APIs for common operations
 • e.g. start-scan, get-next, find, find-first, find-last, etc.
 – Handle index-update operations too!
 • add/delete index record, compact index, etc.
Example Project Ideas (2)

• Don’t need to limit yourself to only data files
 – Can write an in-memory database system that doesn’t require data files, storage formats, etc.

• Write a query executor for in-memory data
 – Parse simple SQL DML commands and generate execution plans to evaluate
 – Implement plan nodes for sequential scans, sorting, grouping/aggregation, joins
 – Use a heuristic-driven plan optimizer
 – Experiment with different strategies, measure performance
Example Project Ideas (3)

• Write a cost-based query planner/optimizer
 – Take simple, unoptimized execution plans as input
 • Will need an appropriate representation of query plan nodes
 – Output optimized execution plans, along with associated cost measure
 – Need to properly cost different plan nodes
 • Use (faked) table statistics to choose optimal plans
 • Take CPU, memory, disk requirements into account
 • Add support for distributed query planning; take network bandwidth into account
 – Integrate a mechanism for limiting search effort of optimizer
Example Project Ideas (4)

• Write a simple relational database with a front-end other than SQL
 – e.g. a Datalog-type language modeled after one of the relational calculi
 – Explore strategies for correct and efficient evaluation
• Could focus project on specific problem domain
 – Allowing easy statement of recursive or time-based queries
 – Easy statement of OLAP queries and computed results
Minibase

- Minibase is a simple RDBMS implementation
 - Specifically designed for educational use
- Actually two RDBMS implementations
- C++ impl. provides many basic features
 - SQL parser, optimizer, buffer manager
 - Heap files for tuple storage
 - B+ tree index implementation
- Java impl. provides only lower-level features
 - No SQL parsing or planning/optimization provided
Minibase (2)

• Could build a project on top of Minibase
 – Implement your own version of one of its components
 • Implement a buffer manager
 • Implement several join algorithms that actually work with disk files
 – Add some new features
 • Build a SQL front-end for Java Minibase impl.
 • Implement transaction support using a write-ahead log and checkpoints
Other Project Ideas

• Could also take an existing database system and enhance it in some way
 – Actually modify the internals of the DBMS
 – Build an external component that integrates with the DBMS to extend its functionality

• Look at open-source database impls
 – Apache Derby (formerly IBM Cloudscape)
 – PostgreSQL, MySQL
 – HSQLDB
 – …
Next Steps

• Monday, April 2:
 – Let me know if you are taking the class
 – If so, briefly describe your project ideas

• Wednesday, April 4:
 – 1st draft of project proposal/design doc is due

• Should include:
 – Clear statement of project focus
 – General implementation details, e.g. language, platform, file-based vs. in-memory, other details
 – Measurable goals you intend to achieve
 – Include references to papers, books, websites you will use to guide you