Last Time

• Introduced Third Normal Form
 – A weakened version of BCNF that preserves more functional dependencies
 – Allows non-trivial dependencies $\alpha \rightarrow \beta$ if attributes in $(\beta - \alpha)$ also appear in candidate keys
 – Allows more redundant data than BCNF

• Began discussing functional dependency theory
 – Rules of inference for functional dependencies
 – The closure of a set of functional dependencies
 – The closure of a particular attribute-set
Canonical Cover

• Given a relation schema, and a set of functional dependencies F
• Database needs to enforce F on all relations
 – Invalid changes should be rolled back
• F may contain many functional dependencies
 – Dependencies might even imply each other
• Want a minimal version of F, that still represents all constraints imposed by F
 – Should be more efficient to enforce minimal version
Extraneous Attributes

• Given a set F of functional dependencies
 – An attribute in a functional dependency is *extraneous* if it can be removed from F without affecting the closure of F

• Formally: given F, and $\alpha \rightarrow \beta$
 – If $A \in \alpha$, and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$, then A is extraneous
 – If $A \in \beta$, and $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F, then A is extraneous
Testing Extraneous Attributes

- Given relation schema R, and a set F of functional dependencies that hold on R
- Attribute A in $\alpha \rightarrow \beta$
- If $A \in \beta$, then take new set
 - $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$
 - See if $\alpha \rightarrow A$ can be inferred from F'
 - Compute α^+ under F'
 - If α^+ includes A then A is extraneous in β
Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- Attribute A in $\alpha \rightarrow \beta$
- If $A \in \alpha$, then let $\gamma = \alpha - \{A\}$
 - See if $\gamma \rightarrow \beta$ can be inferred from F
 - Compute γ^+ under F
 - If $\gamma^+ \supseteq \beta$ then A is extraneous in α
Canonical Cover

• A canonical cover F_c for F is a set of functional dependencies such that:
 – F logically implies all dependencies in F_c
 – F_c logically implies all dependencies in F
 – No functional dependency in F_c contains an extraneous attribute
 – Left side of all functional dependencies in F_c are unique
 • There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$
Computing Canonical Cover

• A simple way to compute the canonical cover of F

$$F_c = F$$

repeat

apply union rule to replace dependencies in F_c of form

$$\alpha_1 \rightarrow \beta_1 \text{ and } \alpha_1 \rightarrow \beta_2 \text{ with } \alpha_1 \rightarrow \beta_1 \beta_2$$

find a functional dependency $\alpha \rightarrow \beta$ in F_c with an extraneous attribute

/* Use F_c for extraneous attribute test, not F! */

if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until F_c stops changing
Canonical Cover Example

- Functional dependencies F on schema (A, B, C)
 - $F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
 - Find F_c
- Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$
 - Left with: $\{ A \rightarrow BC, B \rightarrow C, AB \rightarrow C \}$
- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ is logically implied by F (obvious)
 - Left with: $\{ A \rightarrow BC, B \rightarrow C \}$
- C is extraneous in $A \rightarrow BC$
 - Logically implied by $A \rightarrow B, B \rightarrow C$
- $F_c = \{ A \rightarrow B, B \rightarrow C \}$
Canonical Covers

• A set of functional dependencies can have multiple canonical covers

• Example:
 – \(F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \} \)
 – Has several canonical covers:
 • \(F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \} \)
 • \(F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \} \)
 • \(F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \} \)
 • \(F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \} \)
 • \(F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \} \)
Lossy Decompositions

• Some schema decompositions lose information
• Example:

 \texttt{employee(emp_id, emp_name, phone, title, salary, start_date)}

 – Decomposed into:

 \texttt{emp_ids(emp_id, emp_name)}
 \texttt{emp_details(emp_name, phone, title, salary, start_date)}

• Problem:

 – \texttt{emp_name} doesn’t uniquely identify employees
 – This is a lossy decomposition
Lossless Decompositions

• Given:
 – Relation schema \(R \), relation \(r(R) \)
 – Set of functional dependencies \(F \)

• Let \(R_1 \) and \(R_2 \) be a decomposition of \(R \)

• The decomposition is lossless if, for all legal instances of \(r \):
 \[
 \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) = r
 \]

• A simple definition…
Lossless Decompositions (2)

- Can define with functional dependencies:
 - R_1 and R_2 form a lossless decomposition of R if at least one of these dependencies is in F^+:
 \[R_1 \cap R_2 \rightarrow R_1 \]
 \[R_1 \cap R_2 \rightarrow R_2 \]

- $R_1 \cap R_2$ forms a superkey of R_1 and/or R_2
 - Can test for superkeys using attribute closure
Employee Database Example

• For employee example:

 employee(emp_id, emp_name, phone, title, salary, start_date)

 – Decomposed into:

 emp_ids(emp_id, emp_name)

 emp_details(emp_name, phone, title, salary, start_date)

• emp_name is not a superkey of emp_ids or emp_details
BCNF Decompositions

• If R is a schema not in BCNF:
 – There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R
 – For simplicity, also require that $\alpha \cap \beta = \emptyset$
• Replace R with two schemas:
 $R_1 = (\alpha \cup \beta)$
 $R_2 = (R - \beta)$
• BCNF decomposition is lossless
 – $R_1 \cap R_2 = \alpha$
 – α is a superkey of R_1
 – α also appears in R_2
Dependency Preservation

• Some schema decompositions are not dependency-preserving
 – Functional dependencies that span multiple relation schemas are hard to enforce
 – e.g. BCNF may require decomposition of a schema for one dependency, and make it hard to enforce another dependency

• Can test for dependency preservation using functional dependency theory
Dependency Preservation (2)

• Given:
 – A set F of functional dependencies on a schema R
 – R_1, R_2, \ldots, R_n are a decomposition of R

• The restriction of F to R_i is the set F_i of functional dependencies in F^+ that only has attributes in R_i
 – Each F_i contains functional dependencies that can be checked efficiently, using R_i

• Find all functional dependencies that can be checked efficiently
 – $F' = F_1 \cup F_2 \cup \ldots \cup F_n$
 – If $F'^+ = F^+$ then the decomposition is dependency-preserving
Third Normal Form Schemas

• Can generate a 3NF schema from a set of functional dependencies F

• Called the 3NF synthesis algorithm
 – Instead of decomposing an initial schema, generates schemas from a set of dependencies

• Given a set F of functional dependencies
 – Uses the canonical cover F_c
 – Ensures that resulting schemas are dependency-preserving
3NF Synthesis Algorithm

• Inputs: set of functional dependences F, on a schema R

let F_c be a canonical cover for F;
i := 0;
for each functional dependency $\alpha \rightarrow \beta$ in F_c do
 if none of the schemas $R_j, j = 1, 2, \ldots, i$ contains $(\alpha \cup \beta)$ then
 i := i + 1;
 $R_i := (\alpha \cup \beta)$
 end if
end for

if no schema $R_j, j = 1, 2, \ldots, i$ contains a candidate key for R then
 i := i + 1;
 $R_i :=$ any candidate key for R
end if
return (R_1, R_2, \ldots, R_i)
BCNF vs. 3NF vs. SQL

- **Boyce-Codd Normal Form:**
 - Eliminates more redundant information
 - Harder to enforce some functional dependencies
 - Overall, very desirable normal form

- **Third Normal Form:**
 - All functional dependencies are “easy” to enforce
 - Allows redundant information, which must be kept synchronized

- **SQL constraints:**
 - Only key constraints are fast and easy to enforce!
 - Only easy to enforce functional dependencies \(\alpha \rightarrow \beta \) if \(\alpha \) is a key on some table!
 - Other functional dependencies (even the “easy” ones) may require more expensive constraints, e.g. **CHECK** constraints
BCNF vs. 3NF vs. SQL (2)

- For SQL databases with materialized views:
 - Can decompose schema into BCNF
 - For dependencies $\alpha \rightarrow \beta$ not preserved in the decomposition, can create a materialized view joining all relations in the dependency
 - Enforce unique(α) constraint on materialized view

- Impacts both space and performance, but it works…
Next Time

- Functional dependencies are insufficient to represent all kinds of dependencies
- Next time:
 - Multivalued dependencies
 - Fourth Normal Form