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Extensions to E-R Model

• Basic E-R model is good for many uses
• Several extensions to E-R model for more 

advanced modeling
– Generalization and specialization
– Aggregation

• These extensions can also be converted 
to relational model
– Introduce a few more design choices



Specialization

• An entity-set might contain distinct subgroups of 
entities
– Subgroups have some different attributes, not shared 

by entire entity-set
• E-R model provides specialization to represent 

such entity-sets
• Example:  bank account categories

– Checking accounts
– Savings accounts
– Have common features, but also unique attributes



Generalization and Specialization

• Generalization:  a “bottom up” approach
– Taking similar entity-sets and unifying their common 

features
– Start with specific entities, then create generalizations 

from them
• Specialization:  a “top down” approach

– Creating general purpose entity-sets, then providing 
specializations of the general idea

– Start with general notion, then refine it
• Terms are basically equivalent

– Book refers to generalization as overarching concept



Bank Account Example

• Checking and savings accounts have:
– account number
– balance
– owner(s)

• Checking accounts also have:
– overdraft limit and associated account
– check transactions

• Savings accounts also have:
– minimum balance



Bank Account Example (2)
• Create entity-set to represent common attributes

– Called the superclass, or higher-level entity-set
• Create entity-sets to represent specializations

– Called subclasses, or lower-level entity-sets
• Join superclass to subclasses using “ISA”

triangle
account

checking savings

ISA

acct_id

balance

overdraft_limit min_balance



Inheritance
• Attributes of higher-level entity-sets are inherited 

by lower-level entity-sets
• Relationships involving higher-level entity-sets 

are also inherited by lower-level entity-sets!
– A lower-level entity-set can participate in its own 

relationship-sets, too
• Usually, entity-sets inherit from one superclass

– Entity-sets form a hierarchy
• Can also inherit from multiple superclasses

– Entity-sets form a lattice
– Introduces many subtle issues, of course



Specialization Constraints

• Can an account be both a savings account and 
a checking account?

• Can an account be neither a savings account or 
a checking account?

• Can specify constraints on specialization
– Enforce what “makes sense” for the enterprise
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Disjointness Constraints
• “An account must be either a checking account, 

or a savings account, but not both.”
• An entity may belong to only one of the lower-

level entity-sets
– Must be a member of checking, or a member of 

savings, but not both!
– Called a “disjointness constraint”
– A better way to state it:  a disjoint specialization

• If an entity can be a member of multiple lower-
level entity-sets:
– Called an overlapping specialization



Disjointness Constraints (2)

• Default constraint is overlapping!
• Indicate disjoint specialization with word 

“disjoint” next to triangle
• Updated bank account diagram:
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Completeness Constraints
• “An account must be a checking account or a 

savings account.”
• Every entity in higher-level entity-set must also 

be a member of at least one lower-level entity-
set
– Called total specialization

• If entities in higher-level entity-set aren’t required 
to be members of lower-level entity-sets:
– Called partial specialization

• account specialization is a total specialization



Completeness Constraints (2)

• Default constraint is partial specialization
• Specify total specialization constraint with 

a double line on superclass side
• Updated bank account diagram:
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Account Types?

• Our bank schema so far:

• How to tell whether an account is a 
checking account or a savings account?
– No attribute indicates type of account
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Membership Constraints

• Membership constraints specify which entities 
are members of lower-level entity-sets
– e.g. which accounts are checking or savings accounts

• Condition-defined lower-level entity-sets
– Membership is specified by a predicate
– If an entity satisfies a lower-level entity-set’s predicate 

then it is a member of that lower-level entity-set
– If all lower-level entity-sets refer to the same attribute, 

this is called attribute-defined specialization
• e.g.  account could have an account_type attribute



Membership Constraints (2)
• Entities may simply be assigned to lower-level 

entity-sets by a database user
– No explicit predicate governs membership
– Called user-defined membership

• Generally used when an entity’s membership 
could change in the future

• Bank account example:
– Accounts could use user-defined membership, but 

wouldn’t make so much sense
– Makes it harder to write queries involving only one 

kind of account
– Best choice is probably attribute-defined membership



Bank Accounts
• Final bank account diagram:

• Would also create relationship-sets against 
various entity-sets in hierarchy
– associate customer with account
– associate check_txns weak entity-set with checking
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Mapping to Relational Model
• Mapping generalization/specialization to 

relational model is straightforward
• Create relation schema for higher-level entity-set

– Including primary keys, etc.
• Create schemas for lower-level entity-sets

– Subclass schemas include superclass’ primary key 
attributes!

– Primary key is same as superclass’ primary key
• If subclass contains its own primary key, treat as a separate 

candidate key
– Foreign key reference from subclass schemas to 

superclass schema, on primary-key attributes



Mapping Bank Account Schema

• Schemas:
account(acct_id, acct_type, balance)
checking(acct_id, overdraft_limit)
savings(acct_id, min_balance)
– Could use CHECK constraints SQL tables for 

membership constraints, other constraints
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Alternative Schema Mapping
• If specialization is disjoint and complete, can 

convert only lower-level entity-sets to relational 
schemas
– Every entity in higher-level entity-set also appears in 

lower-level entity-sets
– Every entity is a member of exactly one lower-level 

entity-set
• Each lower-level entity-set has its own relation 

schema
– All attributes of superclass entity-set are included on 

each subclass entity-set
– No relation schema for superclass entity-set



Alternative Account Schema

• Schemas:
checking(acct_id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance)
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Alternative Account Schema (2)
• Alternative schemas:

checking(acct_id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance)

• Problems?
– Enforcing uniqueness of account IDs!
– Representing relationships involving general accounts

• Can solve by creating a simple relation:
account(acct_id)
– Contains all valid account IDs
– Relationships involving accounts can use account
– Need foreign key constraints again…



Generating Primary Keys
• Generating primary key values is actually the easy part
• Most databases provide sequences

– A source of INTEGER or BIGINT values
– Perfect for primary key values
– Multiple tables can use a sequence for their primary keys

• PostgreSQL example:
CREATE SEQUENCE acct_seq;

CREATE TABLE checking (
acct_id INT PRIMARY KEY DEFAULT nextval('acct_seq');
...

);
CREATE TABLE savings (

acct_id INT PRIMARY KEY DEFAULT nextval('acct_seq');
...

);



Alternative Schema Mapping
• Alternative mapping has some drawbacks

– Doesn’t actually give many benefits in general case
– Biggest issue is managing primary keys!

• Fewer drawbacks if:
– Total, disjoint specialization
– No relationships against superclass entity-set

• If specialization is overlapping, some details are 
stored multiple times
– Unnecessary redundancy, and consistency issues

• Also limits future schema changes



Relationships of Relationships
• Basic E-R model can’t represent relationships 

involving other relationships
• Example:  employee jobs

• Want to assign a manager to each
(employee, branch, job) combination
– Need a separate manager entity-set
– Relationship between each manager, employee, 

branch, and job entity
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Redundant Relationships
• One option:  a quaternary relationship

– This option has lots of redundant information
– Benefit is that some jobs might not

require a manager
• Could also make works_on a

quaternary relationship
– Don’t use a separate

manager relation
– Jobs with no manager

would use null values
instead

• These options are clumsy
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Aggregation
• Another option is to treat works_on relationship 

as an aggregate
– Build a relationship against the aggregate
– manages implicitly includes set of entities 

participating in a works_on relationship instance
– Jobs can also have

no manager
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Mapping to Relational Model
• Mapping for aggregation is straightforward
• For entity-sets and relationship-set being used 

as an aggregate, mapping is unchanged
• Relationship-set against the aggregate:

– Includes primary keys of participating entity-sets
– Includes all primary key attributes of aggregated 

relationship-set
– Also includes any descriptive attributes
– Primary key of relationship-set includes all the above 

primary key attributes
– Foreign key against aggregated relationship-set, as 

well as participating entity-sets



Manager Example

• Job schemas:
employee(emp_id, emp_name)
job(title, level)
branch(branch_name, branch_city, assets)
works_on(emp_id, branch_name, title)

• Manager schemas:
manager(mgr_id, mgr_name)
manages(mgr_id, emp_id, branch_name, title)

managermanages
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Differences

• Differences between version with aggregation, 
and version with quaternary relationship?

• Biggest difference:
– Quaternary relationship’s schema derives primary 

and foreign key constraints from participating entities
– Relationship using aggregation derives primary and 

foreign key constraints from aggregate relationship
• A subtle difference

– Doesn’t have any significant practical impact



Review
• Covered two extensions to E-R model

– Higher level abstractions
• Generalization and specialization

– Can specify constraints:
• Membership constraints
• Completeness constraints
• Disjointedness constraints

• Aggregation
– Can build relationships that include other 

relationships
• Straightforward mappings to relational model
• Next time:  normal forms!
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