
Extended E-R Features

Winter 2006-2007
Lecture 18

Extensions to E-R Model

• Basic E-R model is good for many uses
• Several extensions to E-R model for more

advanced modeling
– Generalization and specialization
– Aggregation

• These extensions can also be converted
to relational model
– Introduce a few more design choices

Specialization

• An entity-set might contain distinct subgroups of
entities
– Subgroups have some different attributes, not shared

by entire entity-set
• E-R model provides specialization to represent

such entity-sets
• Example: bank account categories

– Checking accounts
– Savings accounts
– Have common features, but also unique attributes

Generalization and Specialization

• Generalization: a “bottom up” approach
– Taking similar entity-sets and unifying their common

features
– Start with specific entities, then create generalizations

from them
• Specialization: a “top down” approach

– Creating general purpose entity-sets, then providing
specializations of the general idea

– Start with general notion, then refine it
• Terms are basically equivalent

– Book refers to generalization as overarching concept

Bank Account Example

• Checking and savings accounts have:
– account number
– balance
– owner(s)

• Checking accounts also have:
– overdraft limit and associated account
– check transactions

• Savings accounts also have:
– minimum balance

Bank Account Example (2)
• Create entity-set to represent common attributes

– Called the superclass, or higher-level entity-set
• Create entity-sets to represent specializations

– Called subclasses, or lower-level entity-sets
• Join superclass to subclasses using “ISA”

triangle
account

checking savings

ISA

acct_id

balance

overdraft_limit min_balance

Inheritance
• Attributes of higher-level entity-sets are inherited

by lower-level entity-sets
• Relationships involving higher-level entity-sets

are also inherited by lower-level entity-sets!
– A lower-level entity-set can participate in its own

relationship-sets, too
• Usually, entity-sets inherit from one superclass

– Entity-sets form a hierarchy
• Can also inherit from multiple superclasses

– Entity-sets form a lattice
– Introduces many subtle issues, of course

Specialization Constraints

• Can an account be both a savings account and
a checking account?

• Can an account be neither a savings account or
a checking account?

• Can specify constraints on specialization
– Enforce what “makes sense” for the enterprise

account

checking savings

ISA

acct_id

balance

overdraft_limit min_balance

Disjointness Constraints
• “An account must be either a checking account,

or a savings account, but not both.”
• An entity may belong to only one of the lower-

level entity-sets
– Must be a member of checking, or a member of

savings, but not both!
– Called a “disjointness constraint”
– A better way to state it: a disjoint specialization

• If an entity can be a member of multiple lower-
level entity-sets:
– Called an overlapping specialization

Disjointness Constraints (2)

• Default constraint is overlapping!
• Indicate disjoint specialization with word

“disjoint” next to triangle
• Updated bank account diagram:

account

checking savings

acct_id

balance

overdraft_limit min_balance

ISA disjoint

Completeness Constraints
• “An account must be a checking account or a

savings account.”
• Every entity in higher-level entity-set must also

be a member of at least one lower-level entity-
set
– Called total specialization

• If entities in higher-level entity-set aren’t required
to be members of lower-level entity-sets:
– Called partial specialization

• account specialization is a total specialization

Completeness Constraints (2)

• Default constraint is partial specialization
• Specify total specialization constraint with

a double line on superclass side
• Updated bank account diagram:

account

checking savings

acct_id

balance

overdraft_limit min_balance

ISA disjoint

Account Types?

• Our bank schema so far:

• How to tell whether an account is a
checking account or a savings account?
– No attribute indicates type of account

account

checking savings

acct_id

balance

overdraft_limit min_balance

ISA disjoint

Membership Constraints

• Membership constraints specify which entities
are members of lower-level entity-sets
– e.g. which accounts are checking or savings accounts

• Condition-defined lower-level entity-sets
– Membership is specified by a predicate
– If an entity satisfies a lower-level entity-set’s predicate

then it is a member of that lower-level entity-set
– If all lower-level entity-sets refer to the same attribute,

this is called attribute-defined specialization
• e.g. account could have an account_type attribute

Membership Constraints (2)
• Entities may simply be assigned to lower-level

entity-sets by a database user
– No explicit predicate governs membership
– Called user-defined membership

• Generally used when an entity’s membership
could change in the future

• Bank account example:
– Accounts could use user-defined membership, but

wouldn’t make so much sense
– Makes it harder to write queries involving only one

kind of account
– Best choice is probably attribute-defined membership

Bank Accounts
• Final bank account diagram:

• Would also create relationship-sets against
various entity-sets in hierarchy
– associate customer with account
– associate check_txns weak entity-set with checking

account

checking savings

acct_id

balance

overdraft_limit min_balance

ISA disjoint

acct_type

Mapping to Relational Model
• Mapping generalization/specialization to

relational model is straightforward
• Create relation schema for higher-level entity-set

– Including primary keys, etc.
• Create schemas for lower-level entity-sets

– Subclass schemas include superclass’ primary key
attributes!

– Primary key is same as superclass’ primary key
• If subclass contains its own primary key, treat as a separate

candidate key
– Foreign key reference from subclass schemas to

superclass schema, on primary-key attributes

Mapping Bank Account Schema

• Schemas:
account(acct_id, acct_type, balance)
checking(acct_id, overdraft_limit)
savings(acct_id, min_balance)
– Could use CHECK constraints SQL tables for

membership constraints, other constraints

account

checking savings

acct_id

balance

overdraft_limit min_balance

ISA disjoint

acct_type

Alternative Schema Mapping
• If specialization is disjoint and complete, can

convert only lower-level entity-sets to relational
schemas
– Every entity in higher-level entity-set also appears in

lower-level entity-sets
– Every entity is a member of exactly one lower-level

entity-set
• Each lower-level entity-set has its own relation

schema
– All attributes of superclass entity-set are included on

each subclass entity-set
– No relation schema for superclass entity-set

Alternative Account Schema

• Schemas:
checking(acct_id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance)

account

checking savings

acct_id

balance

overdraft_limit min_balance

ISA disjoint

acct_type

Alternative Account Schema (2)
• Alternative schemas:

checking(acct_id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance)

• Problems?
– Enforcing uniqueness of account IDs!
– Representing relationships involving general accounts

• Can solve by creating a simple relation:
account(acct_id)
– Contains all valid account IDs
– Relationships involving accounts can use account
– Need foreign key constraints again…

Generating Primary Keys
• Generating primary key values is actually the easy part
• Most databases provide sequences

– A source of INTEGER or BIGINT values
– Perfect for primary key values
– Multiple tables can use a sequence for their primary keys

• PostgreSQL example:
CREATE SEQUENCE acct_seq;

CREATE TABLE checking (
acct_id INT PRIMARY KEY DEFAULT nextval('acct_seq');
...

);
CREATE TABLE savings (

acct_id INT PRIMARY KEY DEFAULT nextval('acct_seq');
...

);

Alternative Schema Mapping
• Alternative mapping has some drawbacks

– Doesn’t actually give many benefits in general case
– Biggest issue is managing primary keys!

• Fewer drawbacks if:
– Total, disjoint specialization
– No relationships against superclass entity-set

• If specialization is overlapping, some details are
stored multiple times
– Unnecessary redundancy, and consistency issues

• Also limits future schema changes

Relationships of Relationships
• Basic E-R model can’t represent relationships

involving other relationships
• Example: employee jobs

• Want to assign a manager to each
(employee, branch, job) combination
– Need a separate manager entity-set
– Relationship between each manager, employee,

branch, and job entity

employee branch

job

works_on

Redundant Relationships
• One option: a quaternary relationship

– This option has lots of redundant information
– Benefit is that some jobs might not

require a manager
• Could also make works_on a

quaternary relationship
– Don’t use a separate

manager relation
– Jobs with no manager

would use null values
instead

• These options are clumsy

employee branch

job

works_on

manager

manages

Aggregation
• Another option is to treat works_on relationship

as an aggregate
– Build a relationship against the aggregate
– manages implicitly includes set of entities

participating in a works_on relationship instance
– Jobs can also have

no manager

manager manages

employee branch

job

works_on

Mapping to Relational Model
• Mapping for aggregation is straightforward
• For entity-sets and relationship-set being used

as an aggregate, mapping is unchanged
• Relationship-set against the aggregate:

– Includes primary keys of participating entity-sets
– Includes all primary key attributes of aggregated

relationship-set
– Also includes any descriptive attributes
– Primary key of relationship-set includes all the above

primary key attributes
– Foreign key against aggregated relationship-set, as

well as participating entity-sets

Manager Example

• Job schemas:
employee(emp_id, emp_name)
job(title, level)
branch(branch_name, branch_city, assets)
works_on(emp_id, branch_name, title)

• Manager schemas:
manager(mgr_id, mgr_name)
manages(mgr_id, emp_id, branch_name, title)

managermanages

employee branch

job

works_on

Differences

• Differences between version with aggregation,
and version with quaternary relationship?

• Biggest difference:
– Quaternary relationship’s schema derives primary

and foreign key constraints from participating entities
– Relationship using aggregation derives primary and

foreign key constraints from aggregate relationship
• A subtle difference

– Doesn’t have any significant practical impact

Review
• Covered two extensions to E-R model

– Higher level abstractions
• Generalization and specialization

– Can specify constraints:
• Membership constraints
• Completeness constraints
• Disjointedness constraints

• Aggregation
– Can build relationships that include other

relationships
• Straightforward mappings to relational model
• Next time: normal forms!

	Extended E-R Features
	Extensions to E-R Model
	Specialization
	Generalization and Specialization
	Bank Account Example
	Bank Account Example (2)
	Inheritance
	Specialization Constraints
	Disjointness Constraints
	Disjointness Constraints (2)
	Completeness Constraints
	Completeness Constraints (2)
	Account Types?
	Membership Constraints
	Membership Constraints (2)
	Bank Accounts
	Mapping to Relational Model
	Mapping Bank Account Schema
	Alternative Schema Mapping
	Alternative Account Schema
	Alternative Account Schema (2)
	Generating Primary Keys
	Alternative Schema Mapping
	Relationships of Relationships
	Redundant Relationships
	Aggregation
	Mapping to Relational Model
	Manager Example
	Differences
	Review

