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File System Robustness
• The operating system keeps a cache of filesystem data
• Secondary storage devices are much slower than main memory
• Caching frequently-used disk blocks in memory yields significant performance 

improvements by avoiding disk-IO operations
• Problem 1:  Operating systems crash.  Hardware fails.
• Problem 2:  Many filesystem operations involve multiple steps
• Example:  deleting a file minimally involves removing a directory entry, and 

updating the free map
• May involve several other steps depending on filesystem design

• If only some of these steps are successfully written to disk, filesystem
corruption is highly likely
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File System Robustness (2)
• The OS should try to maintain the filesystem’s correctness
• …at least, in some minimal way…

• Example:  ext2 filesystems maintain a “mount state” in the filesystem’s 
superblock on disk
• When filesystem is mounted, this value is set to indicate how the filesystem was mounted 

(e.g. read-only, etc.)
• When the filesystem is cleanly unmounted, the mount-state is set to EXT2_VALID_FS to 

record that the filesystem is trustworthy
• When OS starts:  if it sees an ext2 drive mount-state as not EXT2_VALID_FS, 

it knows something happened
• The OS can take steps to verify the filesystem, and fix it if needed

• Typically, this involves running the fsck system utility
• “File System Consistency checK”
• (Frequently, OSes also run scheduled filesystem checks too)
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The fsck Utility
• To verify the filesystem, must perform various exhaustive checks of the entire 

filesystem layout and data structures
• E.g. for ext2 filesystems, must check these things:
• Verify that inode metadata (specifically, file size) matches the number of blocks referenced 

(directly and indirectly) by the inode
• Verify that all directory entries reference inodes (and that active inodes are referenced by 

directory entries)
• Verify that all directory entries are reachable from the device root
• Verify that inode reference-counts match how many directory entries reference them
• Verify that the set of blocks referenced by inodes actually matches up with the state of the 

free-space map
• Any errors along the way are fixed as best as fsck can
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Improving File System Recovery
• Of course, all these exhaustive checks are very slow…
• As storage device sizes grew over the years, file-system consistency checks 

became extremely slow
• Would often take hours to complete

• Needed to find a way to ensure filesystem robustness, without having to 
spend so much time on verification

• Solution:  record [some] filesystem operations in a journal on disk, before 
writing to the filesystem data structures

• When system crash occurs, perform recovery from journal
• Should restore the system to a known-good state, without requiring exhaustive verification 

of the entire filesystem
• Recovering from the journal will be much faster – only need to consider logged operations, 

not the entire filesystem structure
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Filesystem Journaling
• Certain operations must be performed atomically on the filesystem
• Either all of the operations are applied, or none are applied
• Examples:  extending a file, deleting a file, moving a file, etc.
• All of these are comprised of multiple lower-level operations

• The filesystem journal logs transactions against the filesystem
• Transactions can either include one atomic operation, or multiple atomic operations, 

depending on filesystem design
• Note:  Not as sophisticated as database transactions!
• No ACID properties, no concurrency control (not actually needed)
• The filesystem simply attempts to maintain consistency by ensuring that transactions are 

applied atomically
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Filesystem Journaling (2)
• Like the free-map, the filesystem journal is a separate region of the disk volume, 

devoted to journaling
• Often implemented as a circular queue large enough to hold multiple transactions

• What should be logged in a journal transaction?
• Filesystems differ in the actual details that are logged…

• Many filesystems only journal changes to metadata
• i.e. changes to directory structures, file inode information, free space map, any other structures 

the filesystem maintains on storage devices
• Changes to file data are not journaled!  (This is mostly OK.)

• After a crash, a given file’s contents might become corrupt, but the overall filesystem 
structure will stay correct
• Reason:  writes to data and metadata might be interleaved
• Metadata-changes can hit the disk before data-changes do
• If a crash occurs between the two, the file will likely contain garbage
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Filesystem Journaling (3)
• This issue can occur with operations that affect both a file’s data and metadata
• Primary scenario:  file extension
• If file’s metadata was updated to indicate that it is extended, but the actual data wasn’t 

written, the file will become corrupt
• Can improve robustness by following an ordering rule:
• All data-changes must be written to disk before any metadata-changes are logged to the 

journal
• Note:  changes to file data are still not journaled

• This primarily improves the robustness of file-extension operations (which 
occur very frequently)

• Places an overhead on the filesystem implementation:
• Before journal records may be written to disk, the OS must make sure that all corresponding 

data blocks have been written out
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Filesystem Journaling (4)
• Finally, filesystems can log all data and metadata changes to the journal
• Imposes a significant space overhead on the journal, as well as a time overhead
• All data ends up being written twice – once to journal, once to file
• Also is the best way to ensure that files cannot become corrupt

• Modern journaling filesystems often support multiple levels of operation
• Example:  ext3/ext4 supports three journaling modes
• “Writeback” only records metadata changes to the journal
• “Ordered” (default) records metadata changes to the journal, after the corresponding data 

changes have been written to the device
• “Journal” records both data and metadata changes into the journal

9



Atomic Operations
• Atomic operations generally correspond to the system calls that operate on 

the filesystem
• Could be from many different processes, on behalf of various users

• An atomic operation could be comprised of several writes to the filesystem
• Example:  append data to a file
• Modify free-space map to allocate data blocks for the new data
• Update file’s inode index (possibly including indirect blocks) to reference new data blocks
• Write the data to the new data blocks
• Update file’s inode metadata with new file size, modification time

• All of these writes must be performed, or none of them
• (with the possible exception of the data write, depending on the journaling filesystem 

implementation and configuration)
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Atomic Operations and Transactions
• Since atomic operations correspond to system calls, will likely have a huge 

number of them…
• For efficiency, Linux groups multiple atomic operations together into a single 

transaction
• The entire transaction is treated as an atomic unit in the filesystem journal
• All atomic operations in the transaction are applied, or none are

• The filesystem only maintains one “active” transaction at a time
• The transaction that the filesystem is adding atomic operations to

• (This is why concurrency control and isolation aren’t needed; there is only one 
active transaction at a time.)
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Atomic Operations and Transactions (2)
• As atomic operations are performed, they are added to the current transaction, 

until one of the following occurs:
• A fixed amount of time passes, e.g. 5 seconds
• The journal doesn’t have room to record another atomic operation

• At this point, the filesystem will “lock” the transaction
• The transaction is closed
• Any new atomic operations are logged in the next “active” transaction

• Of course, the transaction is still far from complete…
• The transaction’s logs may not yet be in the filesystem journal
• Changes recorded in logs may not be applied to the filesystem
• (In “ordered” mode, data changes may not yet be flushed to disk)
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Atomic Operations and Transactions (3)
• If a transaction’s logs haven’t been fully written to journal, it is in “flush” state
• A crash during this state means the txn is aborted during recovery

• Once transaction logs are fully written to the journal, it enters “commit” state
• All the logs are in the journal on disk, but the actual filesystem changes recorded in those 

logs haven’t been completed
• Once all changes specified in the transaction have been written to filesystem, 

it is “finished”
• The filesystem itself reflects all changes recorded in the txn logs…
• Don’t need to keep the transaction in the journal anymore!
• It is removed from the circular queue that holds the journal
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Recovery
• The ext3 filesystem recovery mechanism only requires replaying the logs of 

transactions in the “commit” state
• If a transaction is in the “finished” state, the filesystem already reflects the changes in the 

journal
• If a transaction is in the “commit” state:
• All changes to filesystem metadata have been written to journal, but some changes may not 

be recorded to the filesystem itself
• All other transactions that haven’t reached the “commit” state are incomplete
• The journal may not actually contain all parts of one or more atomic operations
• Therefore, the filesystem recovery mechanism simply ignores these incomplete transactions
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Recovery:  Requirements
• Note:  for this to work, the filesystem must follow a rule:
• No changes may be made to the filesystem metadata itself until the journal on disk reflects 

all changes being made in the transaction
• i.e. the filesystem itself cannot be updated until the corresponding transaction enters the 

“commit” state
• Otherwise, the filesystem itself will include changes from an incomplete 

transaction…
• The transaction could be aborted by a system crash…
• In that case, those changes would need to be rolled back somehow

• To simplify recovery, ext3 imposes this requirement
• (Computers have plenty of memory to hold modified data by now)

• Otherwise, the filesystem would also require some kind of undo-processing 
during recovery
• (Note:  just an ext3/ext4 design choice; undo-processing isn’t “bad”)
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Filesystem Journaling:  Limitations
• Filesystem journaling is generally nowhere near as sophisticated as database 

transaction logging
• Journaling mechanism has a few simple goals:
• Maintain the integrity of the filesystem
• Avoid extremely costly, exhaustive consistency checks

• Frequently, other constraints are imposed to simplify recovery processing
• Again, databases often are much more sophisticated in this area, and require complex 

redo/undo processing during recovery
• Typically, filesystems offer facilities more than sufficient to build very 

sophisticated transaction logging systems
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Filesystem Journaling:  Benefits
• Obvious benefit:  filesystems become significantly more robust, without costly 

exhaustive consistency checks!
• Another unexpected benefit:  I/O performance (!!)
• Produces benefits on both magnetic HDDs and SSDs

• The filesystem must write logs to the journal
• These writes are basically all sequential

• The filesystem must batch up (frequently random) writes to data and 
metadata, to perform at specific times
• The OS can often reorder these writes to minimize seek overhead
• (Of course, OS must make sure not to violate ordering constraints)

• Journaling allows the operating system to interact with hard disks in a 
significantly higher-performance way
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Alternatives to Filesystem Journaling
• Several other interesting alternatives to incorporating a journal into the 

filesystem

Soft Updates
• The OS can carefully order changes to the file system to ensure that it never 

becomes corrupt, even in a crash
• Typically, the only issue that occurs in a crash is that free space is leaked
• i.e. the filesystem thinks that space is unavailable, but no file is actually using it
• This isn’t a corruption issue, so OS can resolve it in the background during normal operation
• (Approach:  scan through all file-system inodes; if a block isn’t referenced by any inode, 

reclaim it)
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Alternatives to Filesystem Journaling (2)
Soft Updates (cont.)
• Benefit:  Can mount a filesystem immediately after a crash; no log to replay
• (not that journal logs ever take that long to replay…)

• Difficulty:  Requires very careful design and implementation of the file system
• (implementers have to be much more careful)

• The Unix File System (UFS) uses soft updates
• In BSD, this is also called the Fast File System (FFS)
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Alternatives to Filesystem Journaling (3)
Log-Structured File Systems
• Instead of having separate file-system disk structures and journal area, just 

use the journal as the file-system
• The journal is still maintained as a (now very large) circular queue

• Reads against files and directories are resolved against the most recently 
logged journal entries

• Writes against files and directories are implemented as new records logged 
into the journal

• Rationale:
• Sequential writes are much faster and easier to batch up than random writes
• Also facilitates filesystem snapshotting, by looking at the journal at a specific point in time
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Alternatives to Filesystem Journaling (4)
Log-Structured File Systems (cont.)
• Recovery is very simple:  just identify the last point in time where the journal is 

consistent
• Main challenge:  when can journal entries be reclaimed?
• All log entries record writes…
• If a later log entry records a write to the same data as an earlier log entry, the earlier entry 

can be discarded
• If an early log entry has no later log entries, it can simply be moved forward in the log 

(typically to the head of the log)
• The OS implements basic garbage-collection mechanism to free up space in 

the journal using these techniques
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Alternatives to Filesystem Journaling (5)
Log-Structured File Systems (cont.)
• On HDDs, log-structured file systems generally don’t work very well
• Significant performance decreases on disk reads (seek overhead)

• But, a very appealing approach for flash-based storage…
• Seeks are free, so no performance overhead on reads

• Recall:  flash devices really can’t perform in-place writes
• Can only write to empty cells; erase cells in larger erase-blocks
• Also, each cell can only endure so many write-erase cycles

• Log-structured file systems satisfy these constraints well
• File system doesn’t perform in-place writes to filesystem data
• Journal traverses the entire storage device in sequence, giving very even wear
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Alternatives to Filesystem Journaling (6)
Log-Structured File Systems (cont.)
• A number of log-structured file systems in use
• Universal Disk Format (UDF) is used on DVDs and many optical disks (has 

largely replaced use of ISO 9660)
• Numerous filesystem implementations for flash-based devices are being 

created (primarily on Linux)
• Journalling Flash File System (JFFS, JFFS2)
• Several intended replacements for JFFS/JFFS2, including:
• LogFS
• Unsorted Block Image File System (UBIFS)
• Flash-Friendly File System (F2FS)
• Yet Another Flash File System (YAFFS)
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Alternatives to Filesystem Journaling (7)
Copy-On-Write File Systems
• Copy-on-write technique can also be applied to filesystems to avoid corruption
• Premise:
• Never modify old data in-place!  Always make a copy of it and then change the copy.
• Perform a single atomic update that changes from using the old data to using the new data

• The filesystem is always moving between valid states using atomic operations
• After a crash, the filesystem will either be in old state or new state, but nothing in between

• B-tree File System (Btrfs) implemented by Oracle uses copy-on-write
• The basic B-tree data structure doesn’t easily support copy-on-write, so the filesystem uses 

a modified B-tree implementation
• ZFS (also Oracle) also uses copy-on-write

24


