
PROJECT 5: PINTOS FILE SYSTEM
CS124 – Operating Systems
Spring 2024, Lecture 23

Project 5: Pintos File System
• Last project is to improve the Pintos file system
• Note: Please ask before using late tokens on Project 5

• Initial Pintos file system is somewhat limited:
• Each file is a single contiguous extent on disk
• Files cannot grow once they are created
• There is only a single root directory in the file system
• The root directory can only hold up to 16 directory entries
• The filesystem can only be used by one kernel thread at a time

• You must implement:
• Extendable files that don’t require contiguous space on disk
• Directories that can grow to hold more file entries as needed
• Directory hierarchies
• Support for fast, concurrent access from many kernel threads

2

Project 5: Pintos File System (2)
• Suggested order of implementation:
1. File system buffer cache
• Will force you to think about concurrent access from the start

2. Extendable files
• Required: use multi-level indexed file layout
• Suggested: ext2-like hybrid multi-level index structure
• Note: files don’t need to support shrinking or truncation…

3. Subdirectories
4. Remaining miscellaneous items
• Process “current directory”
• Parsing and navigating directory paths
• Read-ahead and write-behind facilities

3

Project 5: Pintos File System (3)
• Suggested order of implementation:
2. Extendable files
• Required: use multi-level indexed file layout
• Suggested: ext2-like hybrid multi-level index structure
• Note: files don’t need to support shrinking or truncation…

3. Subdirectories
 …
• Assignment suggests that items 2 and 3 can be implemented in parallel
• If you do this, merge your work frequently!
• “Working in parallel” does not mean “working in isolation” !!!
• Ignore this at your own peril. Many teams have failed to do this, and they end up with a

pile of nonworking code.

4

Project 5: Pintos File System (4)
• The file system should support concurrent access
• Files read and written by multiple concurrent processes
• File-extension needs to be atomic (for correctness)
• Readers shouldn’t block each other
• Writes to different parts of a file shouldn’t block each other

(this can be true on a per-sector basis)
• Readers shouldn’t see written data until the write is completed

(this can be true on a per-sector basis)
• Directory operations on different directories should also be concurrent
• You may not have a global filesystem lock that serializes filesystem access in

your Project 5 submission
• -30 point deduction for a global filesystem lock

5

Filesystem Cache
• Filesystem cache is pretty straightforward to implement
• Limited to 64 cache blocks
• Both file data and metadata count against this limit
• (Can exclude the file system’s free-space map, if you wish)
• Blocks need “dirty” bit; write dirty blocks back to disk when evicted

• One idea for an approach:
• Initially build cache but retain the global file-system lock
• Make all file-system accesses use the cache
• Make sure all tests still pass…

• Then, replace global lock with per-entry read/write locking
• Readers don’t block readers; writers block everybody
• Make sure all tests still pass…

• Finally, any more advanced concurrency issues to resolve

6

Filesystem Cache (2)
• Can implement filesystem cache as statically-allocated array of entries
• Could use a hash-table to look up entries based on sector # (fast), or do a linear search

through the table (much simpler, but slower)
• Entries need a lock of some kind (i.e. read/write lock) to coordinate access to data they hold

• Will need some kind of eviction policy when cache is full
• Assignment again says CLOCK is the minimum bar; this is simple, or you could even

implement LRU if you want to be fancy
• Many other policies are possible! For example:
• Metadata is perhaps more useful to keep in cache than file data…
• Maybe try a “points-based NFU” mechanism – metadata access is worth 2 points, and data

access is worth 1 point (see lecture 20)
• Evict the entry with the lowest score
• (Recall NFU’s limitations – likely need to decay entries’ points…)

7

Filesystem Cache (3)
• Just as with virtual memory, many concurrent access scenarios to consider
• Example:
• Cache uses a global hash table to look up which cache entry contains this sector
• Process A wants to read sector 234, which is in the cache
• Meanwhile, Process B wants to read sector 216, which is not in the cache, and has chosen

to evict sector 234
• If you use a hash table, how to guard concurrent access and modification of

the hash table itself? (another r/w lock?)
• Can a process get to a filesystem-cache entry, and then discover that the entry

is not for the sector it wants?
• Some solutions for the specified concurrency goals have this characteristic

8

Cache Concurrency
• Using a global mapping of sector numbers to file system cache entries can

introduce concurrency issues
• Example:
• A global hash-map that maps sector numbers to cache entries
• A global lock used to guard the hash-map

• Reading or writing a block in the cache:
• Acquire global lock
• Find block in cache
• Acquire the block’s lock
• Release global lock
• Perform IO on block
• Release the block’s lock

• (A simple crabbing mechanism)

9

Cache Concurrency (2)
• With this approach, processes can become blocked on the global lock L
• An example scenario:
• Kernel thread 1 performs a read on block B
• Kernel thread 2 chooses to evict block B (or do anything else on B)
• Kernel thread 3 performs IO on any other block in the system

10

Kernel Thread 1 Kernel Thread 2 Kernel Thread 3

Acquire global lock
Find block B in cache
Acquire B’s lock
Release global lock
Start reading data into B…

Acquire global lock
Find block B in cache
Block on B’s lock…

Block on global lock…

Cache Concurrency (3)
• Scenario:

• The problem is that we hold the global lock until the entry’s lock is acquired…
• …and sometimes other threads are doing really slow things with the entry

11

Kernel Thread 1 Kernel Thread 2 Kernel Thread 3

Acquire global lock
Find block B in cache
Acquire B’s lock
Release global lock
Start reading data into B…

Acquire global lock
Find block B in cache
Block on B’s lock…

Block on global lock…

Cache Concurrency (4)
• What if we changed the approach to release the global lock before acquiring

the block’s lock?

• Allows kernel-thread 3 to proceed…
• But, also allows new interleavings of kernel threads…

12

Kernel Thread 1 Kernel Thread 2 Kernel Thread 3

Acquire global lock
Find block B in cache
Release global lock
Acquire B’s lock
Start reading data into B…

Acquire global lock
Find block B in cache
Release global lock
Block on B’s lock…

Acquire global lock
(continue on…)

Cache Concurrency (5)
• Now this is also possible:

• Solutions?

• A simple solution: after the thread
acquires B’s lock, verify that the
cache entry still holds block B

• If cache entry no longer holds block B when the thread gets the cache entry’s
lock, just go back to the hash table and try again
• Acquire the global lock, find block B in cache, release the lock, etc.

13

Kernel Thread 1 Kernel Thread 2

Acquire global lock
Find block B in cache
Release global lock

Acquire global lock
Find block B in cache
Release global lock
Acquire B’s lock
Evict B
Release B’s lock

Acquire B’s lock
Start accessing B’s data
??

Read-Write Locks
• Typically, must implement some kind of read-write lock
• (also known as a shared-exclusive lock)
• Pintos implementation doesn’t include one

• Should try to make your read-write lock fair for both readers and writers
• If lock is currently held by readers, and another reader requests the lock, only grant the

request if no writers are currently blocked
• If lock is released by a writer, should probably try to grant the lock to waiting readers next,

so that writers also can’t starve out readers
• (Really don’t need to order lock-grants based on the order of lock-requests; just make sure

nobody can be starved!)
• Many ways to build a read-write lock…
• Just make sure to encapsulate lock and unlock operations so that it’s easy to use them

wherever you need to!

14

Read-Write Locks (2)
• Pintos has locks (i.e. mutexes) and condition variables – perfectly sufficient to build a

read-write lock
• One lock for making operations on the read-write lock atomic
• Two condition variables that wait on this lock, one for waiting readers, and one for waiting writers
• Other state variables, e.g. for current mode of the lock (unlocked, read-locked, write-locked),

number of waiting readers, number of waiting writers, etc. (many variations to choose from)
• Condition variables maintain an internal queue of waiting threads
• Can signal on the condition variable to wake up one waiter (e.g. to allow one waiting writer to

proceed)
• Can also broadcast on the condition variable to wake up all waiters (e.g. to allow all waiting

readers to proceed)
• Important: waiters on a condition variable cannot assume that just because they

wake up, the desired condition is true!
• Must wait on condition variable in a loop, until the desired condition is actually true

15

Read-Ahead and Write-Behind
• Filesystem must support read-ahead and write-behind
• Read-ahead: If a process reads sector n, the filesystem should prefetch

sector n+1 in the background
• Goal is entirely to improve sequential file access
• (Note that this can easily affect random access very negatively)

• Write-behind: Filesystem should periodically traverse all cached entries, and
write dirty ones back to disk
• Goal is to ensure that the operating system is robust in the face of unexpected crashes or

other system failures
• Both these operations need to happen in background…
• An easy approach: Implement them with dedicated kernel threads that take

care of these responsibilities

16

Read-Ahead and Write-Behind (2)
• Read-ahead service:
• A “read-ahead” kernel thread is spun up on initialization of the filesystem
• A shared queue drives this kernel thread – sectors to read-ahead are added to this queue
• When a process reads sector n, kernel adds the value n+1 to read-ahead thread’s queue
• The read-ahead thread receives these requests and attempts to read the specified sector

(causes it to be loaded into the cache)
• Write-behind service:
• Another “write-behind” kernel thread spun up on initialization of the filesystem
• Sits in a loop, sleeping for a specific period of time, then waking up and writing back any

dirty sectors in the filesystem cache
• When a sector has been written back, its dirty bit must be cleared
• (Probably should lock entry so it can’t change while writing it back)

17

Extendable Files
• Need to update file system to support file-extension, and files that are not

contiguous extents
• Requires two things:
• A free-space map (free-map.c / free-map.h)
• A more sophisticated inode structure for representing where a file’s data is on the device

(inode.c / inode.h)

• Both of these structures are initially focused on simple single-extent
contiguous files
• Feel free to change both the data representations, and the APIs that these C files expose!

• Example: the free map can continue being a bitmap...
• But, change free_map_allocate() to allocate non-contiguous sectors from the disk
• (Or, change it to allocate one sector at a time)

18

Extendable Files (2)
• Given: file system partition will never be larger than 8MiB (and also, files can

only be a maximum of 8MiB)
• 8MiB = 16384 512-byte sectors
• Implications:
• Free-space map can be up to 2KiB (4 sectors) in size
• File inodes must be able to index up to 16384 sectors using some kind of multilevel

indexing structure

• The free-space map is a specific file on the file system
• It doesn’t appear in the directory structure
• Rather, its inode is hard-coded to reside at sector 0

(see FREE_MAP_SECTOR in filesys.h)
• The bitmap implementation includes functions to read and write bitmaps to a file

19

Inodes
• An “inode” is the root of all indexing data and metadata for a given file on disk
• The inode may (usually will) occupy multiple non-contiguous sectors

• The file inode.c has two inode data structures
• inode_disk is the on-disk representation; must be exactly 512 bytes (specified as
BLOCK_SECTOR_SIZE bytes)

• inode is the in-memory representation
• Both of these will change significantly as you do Project 5

• Note: inode structure initially has an inode_disk member…
• This is before you have added the file system cache!
• Once you create the file system cache, the inode_disk data will actually be stored in a

cache entry, not in the inode struct
• (Cast the cache entry’s array of data into an inode_disk* to access the inode’s contents)

20

Inodes (2)
• The assignment suggests using an ext2-like approach
• Inode will reference (besides metadata):
• Some number of direct nodes
• Some number of single-indirect nodes (> 0)
• Some number of double-indirect nodes (> 0)
• No triple-indirect nodes (thankfully!)

• Direct nodes cannot represent 8MiB files by themselves…
• 512 bytes / 4-byte index entries = 128 sectors = 64KiB files
• (We are ignoring space occupied by metadata in the inode!)

• It’s up to you to decide how many single-indirect and double-indirect entries to
use in your implementation
• Hint: Probably want to use as few as possible, for simplicity J

21

Inodes (3)
• Example: constants for number of inode entries

#define NUM_DIRECT ...
#define NUM_INDIRECT ...
#define NUM_DOUBLE_INDIRECT ...
#define NUM_ENTRIES (NUM_DIRECT + NUM_INDIRECT + NUM_DOUBLE_INDIRECT)

• Can either put all entries into a single array…
struct inode_disk {
 block_sector_t sectors[NUM_ENTRIES];
 ...
};

• Or, can have multiple arrays
struct inode_disk {
 block_sector_t direct[NUM_DIRECT];
 block_sector_t indirect[NUM_INDIRECT];
 block_sector_t double_indirect[NUM_DOUBLE_INDIRECT];
 ...
};

• Both approaches have identical data layout within the sector
• Second approach is probably easier to understand

22

File Extension
• Need to support file extension, performed concurrently by multiple processes
• File extension must be an atomic operation:
• Data and metadata must be kept in sync, or else file will be corrupted

• Implication: the in-memory inode structure needs some kind of lock for governing
file extension

• Still need to make sure that other reads/writes within the file are allowed to proceed
concurrently…

• Must check the file’s size to see if a given write is going to extend the file or not
• If extending, make sure the file-extension lock is acquired first
• If not extending, rely on the locks in the file system cache to govern concurrent access

• Recall: in Project 5, files can only grow, not shrink
• A write within a file will remain a write within the file, regardless of what other processes might

be doing to the file

23

File Extension (2)
• Two main choices for file extension

1. Always lock file-extension lock before checking length
• Benefit: easy to get right!
• Drawback: must acquire this lock for all reads and writes, even if it is immediately released

• If several writers are trying to extend the file, a writer to the interior will be
blocked until it can acquire this lock

• Has the potential to significantly reduce the concurrency of the file system L

24

File Extension (3)
2. Use double-checked locking
• Pseudocode:

if (write_position >= inode->length) {
 /* We might be extending the file... */
 /* Get the lock and then check again to be sure! */
 acquire_lock(inode->extension_lock);
 if (write_position >= inode->length) {
 /* Yep, definitely extending the file. */
 ... /* extend the file */
 release_lock(inode->extension_lock);
 return;
 }
 release_lock(inode->extension_lock);
}
/* If we get here, we are writing the file’s interior. */
... /* write to interior */

25

File Extension (4)
• Double-checked locking can be very tricky to get right
• Pseudocode:
if (write_position >= inode->length) {
 /* We might be extending the file. Get the lock
 * and then check again to be sure! */
 acquire_lock(inode->extension_lock);
 if (write_position >= inode->length) {

• Compilers can be too clever, and cache inode->length into a register
• If length cached in a register, second comparison won’t give us an accurate answer
• (Or, better yet, second comparison might simply be optimized away!)

• The solutions are the same as always
• Cast inode->length to be volatile (easiest), or use a barrier

26

File Extension (5)
• Finally, we must think about order of operations when extending files
• When a process extends a file by writing data past EOF, other processes shouldn’t see the

new data until the write is completed
• Need to do these things:
• Update the file’s length metadata stored in the inode
• Write new data into the file itself (including intervening data if you implement a dense file

representation, not a sparse one)
• Update the file’s inode structure to point to the new sectors
• Release the file-extension lock

• Think carefully about what order to do these things, so that other processes
reading from the file won’t see the write until it is fully completed

27

Directories
• In UNIX systems, directories are simply special files
• Instead of exposing the directory-file’s raw contents to applications, the OS parses and

manages the file’s contents itself
• File-system inodes can record whether a file is a “normal file” or a “directory”

in the metadata
• Directory entries associate string names with where files or subdirectories

reside on disk…
• Easy approach is to have the directory store the sector of the inode of each file or

subdirectory
• As with the free-space map, the location of the root directory’s inode is hard-

coded to sector 1 in the OS
• (See ROOT_DIR_SECTOR in filesys.h)

28

Directories (2)
• As usual, Project 5 specifies strong concurrency requirements on directory operations
• Concurrent operations on different directories should proceed in parallel
• Suggests that synchronization should be performed using locks on directory-inodes (or the

corresponding dir struct)
• (Can probably come up with a unified abstraction for both files and directories to use the same

basic inode type)
• Try to avoid global collections of open directories, if possible
• Any global collection like this will require synchronization that reduces the concurrency of your

overall system
• Typically, the things that need to keep track of directories can simply store the

directory’s inode
• e.g. the process’ current directory
• Also allows the process to record that it is using the directory, so that e.g. it can’t be deleted

while the process is running

29

In-Use Files and Directories
• Pintos follows UNIX-like semantics for file deletion (Project 3)
• A file may be deleted even if a process has the file open
• When the process terminates, the file is reclaimed

• In Project 5, processes will keep track of their current directory
• Can prevent a directory from being deleted if any process is using the directory

• Easy enough to implement by adding an “in-use” count to the inode
corresponding to the file or directory
• Increment the “in-use” value when file or directory is opened (or when a process changes

into the directory)
• Decrement the “in-use” value when file or directory is closed (or when a process changes

away from the directory)
• When “in-use” value hits 0, carry out appropriate actions.

Or, if “in-use” value > 0, prevent certain actions.

30

Project 5: Pintos File System
• That should cover most of the key points for Project 5
• As always, the devil is in the details…

• Ask for help if you get stuck on anything!

• Please ask before using late tokens on Project 5!
• Teams including Seniors / Grad students must be fully graded in about 3 days. L

31

