
FILE SYSTEMS, PART 2
CS124 – Operating Systems
Spring 2024, Lecture 22

Files and Processes
• The OS maintains a buffer of storage blocks in memory
• Storage devices are often much slower than the CPU; use caching to improve performance

of reads and writes
• Multiple processes can open a file at the same time…

2

files[0]
files[1]
files[2]

…
files[3]

offset
flags

v_ptr

files[0]
files[1]
files[2]

…

files[3]

offset
flags

v_ptr

files[4]
files[5]

Process A
Kernel Data

Process B
Kernel Data

Global Kernel Data

filename
file_ops

i_node

path
size
flags

File
Control
Block

Storage Cache

Files and Processes (2)
• Very common to have different processes perform reads and writes on the

same open file
• OSes tend to vary in how they handle this circumstance, but standard APIs

can manage these interactions

3

files[0]
files[1]
files[2]

…
files[3]

offset
flags

v_ptr

files[0]
files[1]
files[2]

…

files[3]

offset
flags

v_ptr

files[4]
files[5]

Process A
Kernel Data

Process B
Kernel Data

Global Kernel Data

filename
file_ops

i_node

path
size
flags

File
Control
Block

Storage Cache

Files and Processes (3)
• Multiple reads on the same file generally never block each other, even for

overlapping reads
• Generally, a read that occurs after a write, should reflect the completion of that

write operation

• Writes should sometimes block each other, but operating systems vary widely
in how they handle this
• e.g. Linux prevents multiple concurrent writes to the same file

• Most important situation to get correct is appending to file
• Two operations must be performed: the file’s space is extended, then write is performed

into newly allocated space
• If this task isn’t atomic, results will likely be completely broken files

4

Files and Processes (4)
• Operating systems have several ways to govern concurrent file access
• Often, entire files can be locked in shared or exclusive mode
• e.g. Windows CreateFile() allows files to be locked in one of several modes at creation
• Other processes trying to perform conflicting operations are prevented from doing so by the

operating system
• Some OSes provide advisory file-locking operations
• Advisory locks aren’t enforced on actual file-IO operations
• They are only enforced when processes participate in acquiring and releasing these locks

• Example: UNIX flock() acquires/releases advisory locks on an entire file
• Processes calling flock() will be blocked if a conflicting lock is held…
• If a process decides to just directly access the flock()’d file, the OS won’t stop it!

5

Files and Processes (5)
• Example: UNIX lockf() function can acquire/release advisory locks on a region of

a file
• i.e. lock a section of the file in a shared or exclusive mode
• Windows has a similar capability

• Both flock() and lockf() are wrappers to fcntl()
• fcntl() can perform many different operations on files:

• Duplicate a file descriptor
• Get and set control flags on open files
• Enable or disable various kinds of I/O signals for open files
• Acquire or release locks on files or ranges of files
• etc.

• Some OSes also provide mandatory file-locking support
• Processes are forced to abide by the current set of file locks
• e.g. Linux has mandatory file-locking support, but this is non-standard

6

File Deletion
• File deletion is a generally straightforward operation
• Specific implementation details depend heavily on

the file system format
• General procedure:
• Remove the directory entry referencing the file
• If the file system contains no other hard-links

to the file, record that all of the file’s blocks are
now available for other files to use

• The file system must record what blocks are available for use when files are
created or extended

• Often called a free-space list, although many different approaches are used
to record this information

• Some file systems already have a way of doing this, e.g. FAT formats simply
mark clusters as unused in the table

7

A C

C

D

A

home

B

user2user1

Free Space Management
• A simple approach: a bitmap with one bit per block
• If a block is free, the corresponding bit is 1
• If a block is in use, the corresponding bit is 0

• Simple to find an available block, or a run of available blocks
• Can make more efficient by accessing the bitmap in units of words, skipping over entire

words that are 0
• This bitmap clearly occupies a certain amount of space
• e.g. a 4KiB block can record the state of 32768 blocks, or 128MiB of storage space
• A 1TB disk would require 8192 blocks (32MiB) to record the disk’s free-space bitmap

• The file system can break this bitmap into multiple parts
• e.g. Ext2 manages a free-block bitmap for groups of blocks, with the constraint that each

group’s bitmap must always fit into one block

8

Free Space Management (2)
• Another simple approach: a linked list of free blocks
• The file system records the first block in the free list
• Each free block holds a pointer to the next block

• Also very simple to find an available block
• Much harder to find a run of contiguous blocks that are available

• Tends to be more I/O costly than the bitmap approach
• Requires additional disk accesses to scan and update the free-list of blocks
• Also, wastes a lot of space in the free list…

• A better use of free blocks: store the addresses of many free blocks in each
block of the linked list
• Only a subset of the free blocks are required for this information

• Still generally requires more space than bitmap approach

9

Free Space Management (3)
• Many other ways of recording free storage space
• e.g. record runs of free contiguous blocks with (start, count) values
• e.g. maintain more sophisticated maps of free space

• A common theme: when deleting a file, many of these approaches don’t
actually require touching the newly deallocated blocks
• e.g. update a bitmap, store a block-pointer in another block, …

• Storage devices usually still contain the old contents of truncated/deleted files
• Called data remanence

• Sometimes this is useful for data recovery
• e.g. file-undelete utilities, or computer forensics when investigating crimes

• (Also generally not difficult to securely erase devices)

10

Free Space and SSDs
• Solid State Drives (SSDs) and other flash-based devices often complicate

management of free space
• SSDs are block devices; reads and writes are a fixed size
• Problem: can only write to a block that is currently empty
• Blocks can only be erased in groups, not individually
• An erase block is a group of blocks that are erased together
• This is done primarily for performance reasons

• Erase blocks are much larger than read/write blocks
• A read/write block might be 4KiB or 8KiB…
• Erase blocks are often 128 or 256 of these blocks (e.g. 2MiB)

• As long as some blocks on SSD are empty, data can be written immediately
• If the SSD has no more empty blocks, a group of blocks must be erased to

provide more empty blocks

11

Solid State Drives
• Solid State Drives include a flash translation layer that maps logical block

addresses to physical memory cells
• Recall: system uses Logical Block Addressing to access disks

• When files are written to the SSD, data must be stored in empty cells
(i.e. old contents can’t simply be overwritten)

• If a file is edited, the SSD sees a write issued against
the same logical block
• e.g. block 2 in file F1 is written

• SSD can’t just replace block’s contents…
• SSD marks the cell as “old,” then stores the new data

in another cell, and updates the mapping in the FTL

12

F3.4

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

Solid State Drives (2)
• Over time, SSD ends up with few or no available cells
• e.g. a series of writes to our SSD that results in all cells being used

• SSD must erase at least one block of cells to be reused
• Best case is when an entire erase-block can be reclaimed
• SSD erases the entire block, and then carries on as before

13

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old

old

old oldold

old

Erase!

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old old

F2.1''

old

Solid State Drives (3)
• More complicated when an erase block still holds data
• e.g. SSD decides it must reclaim the third erase-block

• SSD must relocate the current contents before erasing
• Result: sometimes a write to the SSD incurs additional writes within the SSD
• Phenomenon is called write amplification

14

F3.4

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old

old

old oldold

old

F2.1''

old

F3.1' F3.4'Erase!

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'F3.1' F3.4'

Solid State Drives (4)
• SSDs must carefully manage this process to avoid uneven wear of its memory

cells
• Cells can only survive so many erase cycles, then they become useless
• Technique is called wear leveling

• How does the SSD know when a cell’s contents are no longer needed?
(i.e. when to mark the cell “old”)

• The SSD only knows because it sees several writes
to the same logical block
• The new version replaces the old version, so the old cell is

no longer used for storage

15

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'

SSDs and File Deletion
• Problem: for most file system formats, file deletion doesn’t actually touch the

blocks in the file themselves!
• File systems try to avoid this anyway, because storage I/O is slow!
• Want to update the directory entry and the free-space map only, and want this to be as

efficient as possible
• Example: File F3 is deleted from the SSD
• The SSD will only see the block with the directory entry change,

and block(s) holding the free map
• The SSD has no idea that file F3’s data no longer needs

to be preserved
• e.g. if the SSD decides to erase bank 2, it will still move F3.2 and

F3.3 to other cells, even though the OS and the users don’t care!

16

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'

SSDs, File Deletion and TRIM
• To deal with this, SSDs introduced the TRIM command
• (TRIM is not an acronym)

• When the filesystem is finished with certain logical blocks, it can issue a TRIM
command to inform the SSD that the data in those blocks can be discarded

• Previous example: file F3 is deleted
• The OS can issue a TRIM command to inform SSD that all

associated blocks are now unused
• TRIM allows the SSD to manage its cells much more efficiently
• Greatly reduces write magnification issues
• Helps reduce wear on SSD memory cells

17

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'

old old

old

SSDs and Random Access
• A common claim about SSDs is that random access

is the same performance as sequential access
• The Flash Translation Layer is solid-state logic
• No mechanical devices that must move over a distance

• Really only true for random vs. sequential reads
• Depending on size of writes being performed, random write

performance can be much slower than sequential writes
• Reason:
• Small random writes are much more likely to be spread across many erase blocks…
• Random writes are likely to vary widely in when they can be discarded…
• Overhead of write amplification is increased in these scenarios

• Sequential writes tend to avoid these characteristics, so overhead due to write
amplification is reduced

18

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'

old old

old

SSDs and Random Access
• If random-write block size grows to the point that it works well with the SSD

erase-block size and garbage collection algorithm, then random writes will be
as fast as sequential writes

• Below that size, sequential
writes to an SSD are much
faster than random writes

• This affects the design of
SSD-friendly filesystems and
database file layouts

19

SSD-H SSD-M SSD-L
Manufacturer Intel Samsung Transcend
Model X25-E S470 JetFlash 700
Capacity 32 GB 64 GB 32 GB
Interface SATA SATA USB 3.0
Flash Memory SLC MLC MLC
Max Sequential Reads (MB/s) 216.9 212.6 69.1
Random 4 KB Reads (MB/s) 13.8 10.6 5.3
Max Sequential Writes (MB/s) 170 87 38
Random 4 KB Writes (MB/s) 5.3 0.6 0.002
Price ($/GB) 14 2.3 1.4

Table 1: Specification data of the flash devices. List price
is as of September 2011.

selectively caching page-level mapping table entries on
RAM.

2.2 Imbalance between Random and Se-
quential Write Performance in SSDs

Most SSDs are built on an array of NAND flash memo-
ries, which are connected to the SSD controller via mul-
tiple channels. To exploit this inherent parallelism for
better I/O bandwidth, SSDs perform read or write op-
erations as a unit of a clustered page [19] that is com-
posed of physical pages striped over multiple NAND
flash memories. If the request size is not a multiple of
the clustered page size, extra read or write operations
are performed in the SSD and the performance is de-
graded. Thus, the clustered page size is critical in I/O
performance.

Write performance in SSDs is highly workload depen-
dent and is eventually limited by the garbage collection
performance of FTL. Previous work [12, 9, 39, 37, 38]
has reported that random write performance drops by
more than an order of magnitude after extensive random
updates and returns to the initial high performance only
after extensive sequential writes. The reason for this is
that random writes increase the garbage collection over-
head in FTL. In a hybrid FTL, random writes increase
the associativity between log blocks and data blocks, and
incur the costly full merge [24]. In page-level FTL, as it
tends to fragment blocks evenly, garbage collection has
large copying overhead.

In order to improve garbage collection performance,
SSD combines several blocks striped over multiple
NAND flash memories into a clustered block [19]. The
purpose of this is to erase multiple physical blocks in
parallel. If all write requests are aligned in multiples of
the clustered block size and their sizes are also multiples
of the clustered block size, random write updates and in-
validates a clustered block as a whole. Therefore, in hy-
brid FTL, a switch merge [24] with the lowest overhead
occurs. Similarly, in page-level FTL, empty blocks with
no live pages are selected as victims for garbage collec-
tion. The result of this is that random write performance
converges with sequential write performance. To ver-

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

B/
s)

Request size

Sequential Write (SSD-H) Random Write (SSD-H)
Sequential Write (SSD-M) Random Write (SSD-M)
Sequential Write (SSD-L) Random Write (SSD-L)

Figure 1: Sequential vs. random write throughput.

Figure 2: Cumulative write frequency distribution.

ify this, we measured sequential write and random write
throughput on three different SSDs in Table 1, ranging
from a high-end SLC SSD (SSD-H) to a low-end USB
memory stick (SSD-L). To determine sustained write
performance, dummy data equal to twice the device’s
capacity is first written for aging, and the throughput of
subsequent writing for 8GB is measured. Figure 1 shows
that random write performance catches up with sequen-
tial write performance when the request size is 16 MB or
32 MB. These unique performance characteristics moti-
vate the second design principle of SFS: write bandwidth
maximization by sequential writes to SSD.

2.3 Skewness in I/O Workloads
Many researchers have pointed out that I/O workloads
have non-uniform access frequency distribution [34, 31,
23, 6, 3, 33, 11]. A disk-level trace of personal work-
stations at Hewlett Packard laboratories exhibits a high
locality of references in that 90% of the writes go to the
1% of blocks [34]. Roselli et al. [31] analyzed file sys-
tem traces collected from four different groups of ma-
chines: an instructional laboratory, a set of computers
used for research, a single web server, and a set of PCs
running Windows NT. They found that files tend to be
either read-mostly or write-mostly and the writes show
substantial locality. Lee and Moon [23] showed that the
update frequency of TPC-C workloads is highly skewed,
in that 29% writes go to 1.6% of pages.

SFS: Random Write Considered Harmful in Solid State Drives (Min et al.)

Next Time
• Next time: notes on the Pintos filesystem assignment

20

