FILE SYSTEMS, PART 2

CS124 — Operating Systems
Spring 2024, Lecture 22

Files and Processes

- The OS maintains a buffer of storage blocks in memory

- Storage devices are often much slower than the CPU; use caching to improve performance
of reads and writes

- Multiple processes can open a file at the same time...

| Process A filesi0 Global Kernel Data

| Kernel Data f!les 1 il
les ile
files[2 Control
files[3 Block

—h
M
n
o

—=h
M
(72}
-

—h
M
n
N

Storage Cache

=

—h
M
n
w

=h
M
(2]
D

—h
M
n
Ol

|

|

|

|

|

|

|

|
R
| Process B :
| Kernel Data -
i

|

|

|

|

|

|

|

|

|

|

Files and Processes (2)

- Very common to have different processes perform reads and writes on the
same open file

- OSes tend to vary in how they handle this circumstance, but standard APIs
can manage these interactions

T T T T T T oo T T T T T T T T |m T T T T T T T T T T T T T T T T |
|
i E;Orﬁj% ,:ta Global Kernel Data
File
Control
Block

|

|

|

|

|

|

|

|
I
| Process B

| .

| Kernel Data f!les 0
| files[1
| :

|

| :

|

I .

|

| .

|

|

|

|

Storage Cache

=

Files and Processes (3)

- Multiple reads on the same file generally never block each other, even for
overlapping reads

- Generally, a read that occurs after a write, should reflect the completion of that
write operation

- Writes should sometimes block each other, but operating systems vary widely
In how they handle this

- e.g. Linux prevents multiple concurrent writes to the same file

- Most important situation to get correct is appending to file

- Two operations must be performed: the file's space is extended, then write is performed
into newly allocated space

- If this task isn’t atomic, results will likely be completely broken files

Files and Processes (4)

- Operating systems have several ways to govern concurrent file access

- Often, entire files can be locked in shared or exclusive mode
- e.g. Windows CreateFile () allows files to be locked in one of several modes at creation

- Other processes trying to perform conflicting operations are prevented from doing so by the
operating system
- Some OSes provide advisory file-locking operations
- Advisory locks aren’t enforced on actual file-lO operations
- They are only enforced when processes participate in acquiring and releasing these locks
- Example: UNIX £lock () acquires/releases advisory locks on an entire file

- Processes calling £1lock () will be blocked if a conflicting lock is held...
- If a process decides to just directly access the £lock () 'd file, the OS won’t stop it!

Files and Processes (5)

- Example: UNIX lock£ () function can acquire/release advisory locks on a region of

a file
- i.e. lock a section of the file in a shared or exclusive mode

- Windows has a similar capability
- Both £1lock () and lockf () are wrappers to £fcntl ()
- fentl () can perform many different operations on files:

- Duplicate a file descriptor
- Get and set control flags on open files
- Enable or disable various kinds of /O signals for open files
- Acquire or release locks on files or ranges of files
- etc.
- Some OSes also provide mandatory file-locking support
- Processes are forced to abide by the current set of file locks
- e.g. Linux has mandatory file-locking support, but this is non-standard

File Deletion

- File deletion is a generally straightforward operation

- Specific implementation details depend heavily on
the file system format

- General procedure:
- Remove the directory entry referencing the file

- If the file system contains no other hard-links
to the file, record that all of the file’s blocks are
now available for other files to use

home

T

user1

Yo

user2

L)

- The file system must record what blocks are available for use when files are

created or extended

- Often called a free-space list, although many different approaches are used

to record this information

- Some file systems already have a way of doing this, e.g. FAT formats simply

mark clusters as unused in the table

Free Space Management

- A simple approach: a bitmap with one bit per block
- If a block is free, the corresponding bit is 1
- If a block is in use, the corresponding bit is 0

- Simple to find an available block, or a run of available blocks

- Can make more efficient by accessing the bitmap in units of words, skipping over entire
words that are O

- This bitmap clearly occupies a certain amount of space

- e.g. a 4KiB block can record the state of 32768 blocks, or 128MiB of storage space

- A 1TB disk would require 8192 blocks (32MiB) to record the disk’s free-space bitmap
- The file system can break this bitmap into multiple parts

- e.g. Ext2 manages a free-block bitmap for groups of blocks, with the constraint that each
group’s bitmap must always fit into one block

Free Space Management (2)

- Another simple approach: a linked list of free blocks
- The file system records the first block in the free list
- Each free block holds a pointer to the next block

- Also very simple to find an available block
- Much harder to find a run of contiguous blocks that are available

- Tends to be more /O costly than the bitmap approach

- Requires additional disk accesses to scan and update the free-list of blocks
- Also, wastes a lot of space in the free list...

- A better use of free blocks: store the addresses of many free blocks in each
block of the linked list

- Only a subset of the free blocks are required for this information
- Still generally requires more space than bitmap approach

Free Space Management (3)

- Many other ways of recording free storage space

- e.g. record runs of free contiguous blocks with (start, count) values
- e.g. maintain more sophisticated maps of free space

- A common theme: when deleting a file, many of these approaches don't
actually require touching the newly deallocated blocks

- e.g. update a bitmap, store a block-pointer in another block, ...

- Storage devices usually still contain the old contents of truncated/deleted files
- Called data remanence

- Sometimes this is useful for data recovery
- e.g. file-undelete utilities, or computer forensics when investigating crimes
- (Also generally not difficult to securely erase devices)

. S
Free Space and SSDs

- Solid State Drives (SSDs) and other flash-based devices often complicate
management of free space

- SSDs are block devices; reads and writes are a fixed size
- Problem: can only write to a block that is currently empty

- Blocks can only be erased in groups, not individually
- An erase block is a group of blocks that are erased together
- This is done primarily for performance reasons

- Erase blocks are much larger than read/write blocks
- A read/write block might be 4KiB or 8KiB...
- Erase blocks are often 128 or 256 of these blocks (e.g. 2MiB)

- As long as some blocks on SSD are empty, data can be written immediately

- If the SSD has no more empty blocks, a group of blocks must be erased to
provide more empty blocks

2
Solid State Drives

- Solid State Drives include a flash translation layer that maps logical block
addresses to physical memory cells
- Recall: system uses Logical Block Addressing to access disks

- When files are written to the SSD, data must be stored in empty cells
(i.e. old contents can’t simply be overwritten)

- If a file is edited, the SSD sees a write issued against
the same logical block
- e.g. block 2 in file F1 is written

old
e][rer

- SSD can't just replace block’s contents...
- SSD marks the cell as “old,” then stores the new data - -

iIn another cell, and updates the mapping in the FTL

:

. N
Solid State Drives (2)

- Over time, SSD ends up with few or no available cells
- e.g. a series of writes to our SSD that results in all cells being used

- SSD must erase at least one block of cells to be reused

- Best case is when an entire erase-block can be reclaimed
- SSD erases the entire block, and then carries on as before

Erase!

o

Solid State Drives (3)

- More complicated when an erase block still holds data
- e.g. SSD decides it must reclaim the third erase-block

- SSD must relocate the current contents before erasing

- Result: sometimes a write fo the SSD incurs additional writes within the SSD
- Phenomenon is called write amplification

o

e
Solid State Drives (4)

- SSDs must carefully manage this process to avoid uneven wear of its memory
cells
- Cells can only survive so many erase cycles, then they become useless
- Technique is called wear leveling

- How does the SSD know when a cell’'s contents are no longer needed?
(i.e. when to mark the cell “old”)

- The SSD only knows because it sees several writes
to the same logical block

- The new version replaces the old version, so the old cell is
no longer used for storage

.
SSDs and File Deletion

- Problem: for most file system formats, file deletion doesn’t actually touch the
blocks in the file themselves!
- File systems try to avoid this anyway, because storage 1/O is slow!

- Want to update the directory entry and the free-space map only, and want this to be as
efficient as possible

- Example: File F3 is deleted from the SSD
- The SSD will only see the block with the directory entry change,

and block(s) holding the free map -
- The SSD has no idea that file F3’s data no longer needs o
to be preserved

- e.g. if the SSD decides to erase bank 2, it will still move F3.2 and
F3.3 to other cells, even though the OS and the users don’t care!

old
)

i

SSDs, File Deletion and TRIM

- To deal with this, SSDs introduced the TRIM command

- (TRIM is not an acronym)

- When the filesystem is finished with certain logical blocks, it can issue a TRIM
command to inform the SSD that the data in those blocks can be discarded

- Previous example: file F3 is deleted

- The OS can issue a TRIM command to inform SSD that all
associated blocks are now unused

- TRIM allows the SSD to manage its cells much more efficiently -

- Greatly reduces write magnification issues
- Helps reduce wear on SSD memory cells

i

old
)

SSDs and Random Access

- A common claim about SSDs is that random access

is the same performance as sequential access -
- The Flash Translation Layer is solid-state logic
- No mechanical devices that must move over a distance

- Really only true for random vs. sequential reads

- Depending on size of writes being performed, random write
performance can be much slower than sequential writes

- Reason:
- Small random writes are much more likely to be spread across many erase blocks...

- Random writes are likely to vary widely in when they can be discarded...
- Overhead of write amplification is increased in these scenarios

- Sequential writes tend to avoid these characteristics, so overhead due to write
amplification is reduced

i

SSDs and Random Access

- If random-write block size grows to the point that it works well with the SSD
erase-block size and garbage collection algorithm, then random writes will be

as fast as sequential writes —o—Sequential Write (SSD-H) —l~Random Write (SSD-H)

. . —A—Sequential Write (SSD-M) =><=Random Write (SSD-M)

‘ BeIOW that SlZe, Sequent|a| =#=Sequential Write (SSD-L) =@®-Random Write (SSD-L)
writes to an SSD are much 200

faster than random writes

=
U
o

- This affects the design of
SSD-friendly filesystems and
database file layouts

Ul
o

e SEVEERVES
M =g

00
&b Gb bb\k %GP '\Q b& .\'Q)Q

Throughput (MB/s)
|_\
o
o

SFS: Random Write Considered Harmful in Solid State Drives (Min et al.) Request size

Next Time

- Next time: notes on the Pintos filesystem assignment

