
FILE SYSTEMS
CS124 – Operating Systems
Spring 2024, Lecture 21

Persistent Storage
• All programs require some form of persistent storage that lasts beyond the

lifetime of an individual process
• Most obvious reason: need a way to store programs!
• Other examples: configuration, input data files, output data files, documents, files shared

among programs, etc.
• Also need storage to last through a process- or system-crash
• e.g. banking information, reservation systems, document editors
• Or, just for backing up system information

• Computers often include some form of persistent storage
• Very common: solid-state drives (SSDs), hard disks (HDDs), USB flash drives, flash

memory cards, other flash storage
• Less common, but still widely used: tape drives, optical drives

2

Large Data-Sets
• Sometimes programs must manipulate data-sets that are much larger than the

system memory size
• i.e. the size of physical memory, or system’s virtual address space

• Frequently want to allow multiple processes to access and manipulate the
same large data-set concurrently
• Allow multiple processes to read the same data concurrently
• Allow multiple processes to write different parts of the same data concurrently

• Typically, devices used to store these large data-sets are much slower than
computer’s main memory
• Reading many bytes is roughly as costly as reading one byte…
• Divide storage device into fixed-size blocks; allow system software to read/write individual

blocks of data

3

Managing Persistent Storage
• User applications usually don’t want to deal with reading/writing blocks of data
• …especially when different devices have different block sizes, different read/write/erase

characteristics, etc.

• Similarly, applications usually don’t want to deal with:
• Remembering unusable areas of storage device (e.g. bad blocks)
• Remembering where various data-sets start on the device
• Data-sets that may not be stored contiguously on the device

• Operating systems present a file abstraction to programs
• Files are logical units of information created by processes
• A contiguous linear sequence of bytes accessed via a relative offset from the start of the file

• The OS’ file system manages this file abstraction

4

File Contents
• General-purpose operating systems usually don’t constrain file contents to

follow any particular format
• A process can interpret the file’s contents however it wants to
• OS may distinguish between text and binary files, but usually apps impose this distinction

• Some files may be constrained to follow a specific format, e.g. executable
program binaries or shared libraries

• Older systems would have constraints on file formats, due to the
characteristics of their storage devices!
• e.g. card readers could only store 80-character-wide text files, and output was written to

132-character printers

• Purpose-built operating systems may also constrain files to follow a specific
format (files of records, images, etc.)

5

Referring to Files
• Files are referred to by a text name (a.k.a. “filename”)
• Often, files also specify an extension indicating the kind of file, i.e. how to

interpret the file’s contents
• The extension is usually the portion of the filename following last period “.” in the filename
• The portion before the extension is often called the base name
• Term “filename” may refer to base name, or name and extension

• The specific constraints on filenames vary from OS to OS
• e.g. MS-DOS only allows 8 characters for the filename and 3 characters for the extension
• Some OSes respect the capitalization of a filename; e.g. most UNIXes treat FOO.txt and
foo.txt as different files

• Others treat these as referring to the same file (e.g. MS-DOS, and macOS by default)

6

Organizing Files
• Once a system has more than a few files, it becomes very helpful to be able to

organize them
• Operating systems provide directories or folders that contain files
• Within a specific directory, every file must have a unique name
• Two different directories can contain files with the same name

• File systems usually have at least one directory:
the root directory
• The starting point for finding any file in the file system
• If the file system doesn’t have a root directory, programs must know how to find files on the

storage device by themselves
• Depending on the complexity of the file system, OSes will support varying

levels of complexity for directory structure

7

Directory Structures
• Simple operating systems frequently support a very simple directory structure
• e.g. simple phones, digital cameras, …

• A single-level directory maintains all files in a single root directory
• Used when the system won’t have many files to manage

• Files within a directory must be uniquely named…

• Multiuser systems need at least a two-level directory structure, so that each
user can have their own files
• First level is called a master file directory
• Second level is called a user file directory

8

A B C D

root

A B C

user1

C D

user2

root

Directory Structures (2)
• General-purpose operating systems frequently support a directory structure

that forms a graph
• Top level directory is still the root
• Top-level subdirectories group files based on their purpose

• Files are referenced by specifying the path to the file from the root directory
• e.g. /root/home/user2/D

• Different operating systems use various path separators
• Windows uses “\”
• UNIX variants use “/”
• MULTICS used “>”
• Older MacOS used “:”, MacOS X (a.k.a. macOS)

switched to “/”

9

A C

C

D

A

… …

home bin lib

B

user2

root

user1

Directory Structures (3)
• Every process has a “current directory”
• e.g. when a user logs in to the system, their current directory is their home directory
• e.g. when user1 logs in, their shell’s current directory is /home/user1

• Relative paths are resolved using the current directory
• Can refer to current directory with “.”, or parent with “..”

• Allows e.g. users to share files
• Example: user1 is logged in, current directory is /home/user1
• user1 can access user2’s file D with path “../user2/D”

10

A C

C

D

A

… …

home bin lib

B

user2

root

user1

Directory Structures (4)
• Don’t always want to share files with other users…
• Similarly, don’t want system files being deleted or edited by just anybody
• Files include metadata that holds additional details about the file
• A small list of examples:
• The user that created the file
• When the file was created or last modified
• Access permissions for the file
• The icon associated with the file
• The application used to open the file

11

A C

C

D

A

… …

home bin lib

B

user2

root

user1

Directory Structures (5)
• Often, files can be shared between different directories
• A link is a “pointer” to a file that resides

in another directory
• Hard links are when the directory entries

themselves reference a specific file
• OS uses a reference-count to tell when a file is

no longer used, and the space may be reclaimed
• Symbolic links are specified as a file

in a different directory
• Not all file systems support hard links
• e.g. FAT file system doesn’t support hard links

12

A C

C

D

A

… …

home bin lib

B

user2

root

user1

hard
link

A C C D

A

B

user2user1

home

C symbolic link

File Storage
• Files are presented as an unstructured sequence of bytes
• Programs are free to read and write sequences of varying sizes
• Programs are free to impose whatever meaning on a file’s contents

• The file system exposes various operations on files, e.g.
• Create a file at a specific path (can specify permissions, etc.)
• Delete a file at a specific path
• Rename a file

• The OS maintains a “current position” for open files
• When bytes are read or written, the current position is used
• The position is updated by the read or write operation
• Programs can also seek to a specific position within a file

• If multiple processes have a given file open, each process has its own
“current position” in the file

13

File Access Patterns
• Programs exhibit two major access patterns when interacting with files
• Sequential access is when a file’s contents are read in order, block by block
• Direct access (or relative access) is when a program seeks to the location of

a specific piece of data
• e.g. to read or write that piece of data
• A program may seek relative to the current position, or relative to the start of the file, or

relative to the end of the file
• Different filesystem layouts have different strengths
• Some are great for sequential access, e.g. because they reduce disk seeks and other

access overhead
• Some are terrible for direct access, e.g. because they don’t provide an easy way to map a

logical position to a block of storage

14

File Layout: Contiguous Allocation
• Most persistent storage devices are large – can hold many files at once
• Storage devices are also accessed by blocks
• The file system must keep track of which blocks hold the contents of each file,

and the order of blocks in the file
• Easiest approach for file layout: contiguous allocation
• Each file occupies a contiguous region of the storage device

• Directory structure is very simple: each entry must simply record where file
starts, and how many blocks in the file

• Indexing into the file is also easy:
• To find block corresponding to the current file position, divide file position by block size, then

add in the starting block number

15

File Layout: Contiguous Allocation (2)
• Contiguous allocation suffers from external fragmentation
• After many file creations and deletions, disk space becomes fragmented

• Can compact the free space on the device by copying all files to another
device, then copying them back
• Same technique as relocation register and segmentation approaches to virtual memory

• Frequently, the device must be taken offline before it can be compacted
• Can’t allow programs to access/manipulate the device’s contents while it’s being compacted

• Another major issue with contiguous allocation: programs must often extend
the size of a given file
• e.g. write results to a data file, or messages to a log file

16

File Layout: Contiguous Allocation (3)
• Contiguous allocation can be modified to provide extents: a contiguous

region of space on the storage device
• An extent is usually comprised of many blocks

• A file consists of one or more extents chained together
• Reduces issues of external fragmentation since a single file can occupy

multiple regions of the disk
• But, external fragmentation still become a serious issue over time

• Can also suffer from data fragmentation: a file is broken into many parts and
spread all over the storage device

• CDs, DVDs and tapes all use contiguous allocation
• Many file systems support extents: NTFS (Windows), HFS/HFS+ (older Mac),

APFS (current Mac), ext4, btrfs, etc.
• Some of these require extents to be enabled before they are used

17

File Layout: Linked Allocation
• In linked allocation, files are comprised of a sequence of blocks that are

linked together
• Directory entries point to first and last block in each file
• Each block stores a pointer to the next block in the file

• This approach is really only good for sequential access
• Can’t easily find which block of a file corresponds to a given logical position

within the file
• Must read through file’s blocks to identify the block corresponding to a given position

18

A 3 11

File Layout: Linked Allocation (2)
• Compaction isn’t necessary because storage is always allocated in units of

blocks…

• …but internal fragmentation becomes an issue, especially for files that are
much smaller than the block size

• Similarly, data fragmentation can be a very serious issue
• A small amount of space is lost within each block due to a “next block” pointer
• Blocks are usually a power of 2 in size; programmers like to work with buffers that are a

power of 2 in size (for best cache usage)
• Can easily have reads that inadvertently span multiple blocks

19

A 3 11

File Layout: Linked Allocation (3)
• Instead of storing the sequence of blocks in the blocks, move this into a

separate file-allocation table (FAT)
• A part of the file system is specifically devoted to storing the FAT

• Instead of this:

• Record the block sequence in a separate table elsewhere on the disk
• Each block in the file is wholly used for storing the file’s data

20

A 3 11Directory Entry:

4 10 13 -1 14 15 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 3 11Directory Entry:

File Allocation
Table:

File Layout: Linked Allocation (4)
• The file-allocation table tends to be a limited, fixed size
• Can load the entire FAT into memory
• Makes it faster to identify the block corresponding to a specific logical offset within a file

• As storage devices grow in size, run into two problems
• Problem 1: Sometimes, the set of FAT entries can’t address the number of

blocks the device actually has
• Example: Original FAT system had 8 bits per table entry
• Only 256 blocks can participate in files!
• Subsequent FAT formats devoted more bits to each table entry, e.g. FAT16 has 16 bits per

entry, FAT32 has 32 bits per entry

21

4 10 13 -1 14 15 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 3 11Directory Entry:

File Allocation
Table:

File Layout: Linked Allocation (5)
• To solve problem of large disks using FAT file systems, files are allocated in

clusters, not in blocks
• Every cluster contains a fixed number of blocks, e.g. one cluster might be 16 blocks

• Causes problem 2: FAT file systems have severe internal fragmentation
issues storing small files on large devices

• Clusters can be as large as 32KiB or even 64KiB in size
• Example: a disk with sectors that are 512 bytes in size
• A cluster is 32 sectors, or 16KiB
• The FAT filesystem can only hand out space in 16KiB chunks!

• If a 3KiB file is created, 13KiB of space is wasted
• If a 100-byte file created, nearly the entire cluster is empty

22

File Layout: Indexed Allocation
• Indexed allocation achieves the benefits of linked allocation while also being

very fast for direct access
• Files include indexing information to allow for fast access
• Each file effectively has its own file-allocation table optimized for both sequential and direct

access
• This information is usually stored separate from the file’s contents, so that programs can

assume that blocks are entirely used by data

23

A 2

index
3
4
10
13
14
15
11
-1
-1
…

Location of
Index Block

Contents of
Index Block

File Layout: Indexed Allocation (2)
• Both direct and sequential access are very fast
• Very easy to translate a logical file position into the corresponding disk block
• Position in index = logical position / block size
• Use value in index to load the corresponding block into memory

24

A 2
3
4
10
13
14
15
11
-1
-1
…

Location of
Index Block

Contents of
Index Block

index

File Layout: Indexed Allocation (3)
• Index block can also store file metadata
• Recall: many filesystems support hard linking of a file

from multiple paths
• If metadata is stored in the directory instead of

with the file, metadata must be duplicated,
could get out of sync, etc.
• Indexed allocation can avoid this issue!

25

A 2
3
4
10
13
14
15
11
-1
-1
…

Location of
Index Block

Contents of
Index Block

index

A C

C

D

A

home

B

user2user1

File Layout: Indexed Allocation (4)
• Obvious overhead from indexed allocation is the index
• Tends to be greater overhead than e.g. linked allocation

• Difficult to balance concerns for small and large files
• Don’t want small files to waste space with a mostly-empty index…
• Don’t want large files to incur a lot of work from navigating many small index blocks…

• Index space tend to be allocated in units of storage blocks

26

A 2
3
4
10
13
14
15
11
-1
-1
…

Location of
Index Block

Contents of
Index Block

index

File Layout: Indexed Allocation (5)
• Option 1: a linked sequence of index blocks
• Each index block has an array of file-block pointers
• Last pointer in index block is either “end of index” value, or a pointer to the

next index block
• Good for smaller files
• Example: storage blocks of 512B; 32-bit index entries
• 512 bytes / 4 bytes = maximum of 128 entries

• Index block might store 100 or more entries (extra space for storing file
metadata)
• 100 entries per index block × 512 byte blocks = ~50KB file size for a single index block

• Usually want to use virtual page size as block size instead
• Max of 1024 entries per 4KiB page
• If index entries refer to 4KiB blocks, a single index block can be used for up to 4MB files

before requiring a second index block

27

File Layout: Indexed Allocation (6)
• Option 2: a multilevel index structure
• An index page can reference other index pages, or it can reference data

blocks in the file itself (but not both)
• Depth of indexing structure can be adjusted based on the file’s size
• As before, a single-level index can index up to ~4MB file sizes
• Above that size, a two-level index can be used:
• Leaf pages in index can each index up to ~4MB regions of the file
• Each entry in the root of the index corresponds to ~4MB of the file
• A two-level index can be used for up to a ~4GB file
• A three-level index can be used for up to a ~4TB file
• etc.

• Index can be navigated very efficiently for direct access

28

File Layout: Indexed Allocation (7)
• Option 3: hybrid approach that blends other approaches
• Example: UNIX Ext2 file system
• Root index node (i-node) holds file metadata
• Root index also holds pointers to the first 12 disk blocks
• Small files (e.g. up to ~50KB) only require a single index block
• Called direct blocks

• If this is insufficient, one of the index pointers
is used for single indirect blocks
• One additional index block is introduced

to the structure, like linked organization
• Extends file size up to e.g. multiple-MB files

29

file
metadata

…

…

File Layout: Indexed Allocation (8)
• For even larger files, the next index pointer is used for double indirect blocks
• These blocks are accessed via a two-level index hierarchy
• Allows for very large files, up into multiple GB in size

• If this is insufficient, the last root-index pointer is used for triple indirect
blocks

• These blocks use a three-
level index hierarchy
• Allows file sizes up into TB

• A size limit is imposed…
• More recent extensions to

this filesystem format allow
for larger files (e.g. extents)

30

file
metadata

…

…

…

…

…

Next Time
• More details on file systems

31

