
VIRTUAL MEMORY MANAGEMENT
PART 3
CS124 – Operating Systems
Spring 2024, Lecture 20



Page Allocation Policy
• Previously covered a number of page replacement policies
• Handle case when a page must be evicted to free up a frame

• The operating system also requires some number of frames…
• For kernel code and data, I/O buffers, frames for use in interrupt handlers, etc.

• All remaining frames can be allocated to processes, but the OS must do this in 
an intelligent way

• The operating system can usually control two things:
• How many frames are allocated to each process
• The degree of multiprogramming:  how many processes are currently running on system

• The page allocation policy determines how many page frames each running 
process should be given

2



Page Allocation Considerations
• The primary goal of the page allocation policy:  make sure all processes have 

“enough” frames to perform their tasks
• Ideally, every process has all the frames it needs
• Page faults only occur when a process begins accessing new data that isn’t already in 

virtual memory
• Reality:  try to keep the page fault rate to a reasonable level, so that we don’t 

lose too much time to paging I/O
• When a given process page-faults, it slows down that process…
• In the context of multitasking, page faults aren’t so bad:
• When one process faults, it becomes blocked on I/O, allowing other ready processes to run
• As long as I/O due to page faults doesn’t become too large, the OS can continue to keep 

the CPU 100% utilized

3



Thrashing
• If the amount of paging I/O grows so high that it begins to impede system 

performance, the system is thrashing
• This term comes from when tapes were used for external storage
• Describes the sound they would make when paging I/O was high

• An individual process can also be described as thrashing when it has a high 
page-fault rate

• Thrashing occurs when the total number of page frames that all processes are 
using, exceeds the total number of frames available in the system

• Every time a process generates a page fault, the OS evicts a page that some 
process is still actively using…
• …which will provoke yet another page-fault again in the near future

4



Thrashing (2)
• Thrashing can occur unexpectedly as the resource requirements of processes 

change over time…
• Example:  an OS running on a system with 20 physical page-frames available 

for applications to use
• Four processes are running:  each has a virtual address space of 10 pages, but each is only 

accessing 5 of those pages regularly
• Requirement:  20 frames to hold pages.  The system won’t thrash.

• Then, two processes switch to accessing all 10 pages
• Now the requirement is for 30 frames, but the system only has 20
• The I/O overhead from page faults may become so high that CPU utilization may drop 

precipitously
• Depending on how the OS allocates pages, this scenario can cause all 

processes’ page-fault rates to increase, even ones still only using 5 pages…

5



Faults and Degree of Multiprogramming
• Every process has a set of pages it is currently using
• Called the working set of the process

• The “degree of multiprogramming” is the number of processes currently 
running on the system

• Generally, as we increase degree of multiprogramming, the demand for 
physical page frames also increases
• The page fault rate also increases, and the I/O system

must handle an increasing rate of page faults

• Eventually the I/O system is saturated,
producing thrashing

6

Utilization

Degree of Multiprogramming

CPU I/O
(paging)

Thrashing



Degree of Multiprogramming (2)
• Some OSes can control the degree of multiprogramming
• Recall:  This is the role of long-term and medium-term scheduling
• Long-term scheduling controls when new jobs are admitted into the system, and is usually 

part of batch-processing systems
• Medium-term scheduling allows the OS to adjust the degree of multiprogramming by 

suspending running processes, then later resuming them

• Medium-term scheduling can be guided by page-fault rates
• If system has too high a page-fault rate,

remove some processes from memory
to free up more frames

• Later, reintroduce these processes when
page-fault rates are lower

7

Utilization

Degree of Multiprogramming

CPU I/O
(paging)

Thrashing



Degree of Multiprogramming (3)
• Most widespread operating systems rely on the user to control the degree of 

multiprogramming
• The OS only includes a short-term scheduler

• OS allows the user to start whatever processes they want
• If performance becomes unacceptable (e.g. due to thrashing), the user simply 

terminates some processes

8

Utilization

Degree of Multiprogramming

CPU I/O
(paging)

Thrashing



Global vs. Local Allocation Policies
• When a process needs a new frame, the operating system has two options
• A global replacement policy:  the OS can acquire the new frame from any 

process that is currently running
• Example:  Process A causes a page fault.  The OS evicts a page from Process B’s set of 

pages, and assigns the frame to Process A.
• The number of frames allocated to a given process can change (both grow and shrink) 

dynamically over time
• Strength:  gives the OS much more flexibility in assigning frames to processes 

in memory, based on their needs
• Frames won’t be held onto by a process that isn’t using them

• Limitation:  a process’ page-fault rate can be directly affected by other 
processes in the system
• The performance of a given program may vary widely over time, simply due to the other 

programs running on the system

9



Global vs. Local Allocation Policies (2)
• A local replacement policy:  the OS will acquire the new frame from the 

process that suffered the page-fault
• Example:  Process A causes a page fault.  The OS evicts a page from Process A’s own set 

of pages.
• Generally, the set of frames assigned to a given process is much more static; it changes in 

much more limited ways over time
• Strength:  if some process starts page-faulting frequently, it won’t affect other 

processes nearly as much
• Limitation:  number of frames assigned to each process isn’t nearly as finely 

tuned as it is with global allocation

• Most operating systems use a global replacement policy

10



Simple Page Allocation Policies
• Some page allocation policies are very simple
• e.g. given a total of m frames available to n processes

• An equal allocation policy assigns each process roughly m / n frames
• Some programs have a larger virtual address space than others – equal 

allocation doesn’t always make sense…
• e.g. a given process pi has a virtual address space of size si
• The sum of all process virtual memory sizes is S = Σsi

• A proportional allocation policy assigns each process a number of frames 
proportional to its virtual memory size
• Each process is assigned roughly m × si / S frames

• These policies make most sense with a local replacement policy; each 
process has basically static frame allocation

11



Simple Page Allocation Policies (2)
• As degree of multiprogramming increases, each process ends up with fewer 

and fewer frames to use
• Equal allocation policy:  each process gets m / n frames; n is the degree of 

multiprogramming
• Proportional allocation policy:  the sum of all process virtual memory sizes S increases as 

degree of multiprogramming increases; each process gets roughly m × si / S frames
• Frames for new processes must come from somewhere...  unfortunately, that’s 

all the other processes
• In these systems, medium-term scheduling can be used to eliminate thrashing
• Suspend some processes until thrashing issues disappear
• Resume these processes later when system load is lower

12



The Working Set Model
• Previous strategies aren’t designed to handle variations in process page-

frame requirements
• Would prefer to determine the requirements of each process much more 

dynamically
• One option:  quantify the size of each process’ working set
• The set of pages that the process is currently working with
• As a program runs, its working set changes

• A process’ working set is difficult to determine…
• Estimate it by looking at all recent memory accesses within a given window
• A proper choice of τ is essential for a good estimate

13

… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 …

t1

τ

t2

τ



The Working Set Model (2)
• Can estimate a process’ working set with a mechanism very similar to the 

Aging page-replacement policy
• Requires that the MMU maintains an “accessed” bit for each page

• The OS maintains a b-bit value for each page
• On a periodic timer interrupt, the OS traverses all pages in memory, updating 

this value
• Shift the value right, store “accessed” bit into topmost bit of value, then clear the page’s 

“accessed” bit
• If a process’ page has a nonzero value, it’s in the process’ working set
• Can easily count how many pages are in each process’ working set

• Main difference between this and the Aging policy is that the timer interval is 
much longer
• e.g. might only want 2-4 interrupts during the working set window

14



The Working Set Model (3)
• Once each process’ working set is known (or guessed), OS can use this to set 

the degree of multiprogramming
• If the working sets of all processes requires fewer frames than the system has available, 

add more processes!
• Or, if the working sets of all processes don’t fit within the system’s memory, suspend 

processes until all working sets fit within memory
• (Can suspend lower-priority processes to allow higher-priority ones to finish more quickly)

• This approach works very well in practice
• This model also does a great job of driving prepaging of processes when they 

are unblocked or resumed
• Instead of waiting for pages to be demanded, preemptively start loading a process’ working 

set back into physical memory
• If working-set estimate is good, should greatly reduce page faults

15



Page-Fault Frequency
• So far, these page allocation policies primarily make sense in the context of 

medium-term scheduling
• Operating systems that can control degree of multiprogramming

• Most widespread operating systems don’t actually have a long-term or 
medium-term scheduler

• Instead, they rely on the page-fault frequency of various processes to 
determine when to assign more frames
• i.e. how often is a given process generating page faults?

• If a process’ page-fault frequency is too high, give it more frames
• Take frames away from processes with a low page-fault frequency
• Premise:  they may have more frames than their working set size

16



Page-Fault Frequency (2)
• The pager can aim to keep processes’ page-fault frequency within a specific 

“desirable range”
• Specify a lower- and upper-bound on page-fault rate

• If a process’ page-fault rate exceeds the upper bound, the OS assigns it more 
frames

• If a process is below the lower bound, the OS considers it a candidate for 
giving up frames
• e.g. with page buffering, OS might reclaim frames and move them into free page-frame pool

• If the process is in the desirable page-fault frequency range, the OS can use 
other page replacement policies
• e.g. LRU, aging, etc.
• This can be done in a local way, to avoid affecting other processes

17



Page-Fault Frequency (3)
• Of course, using page-fault frequency approach won’t necessarily prevent 

thrashing…
• The OS may still benefit from medium-term scheduling techniques to free up 

more frames for processes
• e.g. if page-fault frequency of many processes is high, just suspend one or more processes 

and use their frames for other processes

18



Modern OSes and Page Allocation
• Most widely used operating systems don’t have a very sophisticated page 

allocation policy
• Instead, they rely on a more sophisticated page replacement policy with global 

replacement
• Just let users run the programs they want to run…
• When system performance become unacceptable, the user will kill or exit some of the 

running processes
• (The user is the medium/long-term scheduler)

• If a process remains blocked for a long time (e.g. waiting for user interaction):
• If other processes need more frames, they will be taken from the blocked process
• The process will eventually be completely paged out of memory
• All of the process’ frames will become available to other processes

19



Example:  Linux
• Linux has a straightforward virtual memory policy:
• Pages are never allocated to a process until they are used
• e.g. programs are referenced in the process’ virtual memory mapping, but are demand-

paged into physical memory
• e.g. heap and stack pages aren’t allocated to a process until it actually references the page
• Demand-zero paging:  a page is taken from the free-page pool and cleared with all zeros

• Linux uses a modified form of the Clock algorithm that maintains an age for 
every page
• Pages are periodically traversed, and ages adjusted based on whether or not they have 

been accessed recently
• Ages decay to zero; higher ages indicate frequent recent accesses

• Pages with a low age value will be reclaimed by the system
• Allows Linux to implement a policy that considers page-access recency and frequency

20



Example:  Windows
• Windows generally relies on processes to state their “working set” sizes
• Windows calls it the “working set,” but it’s actually the resident set; the number of pages 

the process has in physical memory
• If the process’ actual working set (not the Windows definition) is larger than its resident set, 

the process will incur many page-faults
• Processes are given a default minimum and maximum “working set” size
• e.g. default minimum is 50 pages or 200KiB, default maximum is 345 pages or ~1.3MiB
• A process can have a larger virtual address space than this…

• Processes may also specify their minimum and maximum “working set” sizes
• Limits are applied, e.g. a hard minimum of 20 pages, etc.

21



Example:  Windows (2)
• If the page-fault rate becomes unacceptably high, Windows will trim the 

“working sets” of all processes
• (Again, Windows “working set” means the resident set)

• When trimming, Windows sets goal for page reclamation
• Sets it slightly higher than what is strictly required, so that trimming doesn’t have to run 

multiple times
• Pages in each process’ working set are periodically aged based on recent 

accesses
• In Windows 7, each page has one of up to 8 age values

• Oldest pages are reclaimed first to avoid further faults
• Trimming culls pages from all processes, even if trim goal is reached partway 

through the procedure
• Ensures that page reclamation is fair to all processes

22



Example:  Windows and Linux
• Both Windows and Linux use free page-frame pools
• When pages are reclaimed by the virtual memory system, they are added to 

clean or modified pools
• Modified pages are eventually written out, then moved to the clean pool

• If a process page-faults on a page in one of these pools, the page will usually 
be reassigned back to the process

23



Next Time
• Start discussing file systems

24


