
PROJECT 4: PINTOS
VIRTUAL MEMORY
CS124 – Operating Systems
Spring 2024, Lecture 19

Project 4: Pintos Virtual Memory
• Implement disk-backed virtual memory in Pintos
• Initially, Pintos has very limited support for virtual memory
• Process address-space isolation, and user program loading

• Several facilities are provided to help:
• Pintos supports a swap partition for loading and saving virtual memory pages
• Also supports a bitmap implementation, which may be useful for tracking available slots in

the swap partition
• Should also be able to rely on existing Pintos synchronization mechanisms, etc.

• All Project 3 tests (system calls) should continue to pass
• Caveat: the “no-vm” tests are not run – this includes multi-oom

• New tests to exercise Project 4 functionality as well

2

Project 4: Requirements
• Implement demand-paging for loading program binaries
• This should be pure demand-paging

• Implement demand-paging for stack pages
• May want to always allocate a frame for the first stack page

• Implement support for memory-mapped files
• Memory-mapped regions in a process cannot overlap
• If two processes map the same file into memory, your implementation doesn’t need to keep

the data consistent

• Pintos doesn’t have shared libraries or dynamically resizable data segments
(i.e. user-space malloc())
• Only dynamically-resizable memory area in processes is the stack

3

Project 4: Requirements (2)
• Important concurrency requirement:
• If a page fault requires I/O to resolve, it shouldn’t block other page faults that don’t require

I/O to resolve
• Shouldn’t be too hard to satisfy this requirement – just don’t hold any global lock while

performing I/O operations
• Note: Disk interactions are already serialized in the IDE device implementation

(src/devices/ide.c)
• The kernel-thread doing the read/write is passively blocked on a lock until the operation completes

• Optional extra credit:
• Implement shared-memory support for read-only sections of program binaries (this is

complicated enough…)
• Pintos system-call API doesn’t support shared data-segments, or shared read-write sections

4

Overview of Pintos Virtual Memory
• Frames (aka “physical pages”) are contiguous regions of physical memory,

with a specific page size and alignment
• 4KiB on x86 processors

• Pages (aka “virtual pages”) are contiguous regions of virtual memory, with a
specific page size and alignment

• IA32 uses a two-level page-table hierarchy to map pages to frames
• Swap slots are contiguous regions of memory on the swap device, for storing

the contents of a virtual page when they aren’t in physical memory
• Each slot is 4KiB in size

(same as virtual page size)

5

Physical Page Offset
31 12 11 0

Virtual Page Offset
31 11 0

Virtual Address

Physical Address

Page Directory
Base Register

Page
Directory

…

Page Directory Entry Page Table Entry

Page
Table

…

Physical Page Number

122122

Pintos Address-Space Layout
• Pintos roughly follows the virtual memory layout

used by Linux on IA32
• Boundary between kernel-space and user-space is

0xc0000000 (3GiB)
• Defined as PHYS_BASE – use this constant, not a magic number
• See threads/loader.h and threads/vaddr.h

• Several Pintos simplifications:
• No shared libraries!
• No dynamically-resizable memory heap!
• No user-space malloc() support!

6

Process-specific
data structures
Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Ke
rn

el
 S

pa
ce

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

U
se

r S
pa

ce

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

Pintos Address-Space Layout (2)
• Pintos uses up to a maximum of 64MiB physical memory
• 64MiB physical memory / 4KiB page size = 16384 page frames maximum
• init_ram_pages stores the actual number of frames (set up in threads/start.S)

• A major simplification: Pintos always keeps all page-frames mapped into
kernel space
• Frame at physical address 0x0000 is mapped to kernel-space address

PHYS_BASE + 0x0000
• Frame at physical address 0x1000 is mapped to kernel-space address

PHYS_BASE + 0x1000
• Real operating systems don’t do this!!

• Can easily manipulate the contents of any frame from within kernel
• Can easily compute any frame’s physical address or kernel-virtual address

7

Pintos Process Page Directories
• Every Pintos process has its own page directory, initialized when the process

is started
• pagedir_create() in userprog/pagedir.c

• Process’ page directory is copied from an “initial page directory” created when
virtual memory is initialized
• paging_init() in threads/init.c

• Only includes virtual memory mappings
for kernel pages

• No user-process pages, yet…

8

PDBR

init_page_dir

Page Tables
for kernel pagesPage

Directory …

Pintos Process Page Directories (2)
• On IA32, there are 1024 entries in the page directory…
• Page directories are 4KiB, each entry is 4 bytes à 1024 entries
• The IA32 address-space is 32 bits, or 4GiB addressable memory
• 4GiB / 1024 entries à each page-directory entry corresponds to 4MiB of the process’

virtual address space

• The kernel-space boundary starts at 3GiB…
• The top 256 entries of the “initial page

directory” correspond to kernel-space

• Since Pintos only supports a maximum of 64MiB of memory, only 16 page-
directory entries are required for kernel-space
• 16 entries × 4MiB = 64MiB

9

PDBR

init_page_dir

Page Tables
for kernel pagesPage

Directory …

Pintos Process Page Directories (3)
• The process’ page table is copied from init_page_dir
• pagedir_create() in userprog/pagedir.c
• This is a shallow copy – only the Page Directory

node is copied
• Subsequent user-process memory-map

operations only affect the process’ page
directory, but not the contents of
init_page_dir

10

init_page_dir

Page Tables
for kernel pagesPage

Directory …

Page Tables
for user pages

…t->pagedir

copy

Pintos Process Page Directories (4)
Consequences:
• All processes share the same Page Table

nodes specifying the kernel-space
memory map

• If a kernel-space mapping is changed, or
if kernel data is changed, while running
one process, all processes see the change
• The same physical pages are mapped into

all processes’ page tables
• If a user-space mapping is changed, or

if user data is changed while running one
process, only that process sees the change

11

init_page_dir

Page Tables
for kernel pagesPage

Directory …

Page Tables
for user pages

…t->pagedir

Page Tables
for user pages

…t->pagedir

Implementing Virtual Memory
• Most of the virtual-memory system design falls out of answering the question:

What does the page-fault handler need to do?

1. Is the faulting address valid?
• If so, what data should exist at the faulting address?
• (If address isn’t valid, just terminate the process)

2. Allocate a page-frame to the faulting process
• May require evicting another process’ page to free up a frame

3. Load the necessary data into the page-frame
4. Install the frame at the required virtual address

12

Implementing Virtual Memory (2)
• Most of the virtual-memory system design falls out of answering the question:

What does the page-fault handler need to do?

• Note: The page-fault handler will often block on IO
• May seem strange for an interrupt handler to perform a blocking operation…
• Page faults are caused by user processes, so they actually run in process

context, not in interrupt context
• i.e. the kernel is resolving a fault on behalf of a specific process
• You can think of it as a second way a user application can trap into the kernel to get some

work done – but without its knowledge
• While the fault is being resolved, other processes can run

13

Is the Faulting Address Valid?
• The IA32/x86-64 page-table structure doesn’t hold sufficient information to

implement the Pintos virtual memory abstraction
• OSes usually implement a supplemental page table that holds the required

OS-level details
• Each process has a supplemental page table along with an MMU page table
• Implementation should support all details necessary for the OS virtual-memory abstraction

being provided
• Typically, the supplemental page-table describes the entire address-space of the process,

not just what is not currently in physical memory
• Should be fast to determine whether a virtual address is valid, and if so, what

data resides in that virtual page

14

Sources of Page Data
• Where does page data initially come from?
• Binary program data
• The .text / .data / .rodata sections in ELF binary file
• Some of these are read only, others are read/write
• Changes to read/write data must not be saved back to original file!

• The “anonymous file” – zero-initialized memory
• Stack pages should initially be all zeros
• The program’s .bss segment should initially be all zeros
• .bss is described in ELF binary (starting address + size is given), but the file doesn’t

contain any actual data for .bss
• Memory-mapped files
• Loaded on request of user applications
• In Pintos, changes to data must be saved back to original file

15

Sources of Page Data (2)
• Where is page data evicted to?
• Binary program data
• Read-only sections (.text / .rodata) can be discarded, since they can be reloaded from

the original binary
• Read-write sections (.data) cannot be saved back to original binary – must use swap

storage
• The “anonymous file” – zero-initialized memory
• Stack pages and .bss pages have no backing file data – must use swap storage

• Memory-mapped files
• Upon eviction, may be saved to the backing data file
• Pintos has no concept of memory-mapping files as “read only”

• If a page is saved to swap, must also store what slot it was saved to

16

Sources of Page Data (3)
• The supplemental page table must record and track all of these details for

managing virtual pages
• Should make it easy to determine if a faulting address is valid, and if so, where

to get the data from
• Similarly, when a page is being evicted, should make it easy to decide where

the page data should be saved to

17

Allocating Page Frames
• Page-fault handler must find an available frame to hold the page being loaded
• Implication: The OS needs to know how many frames the hardware provides,

and which frames are available / in use
• Also: If no frame is available, and the OS must evict a page to make one

available, it must know which process was previously using the frame
• Perform proper page-out operations based on the page’s details (see earlier slides)
• Update process’ MMU page table to record page is not in memory

• This information is recorded in the frame table

18

Suggested Order of Implementation
• Implement the frame table first, and update process.c to use your frame-

table allocator
• e.g. populate the frame table with repeated calls to palloc_get_page(PAL_USER)

• Idea: need to know what frames are in use, so the virtual memory system can
make allocation/eviction decisions
• What frames are available for use?
• What frames are currently in use, and by which process?

• Swapping and eviction won’t work yet, so you can panic the kernel if you run
out of frames

• Make sure all the Project 3 tests pass!!!
• (That is, Project 3 tests that are also included in Project 4’s tests; no-vm tests are not incl.)

19

Suggested Order of Implementation (2)
• Implement the supplemental page table and page-fault handler next, and

update process.c to use your supplemental page table
• Idea: Instead of allocating pages immediately, just record the information

necessary for loading each page in the supplemental page table
• When a virtual page is accessed, it will generate a page fault
• Allocate a frame to hold the page’s contents using your frame allocator from previous step
• Install the frame into the process’ address space at the appropriate address
• Load the page’s contents from disk file or swap, if necessary
• Info for where to fetch the page’s data from will be in your supplemental page table

• Still don’t have eviction yet, so don’t worry about evicting pages! J

• Make sure all the Project 3 tests pass!!!

20

Suggested Order of Implementation (3)
• From this point, can implement various things in parallel
• Stack growth, mapped files, reclaiming pages/swap at exit

• Finally, need to implement page eviction
• Technically, you can implement this once you have the previous operations completed, but it

may be difficult to debug
• Initially you can implement a very simple paging policy

• For the love of all that is good, do not use “Always evict frame 0” policy!
• Tests will run extremely slowly. You will be sad.
• Even a random eviction policy would be better than this.

21

Page Eviction Policy
• Project 4 requirement is to approximate LRU somehow
• Assignment write-up suggests the CLOCK policy
• An efficient implementation of the Second Chance policy, which does not require a timer

interrupt-handler
• Should be pretty straightforward to implement
• Use an index into your frame-table for the clock hand

• Feel free to do something more sophisticated. (Or, feel free to keep your life
as simple as possible. It’s CS124 after all.)

• More interesting policies will get bonus credit
• Anything with a timer tick will get a few points
• Anything adaptive will get more points

22

Concurrency and Synchronization
• Your implementation will have several long-running operations that can

interrupt each other
• Scanning to find an available page-frame to use
• Scanning to find an available swap slot to use
• Evicting a page from a frame (includes I/O)
• Loading a page into a frame (includes I/O)

• Important concurrency requirement (from earlier):
• If a page fault requires I/O to resolve, it shouldn’t block other page faults that don’t require

I/O to resolve
• Shouldn’t be too hard to satisfy this requirement – just don’t have your fault handler hold

one global lock for the entire fault operation!

23

Concurrency and Synchronization (2)
• Can achieve the required concurrency goal entirely using locks; shouldn’t

have to disable interrupts anywhere
• Note: If you implement a timer-based page-replacement policy, interrupts will likely need to

be disabled in a few critical places
• Feel free to have locks guarding larger operations, e.g.
• Scanning to find an available page-frame to use
• Scanning to find an available swap slot to use
• Will limit the concurrency of the virtual memory system, but if it isn’t required by the

assignment, why make your life harder?
• Main issue: don’t hold a lock guarding a larger operation, and then perform

I/O while holding it
• If holding that lock will block other page-faults that don’t require I/O, then it will violate the

concurrency requirement

24

Concurrency and Synchronization (3)
• Operations on frames need to be synchronized carefully
• Example:
• Process A page-faults on its virtual-page 25. Some page must be evicted to make a frame

available.
• The kernel picks frame 19, which is currently being used by Process B for its virtual-page

38. It starts writing this page to swap. Process A is suspended, and kernel switches to
another process.

• Process B starts to run; it tries to access data in its virtual-page 38.
• Does your pager fault? If so, how is the fault handled?
• When is the MMU page-table entry for Process B’s page 38 updated? Before or after the

page has been written to swap?
• If Process B faults on a page that is being evicted, do you make B wait until the eviction is

completed, before B’s page is reloaded? If so, how?

25

Concurrency and Synchronization (4)
• You may find it helpful to incorporate locks into individual page-frames, to

coordinate operations on frames
• Can use locks to implement pinning, as well as blocking other kernel threads

from accessing the locked data
• void lock_acquire(struct lock *) – blocks the thread trying to acquire the lock
• bool try_lock_acquire(struct lock *) – attempts to acquire the lock; returns

false immediately if lock is unavailable
• bool lock_held_by_current_thread(struct lock *) – reports whether the

current thread holds the specified lock
• Example: finding an available frame for page-in
• Can try to acquire each frame’s lock in sequence
• If the lock is already held by some other thread, the lock-attempt will fail. Just go on to the

next frame.

26

Final Notes
• Follow a modular approach in your implementation
• Separation of concerns
• Provide functions to encapsulate important operations, e.g. “find a frame,” “evict page,” “find

swap slot,” “load page,” etc.
• Should make it much easier to follow the logic of your page-fault handler.

• Develop incrementally, and test your implementation after each new feature is
added
• This project is horrible to debug if you don’t test along the way.
• Should be quite reasonable to debug if you add features one at a time, and exercise your

code completely before moving forward.
• If your team develops components in parallel, integrate your work often
• Don’t incur extra merge-conflict overhead for your team
• Communication within the team is of utmost importance in these situations

27

