
VIRTUAL MEMORY MANAGEMENT
PART 2
CS124 – Operating Systems
Spring 2024, Lecture 18

Last Time: Page Replacement Policy
• Last time, began discussing page replacement policies

• When the OS must allocate a frame but none are available, the page replacement policy
chooses a page to evict from a frame

• A very simple replacement policy: FIFO
• OS maintains a FIFO queue of all pages
• When a new page is loaded, it is added to the end of the FIFO
• When a page must be evicted, it is taken from the front of the FIFO

• Exhibits Belady’s Anomaly:
• Sometimes the page-fault rate goes up, as the number of frames in the system is increased

• Also introduced the optimal page replacement policy:
• Evict the page that will be used furthest in the future
• Produces the smallest number of page-faults possible
• Problem: impossible to implement, unless we know the program’s entire memory trace

2

Approximating the Optimal Policy
• Can’t really implement optimal page replacement policy

• Just like with Shortest Job First (SJF) scheduling, simply cannot predict the future perfectly
• General approach: use the past to predict the future
• Gives rise to the Least Recently Used (LRU) policy

• When a page must be evicted, always choose the one that was used furthest in the past
• (LRU is basically OPT applied to the reference string in reverse)

• LRU does not exhibit Belady’s Anomaly
• As stated, LRU policy is still quite difficult to implement for virtual memory

• Typically requires dedicated hardware to implement
• Problem: must update the data needed to implement LRU on every memory access
• (And, this data is usually stored in memory as well…)

3

Least Recently Used Policy
• Two general approaches for implementing LRU policy
• Option 1: Use a counter to record the last time each page is accessed

• Update the counter on every instruction, or on every memory access
• Extend page-table entries to hold the value of the counter from when the

memory was last accessed
• The MMU must update this value on every page access

• When a page must be evicted:
• Scan through all pages in memory to find the page with the oldest counter value

• Memory accesses incur additional accesses to update a page’s counter-value
• Can cache values in TLB entries to reduce writes to main memory

• Eviction requires O(N) scan to find the oldest page-counter value

4

Least Recently Used Policy (2)
• Option 2: Use a queue to track access order of all pages
• When a page is accessed, move it to back of the queue

• Again, this must happen on every page access
• When a page must be evicted:

• Page at front of the queue is the least recently used; evict that one!
• As unappealing as counter approach, but in different ways
• Choosing a page to evict is fast and easy…

• Just pull the first element off the end of the queue
• …but the per-memory-access cost is significantly higher

• Most accesses will incur linked-list manipulations, requiring multiple additional memory
accesses per access

• In practice, LRU is too slow / difficult to implement for virtual memory L

5

Approximating the LRU Policy
• Systems can implement a policy that approximates LRU
• MMUs usually maintain several bits in page table entries:

• An “accessed” bit recording if the page was read or written
• A “dirty” bit recording if the page was written

• Replacement policies can examine the “accessed” bit on regular interval, to
see if a page was accessed “recently”

• Example: the Not Frequently Used policy
• Maintain a counter for each page in memory
• Periodically scan through all pages on a timer interrupt:

• If a page’s “accessed” bit is set to 1, increment the page’s counter and clear the page’s
“accessed” bit

• When a page must be evicted, choose the page with the lowest count

6

Approximating the LRU Policy (2)
• Not Frequently Used policy does poorly because it never forgets a page’s

history
• e.g. if a page is accessed heavily in the early parts of a program’s execution, then never

again – it will be unlikely to be paged out
• A much better policy is called the Aging policy
• As before, the OS maintains a b-bit value for each page
• On a periodic timer-tick, the OS traverses all pages in memory:

• Shift the page’s value to the right by one bit, store the page’s “accessed” bit as the new
topmost bit, then clear “accessed” bit

• Pages with more recent accesses will have a larger value than pages with less
recent accesses

• Evict the page(s) with the lowest value

7

The Aging Policy
• Example: a process’ memory reference string

• On each timer-tick, the
page table table is scanned
and age values are updated

• The lowest age values will
approximately identify the
least recently used pages

8

… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 …

1
2
3
4
5
6
7

1
1
0
0
1
1
1

1
2
3
4
5
6
7

1
0
0
0
1
0
1

1
2
3
4
5
6
7

1
1
1
1
0
1
0

1
2
3
4
5
6
7

0
1
1
1
0
0
0

1
2
3
4
5
6
7

10000000
10000000
00000000
00000000
10000000
10000000
10000000

128
128
0
0
128
128
128

Page Age10Age2
1
2
3
4
5
6
7

11000000
01000000
00000000
00000000
11000000
01000000
11000000

192
64
0
0
192
64
192

Page Age10Age2
1
2
3
4
5
6
7

11100000
10100000
10000000
10000000
01100000
10100000
01100000

224
160
128
128
96
160
96

Page Age10Age2
1
2
3
4
5
6
7

01110000
11010000
11000000
11000000
00110000
01010000
00110000

112
160
192
192
48
80
48

Page Age10Age2

The Aging Policy (2)
• The main difference between aging policy and LRU is that aging has a much

lower resolution on its “recency” info
• With aging policy, common to have multiple pages with the same age value

• LRU policy would know exactly which page was accessed furthest in past, but aging policy
treats them the same

• Similarly, if two pages have a value of 0:
• LRU would know which one was accessed most recently, but aging views both as having

not been accessed recently
• Nonetheless, aging policy generally performs very well with a relatively small

number of bits, e.g. 8 or 16 bits per page

9

Other Policies Using the Accessed Bit
• Many other replacement policies that use “accessed” bit
• Example: make FIFO policy more intelligent

• Original policy: always evict the page at the front of the FIFO
• Tweak this policy to also use a page’s “accessed” bit

• When a page must be evicted:
• Consider the page at the front of the FIFO
• If the page’s “accessed” bit is 1, clear the “accessed” bit and then move the page back to

the end of the FIFO
• Otherwise, evict the page at the front of the FIFO

• Called the Second-Chance replacement policy
• If a page has been accessed during its time in the FIFO, it is given a second chance

10

Second-Chance Replacement Policy
• Second-chance policy:

• Consider the page at the front of the FIFO
• If the page’s “accessed” bit is 1, clear the “accessed” bit and then move the page back to

the end of the FIFO
• Otherwise, evict the page at the front of the FIFO

• What happens if all pages have their “accessed” bits set?
• Pager will scan through all pages in the FIFO…
• Every page’s “accessed” bit will be cleared during this pass…
• On second pass, pager will simply evict the first page in the FIFO

• Second-chance policy degenerates to FIFO replacement if all pages have
been accessed since the last page-eviction

11

The Clock Replacement Policy
• The Clock replacement policy is a more efficient implementation of the

second-chance policy
• But, it implements the exact same policy

• Pages are maintained in a circular queue
• A “clock hand” points to the next page to be considered for eviction
• When a page must be evicted:

• The page currently referenced by the clock hand is considered
• If the page’s “accessed” bit is currently set, it is cleared and the clock hand is advanced
• Otherwise, the page under the clock hand is evicted

• Clock is more efficient to implement than second-chance because it requires
little to no linked-list manipulation

12

The Not Recently Used Policy
• The Not Recently Used policy is a very simple policy that relies on both the

“accessed” and “dirty” bits
• A timer interrupt periodically scans through all pages in memory, clearing the

“accessed” bit each page
• Pages are classified based on “accessed” and “dirty” bits:
• Class 0: not accessed, not dirty
• Class 1: not accessed, dirty
• Occurs when a page has been written, but isn’t accessed again after the timer interrupt clears the page’s

“accessed” bit.
• Class 2: accessed, not dirty
• Class 3: accessed, dirty

• When a page must be evicted, choose a page from the lowest numbered non-empty
class

• Always prefers to keep pages that were recently accessed; of the not-accessed
pages, prefers to avoid incurring I/O costs

13

A Working-Set Based Policy
• Another page replacement policy is based on the working set of a process

• The set of pages the process is currently using for its computations
• As a program runs, its working set will change over time (i.e. as it goes

through different phases of computation)
• Pages will enter and leave the working set of each process

• Ideally, a page replacement policy should only evict pages that are outside of
a process’ current working set
• If the policy evicts pages that are still in the current working set, this will increase the page-

fault rate
• How do we approximate a process’ working set?
• Can we create a policy that uses this information?

14

A Working-Set Based Policy (2)
• Example: a process’ memory reference string

• Approximate the process’ working set at time t by looking at all the page
access of the process from t – τ until t
• τ is a tunable parameter specifying a window size (above, τ = 10)
• Want to choose τ large enough to completely capture the process’ working set, but not so

large that it has pages outside working set
• At time t1, the program has working set {1, 2, 5, 6, 7}
• At later time t2, the program has working set {1, 2, 3, 4}

• Ideally, policy will evict pages 5, 6, 7

15

… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 …

t1

τ

t2

τ

The WSClock Policy
• The WSClock policy tries to take a process’ working set into account when

making paging decisions
• Combines several policies (Clock, NRU), as well as attempting to identify the process’

working set
• The system maintains a virtual clock for each process

• e.g. the total time that the process has actually run on the CPU
• Premise: If a given page has been accessed within τ of the current virtual time, it is still in

the process’ working set
• As with Clock policy, pages are kept in a circular queue

• Each page also has a “time of last use” field that approximates when the page was actually
used last

• On a periodic timer interrupt, all pages are examined:
• If a page’s “accessed” bit is 1, the page’s “time of last use” value is set to the current virtual

time, and the “accessed” bit is set to 0

16

The WSClock Policy (2)
• When a page must be evicted, the page under the clock hand is examined:

• If the “accessed” bit is 1, page is clearly in the process’ working set. The “accessed” bit is
cleared, and hand is advanced to next page.

• If the “accessed” bit is 0, the page may or may not be in the working set. So,
examine “time of last use” value:
• If time of last use is within τ of the current virtual time, the page is still in the current working

set. Again, advance the clock hand.
• Otherwise, the page is outside the process’ working set
• Still two possibilities:

• The page may be clean or dirty!
• Want to avoid the I/O overhead of evicting a dirty page…

17

The WSClock Policy (3)
• WSClock cont. (found a page outside the working set…)
• If the page being considered is dirty, don’t want to evict it

• Instead, schedule the page to be written back to disk, and continue looking for a clean page
• If the page being considered is clean, no cost for eviction!

• Use the frame to load the new page

• This bias against evicting dirty pages is an aspect of NRU

18

The WSClock Policy (4)
• What if we traverse all pages while looking for a victim?

• Possibility 1: at least one write was scheduled…
• Solution: Just keep traversing the list of pages until we find a clean page to evict. A

scheduled write will eventually complete…

• Possibility 2: no writes were scheduled L
• Implies that all pages are currently in the working set L
• Solution: Just choose any clean page and evict it.

Or, if there are no clean pages, just evict the current page.

19

Page Buffering
• Can enhance page replacement policies with page buffering techniques
• Very common for OSes to maintain a pool of “free page frames” available for

use when page-faults occur
• A faulting process will immediately have an available frame to use
• Doesn’t have to wait for “page eviction” steps to take place (e.g. identify a page for eviction,

possibly write back a dirty page, etc.)
• Pages are periodically reclaimed from active processes

• This is no longer technically an “eviction”; rather, the page is now a candidate for eviction
• Reclaimed pages are added to an appropriate pool:

• Clean pages are put into a free-frame pool for handling new faults
• Dirty pages are added to a list of modified pages; these pages are written to disk when

convenient, then added to the free-frame pool

20

Page Buffering (2)
• Free page-frame pools can be used to reverse bad decisions made by pagers

• Until a free page frame is reused, it will still have its old contents…
• If a page fault occurs, and the faulting page is still in a free page-frame pool,

simply pull it back out of the pool
• Don’t need to actually load it from the disk in this situation

• Example: DEC VAX/VMS computer systems
• Early VAX hardware didn’t implement the “accessed” bit correctly
• The OS could tell if a page was dirty, but not if it was accessed…
• VMS used FIFO replacement policy enhanced with page buffering

• If the FIFO policy reclaimed a page that was still in active use:
• The process would eventually page-fault when accessing the page…
• VMS checks the modified and free page-frame pools for the page; if still present, page is

reinserted into the process’ address space

21

OS Emulation of Accessed/Dirty Bits
• Not all MMUs include support for “accessed” and “dirty” bits!
• e.g. ARM processors with an MMU simply don’t have these bits
• (some ARM CPUs don’t have an MMU)

• If an OS needs these bits for virtual memory management, it must emulate them
using protections and page faults

• Example: Linux on ARM maintains two page-tables
• The native-ARM page table doesn’t include “accessed” and “dirty” bits, but it can specify

memory protections, e.g. read-only
• The Linux kernel version of the page table does include these bits

• Linux virtual memory system can set pages to be read-only…
• When protection fault occurs, then corresponding “dirty” bit can be set

• A similar process can be used for “accessed” bits:
• Unmap the page; when it is accessed, it will generate a fault
• In page-fault handler, remap the page and set the “accessed” bit to 1

22

Other Replacement Policies
• Many other interesting page replacement policies

• OSes tend to have policies that are tuned in various ways
• Example: LRU-K policies

• Examines the time of the Kth most recent access, not just the most recent access
• (LRU == LRU-1)

• Very common to see LRU-2, which uses the time of the second-most-recent
memory access
• Prefers pages that have been accessed twice recently, over pages that have been

accessed twice over a longer period of time
• Combines both recency and frequency considerations in choosing a page to evict

• For certain program behaviors, LRU-2 outperforms LRU
• e.g. LRU-2 is scan-resistant – it will quickly evict pages that are scanned through once,

and then not accessed again

23

Adaptive Replacement Cache
• Example: Adaptive Replacement Cache (ARC) policy

• Developed and patented by IBM
• (This has dissuaded its adoption in open-source projects)

• Maintains two LRU queues:
• L1 is LRU queue for pages accessed only once

• L1 captures recency information for the policy to use
• L2 is LRU queue for pages accessed at least twice

• L2 captures frequency information for the policy to use
• Each LRU queue is divided into top and bottom regions

• Only the top regions hold pages that are still in memory
• Pages in the bottom regions have already been evicted, and are called ghost entries

24

Adaptive Replacement Cache (2)
• Ghost entries can be used to tune the cache’s behavior
• When a page fault occurs:

• If the page is still a ghost entry in either L1 or L2 queue, ARC can increase the size of either
the L1 or L2 queue as needed

• ARC can choose whether it should care more about recency or frequency of access in
page-eviction decisions

• ARC generally performs much better than LRU
• Can achieve greater hit rates than LRU with same cache size, or can achieve same hit

rates as LRU with a much smaller cache

• Many other self-tuning cache algorithms now…
• Example: Clock with Adaptive Replacement (CAR)

• Is self-tuning like ARC, and also generally outperforms LRU

25

Next Time
• Pintos virtual memory project – design guidance

26

