VIRTUAL MEMORY MANAGEMENT

CS124 — Operating Systems
Spring 2024, Lecture 17

Last Time: Memory Descriptors

- Last time, began discussing how the kernel manages virtual memory

task_struct mm_struct vm_area struct Process Virtual Memory
vm_end
mm ——>| pyd I_) vm_start
mmap vm_ prot
vm_flags
Shared Libraries
vm_next
I—_> vm_end
vm_start
- Example: kernels frequently use memory area vm_prot Data (.data, .bss)
. . . vm_flags Run-time heap
descriptors to describe virtual address space —
- Keep track of higher-level details about a process’ I__> vm_ond PR (535 (o (2235
address space vm_start —
. . . t
- Essential for resolving MMU faults in context of XE:::;S
copy-on-write, shared memory, page allocation, ... vm_next

I N
Memory Descriptors (2)

- Besides virtual memory descriptors, kernels must also keep track of several
other key details:

- Information about physical page frames
- What frames can be used by processes, used for /O buffers, etc.
- What frames are currently in use, and by whom

- Information about swap space used by the system
- Where is the swap space on disk
- What locations are currently available to store a virtual page
- What locations are occupied by a page, and whose page is it
- (Mobile operating systems won’t have this)

- Managing this information is made more complex by the fact that multiple
processes can share pages

- Requires careful design to be efficient, avoid race conditions, etc.

Managing Page Frames

- The kernel maintains details about page frames in a frame table

- Different physical memory regions may be used for different purposes in the
system

- Kernel will require certain page frames for its own code and data

- Also, many peripherals may require a physically contiguous memory area, in a specific
address range, for DMA transfers

- Remaining frames can be assigned to user processes for a variety of purposes

- Each entry of the frame table holds flags describing what the frame is being
used for (or can be used for)

N
Managing Page Frames (2)

- Also need to record which frames are currently in use

- What process (or processes) is using each page frame?

- When a page is evicted from a frame, must update the page tables of all processes that
reference the page

- Where is the data in the page frame from?
- When the page is evicted from the frame, the page’s origin affects what must be done

- Is the page in the frame currently pinned?
- Pinned pages are not allowed to be evicted from physical memory

Managing Page Frames: Pinning

- A page can be pinned if it is currently being used by some long-running task

- A common scenario: a process requests an |/O operation
- e.g. read or write multiple blocks of a disk file
- The kernel sets up a DMA transfer into specific virtual pages in the process’
address space
- But, this transfer will take some time to finish...

- If kernel chooses to evict some pages from memory, it Process
Ircua

cannot evict pages being used by the external peripheral Memory

- The kernel can pin these pages so that the virtual P
memory pager won't evict them Controller

Managing Page Frames: Pinning (2)

- Alternatively, the kernel can maintain its own 1/O buffers
- The DMA transfer is set up into the kernel’s pages, not the process
- When the I/O is complete, the kernel copies the data into the process’ pages

- Allows the process to be entirely paged out of memory...
- But, this approach has several issues:

- Data is copied twice instead of once

Process
- Causes a significant performance impact Virual
emory
- Uses up more virtual memory than is strictly required
for the transfer 1
| — D

| J—

Kernel
Buffers

.
Managing Page Frames: Pinning (3)

- Several other reasons to support pinning pages into frames

- Frequently, some or all of the kernel pages are pinned
- Don’t allow some or all of the kernel to be swapped out of memory

- Also can be used to manage newly swapped-in processes

- Example: a low-priority process L page-faults...
- Kernel starts loading the required virtual memory page; L is blocked
- When L’s page is loaded, it reenters the ready queue
- But, might be a while before it receives the CPU

- After L’s page is loaded, but before L runs, a high-priority process H also page-faults
- In a low-memory situation, the kernel must find some page to evict...
- “Hey look, L’s page is unaccessed and unmodified... evict it!”

- As part of the paging policy, the kernel can pin newly loaded pages until the corresponding
process has had a chance to run

Multiprocessor Systems and Memory

- Multiprocessor systems can dramatically increase the complexity of memory
management

- Smaller multiprocessor systems usually implement symmetric multiprocessing
(a.k.a. SMP)

- All processors have equal access
to a centralized shared memory

- Also called “uniform memory access”

- As multiprocessor systems scale,
this approach becomes infeasible
- Bus contention for accessing central

memory becomes prohibitive
- Doesn’t produce much benefit anyway: a given memory area usually won'’t be
accessed by that many processors over a short period of time

shared bus

Multiprocessor Systems and Memory (2)

- Larger multiprocessor systems often implement
Non-Uniform Memory Access (NUMA)
- A processor (or group of processors) has its own dedicated memory

- Processors can access nonlocal memory transparently, but
it's significantly slower to access

- Clearly the OS must be aware of what memory regions
are fastest for each processor to access

- Frames can have a processor affinity

- When OS assigns a page to a frame, it must ensure that
the frame is on same CPU as the process

Frame Table Entries

- Kernels need to use small structures to track frame info
- Don’t want to lose too much memory space due to recording and managing this information
- Example: Linux page descriptors are 32 bytes

- Each “page descriptor” describes a page frame, including flags, a reference count, how
many PTEs reference the frame, etc.

- Less than 1% of memory is lost to these page descriptors
- page descriptors indirectly record all processes using a given page frame

- Would be prohibitive to maintain e.g. a list of processes at this level

- Instead, page descriptors contain a pointer to a high-level structure that references all
virtual memory areas containing the page frame

Page Frame Contents

- The page in a frame can originate from several places

- Anonymous memory is memory whose contents do not come from a specific
filesystem file

- Used for general purposes, e.g. the memory heap, process stack, uninitialized program
data, some kinds of shared memory, etc.
- When an anonymous memory page is initially allocated, the frame’s contents
are simply initialized to all zeros

- Prevent one process from seeing another process’ data
- When a page of anonymous memory is evicted, it must be stored in the
system’s swap memory

- It doesn’t have a specific file associated with it, so there’s no predetermined place to store it

- (Similarly, an anonymous page doesn’t have an associated swap location until it has been
evicted at least once...)

Page Frame Contents (2)

- A page may also come from a memory-mapped file

- The page’s contents are initially loaded from a specific part of a file on the
computer’s filesystem

- The virtual memory system effectively maps a file’s contents into one or more page frames

- When the page is evicted from physical memory, it can be stored either in a
swap area or in the originating file

- Depends on what the file's contents are being used for
- Kernel has several options in this circumstance

- Example: a binary program mapped into virtual memory
- Probably want to disallow writing to the virtual pages anyway...

- If page is evicted, don’t need to write anything back to original file
- When page is reloaded into memory, simply retrieve contents of original file again

Page Frame Contents (3)

- Example: page containing non-constant initialized data from a binary program

- Definitely need to allow changes to this data in memory...
- (OS can use copy-on-write if multiple processes run the same program)

- If the page is evicted, don’t want to write it back to the original file! Otherwise, future
invocations of the file would see the changes.

- Instead, save it to a separate swap area

- Example: page of a data file mapped into memory

- The program intends to make changes to the data file in memory, and the program intends
those changes to be written back to disk

- In this case, if the page is evicted, write it back to the original file

- (In fact, may want to synchronize the page back to disk more frequently so that other
processes also see the file’s changes)

5
Virtual Pages and Swap Space

- Some pages must be saved into some kind of swap space
- (When a page’s changes will be discarded at process termination)

- Two choices:
- A dedicated swap partition
- A swap file managed on the computer’s filesystem

- Dedicated swap partitions are generally much faster

- No complex filesystem structures to navigate or manage
- Storage layout is optimized for speed

- Even if internal fragmentation occurs, swap partition is reinitialized every time the OS boots
- Problem: much harder to resize a dedicated swap partition

- If swap memory isn’t large enough for OS needs, cannot be resized automatically; requires
administrator intervention

. R
Virtual Pages and Swap Space (2)

- Dedicated swap partitions must also handle bad blocks
- Filesystems typically handle this issue for us, but swap partitions don’t have that benefit

- Swap files tend to be slower to access
- Must navigate and manage the filesystem structure
- Swap file may become fragmented across the disk

- But, swap files can be resized much more easily when space needs to be
Increased

- Windows and macOS both use swap files
- e.g. macOS swap files reside in /private/var/vm directory

- Linux can use either swap partitions or a swap files
- Swap partition is preferred, for performance reasons

Swap Slots

- Storage used for page swapping is divided into slots
- Each slot can hold one virtual page

- Required operations:
- Find a free slot to store a page in, and save the page to the slot
- Load a page from a slot, and possibly release the slot for reuse

- Linux uses a swap map to describe slots in a swap area
- An array of counters specifying how many processes are using each corresponding slot
- 0 means the slot is available for use Swap Map:

- >1 means slot is shared by multiple 1 3 | 0 | 1 |32768 O
processes (e.g. a shared library)

Swap Area:
- 32768 means the slot contains

bad sectors and cannot be used O O O

. R
Swap Slots (2)

- Linux supports having many swap areas (128 on 32-bit)
- Swap area descriptors are maintained in an array

- A specific swap slot is identified by two values: the index of the swap area,
and the index of the slot within the area

- These values are packed into a 32-bit value:
Bottommost bit is
31 8 7 10 ; it i
Slot Index within Swap Area Area Index O; IA32 “Present” bit

- Given 4KiB pages, each swap area can hold up to 224 pages, or 64GiB of swap space
- With up to 128 swap areas, can have up to 8TiB of swap space

- The slot ID is stored into the page table entry of a swapped-out virtual page
- Page fault handler can easily use this to reload a page into memory

.
Swap Slots (3)

- When a page fault occurs, the Linux page-fault handler can easily identify the
specific swap slot that was accessed

31 8 7 10
Slot Index within Swap Area Area Index (O

- Swap slot information specifies if the page is stored in swap space, or from a
memory-mapped file

- Kernel can go to the appropriate storage location and reload the page into memory
- Kernel page-fault handler:

- Allocate an unused frame from the frame table

- Update the process’ page table to refer to the frame

- Load the page from disk into the frame (either from swap area, or from a specific named file
and offset within the file)

Virtual Memory Policies

- Two major questions the kernel virtual memory system must answer:

- When a page frame must be reclaimed, how to choose which page to evict
from memory?
- This is determined by the page replacement policy

- How many page frames should each process be allowed to occupy?
- e.g. should higher priority processes receive more page frames?
- This is determined by the page allocation policy

Virtual Memory Measurements

- Obvious goal of page replacement policy is to minimize the number of page
faults that occur over time
- There are many different page replacement policies...

- Must evaluate them against example sequences of memory accesses
- Most useful if collected from actual program execution traces
- Can also generate randomly, but this really won’t reflect the typical program behavior

- Given a sequence of memory accesses, simulate a page replacement policy
and determine its page-fault rate

- Better page replacement policies should, on average, generate lower page-
fault rates

Virtual Memory Measurements (2)

- A program’s memory access trace can be very verbose

- Given a sequence of memory aCCesses, €.J.

- 0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105, ...

- Can shrink the size of this sequence in two ways
- First, we only care about which virtual pages were accessed, not the offsets
within the pages

- e.g. if the above memory had 100B pages, sequence becomes:
1,4,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1, 1, ...

- Second, adjacent accesses to the same page are highly unlikely to cause a
page fault, in the average case

- Eliminate repeated accesses to adjacent pages to produce:
1,4,1,6,1,6,1,6,1,6, 1, ...

- Resulting sequence is called a reference string

Virtual Memory Measurements (3)

- Besides the replacement policy and a reference string, we must also know
how many page frames are available

- Assumption: as the number of frames increases, the number of page faults
should decrease

- Surprisingly, this isn’'t always the case (!!!)

- Some replacement policies exhibit Belady’s anomaly
- As the total number of frames increases, the page fault rate may also sometimes increase
- Named after Laszl6 Bélady, who discovered this anomaly in 1969

- An “ideal” replacement policy will never suffer from Belady’s anomaly
- Adding frames to the system will never increase the page-fault rate

I S
FIFO Page Replacement Policy

- Simplest page replacement policy is FIFO policy
- Kernel pager maintains a FIFO queue for virtual pages
- When a page is brought into memory, it is added to the end of the FIFO

- When a page must be evicted from memory, it is taken from front of the FIFO
- Pages will eventually make their way from back of FIFO to the front

- Note that whether a page has been accessed (or whether it is dirty) has
nothing to do with when it is evicted
- An extremely simplistic policy...

I
FIFO Page Replacement Policy (2)

- Example: memory with 3 page frames
« Our FIFO will hold a maximum of 3 pages

- Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
- Sequence of accesses:

Page 1 (fault) FIFO: 1 Page 5 (fault) FIFO: |1 2|5
Page 2 (fault) FIFO: 1] 2 Page 1 FIFO: |1 2|5
Page 3 (fault) FIFO: |12 3 Page 2 FIFO: | 1|25
Page 4 (fault) FIFO: |2 3|4 Page 3 (fault) FIFO:| 2 53
Page 1 (fault) FIFO: |3 |41 Page 4 (fault) FIFO: |5 3|4
Page 2 (fault) FIFO: |4 1|2 Page 5 FIFO: |5 |3 4

- Out of 12 accesses, 9 produce page faults. Yuck.

%
FIFO Page Replacement Policy (3)

- What about increasing our physical memory to 4 frames?
- Now the FIFO will hold 4 pages

- Same reference string: 1,2,3,4,1,2,5,1,2,3,4,5
- Sequence of accesses:

Page 1 (fault) FIFO: 1 Page 5 (fault) FIFO: |2 3 4 5
Page 2 (fault) FIFO: 12 Page 1 (fault) FIFO: |3 4 5 f
Page 3 (fault) FIFO: 123 Page 2 (fault) FIFO: | 4|5 1|2
Page 4 (fault) FIFO: | 123 4 Page 3 (fault) FIFO: |5 1 2 3
Page 1 FIFO: 1 /2 3 4 Page 4 (fault) FIFO: | 123 4
Page 2 FIFO: |12 3 4 Page 5 (fault) FIFO: |2 3|4 5

- Now, out of 12 accesses, 10 produce page faults! Worse!

Optimal Page Replacement Policy

- A better policy: the optimal page-replacement policy

- Always evict the page that will not be used for the longest time
- This policy doesn’t suffer from Belady’s anomaly

- Guaranteed to minimize the number of page faults, given a specific number of page frames
- One small problem: the OS must be able to predict the future...

- Kernel pager has no idea what memory processes might access

- (This policy is also called the clairvoyant replacement policy)

- But, we can always try to approximate the optimal policy
- Use a process’ previous behavior to predict its future behavior
- Also, if we have the full memory trace, we can simulate the optimal policy

- Very helpful to compare different policies to the optimal policy
- e.g. “a given policy comes within 5% of optimal, on average”

- x®n
Optimal Page Replacement Policy (2)

- Previous example: memory with 3 page frames
- Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

- Since we know the reference string, we know the optimal choices
- Sequence of accesses:

Page 1 (fault) ~ OPT: | ¢ Page 5 (fault)y ~ OPT: 1|2 5
Page 2 (faul) OPT: [1]2 Sefbonene iR v
Page 3 (fault) OPT:. 1 2|3 Page 1 OPT |1 25
Page 4 (fault) OPT. 1|24 Page 2 OPT. 1 2|5

Page 2 accosced n2 sleps > Bvictpaged - Page 3 (fault) OPT: 3 2 s

Page 1 OPT |1 2| 4 Only page 5 will be accessed again; evict page 1 or 2

Page 4 (fault) OPT: |3 4|5

Only page 5 will be accessed again; evict page 2 or 3

- Optimal policy: only 7 faults Page 5 OPT: 3|4 5

Page 2 OPT: 1 2 4

. »®
Optimal Page Replacement Policy (3)

- Now, try a memory with 4 page frames
- Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
- Sequence of accesses:

Page 1 (fault) OPT: | ¢ Page 5 (fault) OPT: |1 2|3 5
Page 2 (fault) OPT |1 2 Page 4 is accessed furthest into future - evict page 4
1112135

Page 3 (fault) OPT:|1/23 Page 1 OPT:
1112135

Page 4 (fault)y OPT |1 2 3a|a| 3982 OPT:
1112135

Page 1 OPT:- |1 2|3 4 Page 3 OPT:
: Page 4 (fault) OPT: |4 2 3|5
Pagez OPT- 11213 ¢ Only page 5 will be accessed again; evict pages 1-3

Page 5 OPT: 4|2 3|5

- Now the optimal policy only generates 6 faults. Nice.

Next Time

- Continue discussion of page replacement policies
- How can we approximate the optimal replacement policy?

