
VIRTUAL MEMORY MANAGEMENT
CS124 – Operating Systems
Spring 2024, Lecture 17

Last Time: Memory Descriptors
• Last time, began discussing how the kernel manages virtual memory

• Example: kernels frequently use memory area
descriptors to describe virtual address space
• Keep track of higher-level details about a process’

address space
• Essential for resolving MMU faults in context of

copy-on-write, shared memory, page allocation, …

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

pgd

mmap

mm_struct

mm

task_struct

Memory Descriptors (2)
• Besides virtual memory descriptors, kernels must also keep track of several

other key details:
• Information about physical page frames
• What frames can be used by processes, used for I/O buffers, etc.
• What frames are currently in use, and by whom

• Information about swap space used by the system
• Where is the swap space on disk
• What locations are currently available to store a virtual page
• What locations are occupied by a page, and whose page is it
• (Mobile operating systems won’t have this)

• Managing this information is made more complex by the fact that multiple
processes can share pages
• Requires careful design to be efficient, avoid race conditions, etc.

3

Managing Page Frames
• The kernel maintains details about page frames in a frame table
• Different physical memory regions may be used for different purposes in the

system
• Kernel will require certain page frames for its own code and data
• Also, many peripherals may require a physically contiguous memory area, in a specific

address range, for DMA transfers
• Remaining frames can be assigned to user processes for a variety of purposes

• Each entry of the frame table holds flags describing what the frame is being
used for (or can be used for)

4

Managing Page Frames (2)
• Also need to record which frames are currently in use
• What process (or processes) is using each page frame?
• When a page is evicted from a frame, must update the page tables of all processes that

reference the page
• Where is the data in the page frame from?
• When the page is evicted from the frame, the page’s origin affects what must be done

• Is the page in the frame currently pinned?
• Pinned pages are not allowed to be evicted from physical memory

5

Managing Page Frames: Pinning
• A page can be pinned if it is currently being used by some long-running task
• A common scenario: a process requests an I/O operation
• e.g. read or write multiple blocks of a disk file

• The kernel sets up a DMA transfer into specific virtual pages in the process’
address space
• But, this transfer will take some time to finish…

• If kernel chooses to evict some pages from memory, it
cannot evict pages being used by the external peripheral

• The kernel can pin these pages so that the virtual
memory pager won’t evict them

6

Disk
Controller

Process
Virtual
Memory

Managing Page Frames: Pinning (2)
• Alternatively, the kernel can maintain its own I/O buffers
• The DMA transfer is set up into the kernel’s pages, not the process
• When the I/O is complete, the kernel copies the data into the process’ pages

• Allows the process to be entirely paged out of memory…
• But, this approach has several issues:
• Data is copied twice instead of once
• Causes a significant performance impact

• Uses up more virtual memory than is strictly required
for the transfer

7

Disk
Controller

Process
Virtual
Memory

Kernel
Buffers

Managing Page Frames: Pinning (3)
• Several other reasons to support pinning pages into frames
• Frequently, some or all of the kernel pages are pinned
• Don’t allow some or all of the kernel to be swapped out of memory

• Also can be used to manage newly swapped-in processes
• Example: a low-priority process L page-faults…
• Kernel starts loading the required virtual memory page; L is blocked
• When L’s page is loaded, it reenters the ready queue
• But, might be a while before it receives the CPU

• After L’s page is loaded, but before L runs, a high-priority process H also page-faults
• In a low-memory situation, the kernel must find some page to evict…
• “Hey look, L’s page is unaccessed and unmodified… evict it!”
• As part of the paging policy, the kernel can pin newly loaded pages until the corresponding

process has had a chance to run

8

Multiprocessor Systems and Memory
• Multiprocessor systems can dramatically increase the complexity of memory

management
• Smaller multiprocessor systems usually implement symmetric multiprocessing

(a.k.a. SMP)
• All processors have equal access

to a centralized shared memory
• Also called “uniform memory access”

• As multiprocessor systems scale,
this approach becomes infeasible
• Bus contention for accessing central

memory becomes prohibitive
• Doesn’t produce much benefit anyway: a given memory area usually won’t be

accessed by that many processors over a short period of time

9

Memory

CPU

cache

CPU

cache

CPU

cache

CPU

cache

shared bus

Multiprocessor Systems and Memory (2)
• Larger multiprocessor systems often implement

Non-Uniform Memory Access (NUMA)
• A processor (or group of processors) has its own dedicated memory
• Processors can access nonlocal memory transparently, but

it’s significantly slower to access
• Clearly the OS must be aware of what memory regions

are fastest for each processor to access
• Frames can have a processor affinity
• When OS assigns a page to a frame, it must ensure that

the frame is on same CPU as the process

10

Memory

CPU CPU CPU CPU

Memory

CPU CPU CPU CPU

Memory

CPU CPU CPU CPU

Interconnect

Interconnect

Interconnect

Frame Table Entries
• Kernels need to use small structures to track frame info
• Don’t want to lose too much memory space due to recording and managing this information

• Example: Linux page descriptors are 32 bytes
• Each “page descriptor” describes a page frame, including flags, a reference count, how

many PTEs reference the frame, etc.
• Less than 1% of memory is lost to these page descriptors

• page descriptors indirectly record all processes using a given page frame
• Would be prohibitive to maintain e.g. a list of processes at this level
• Instead, page descriptors contain a pointer to a high-level structure that references all

virtual memory areas containing the page frame

11

Page Frame Contents
• The page in a frame can originate from several places
• Anonymous memory is memory whose contents do not come from a specific

filesystem file
• Used for general purposes, e.g. the memory heap, process stack, uninitialized program

data, some kinds of shared memory, etc.
• When an anonymous memory page is initially allocated, the frame’s contents

are simply initialized to all zeros
• Prevent one process from seeing another process’ data

• When a page of anonymous memory is evicted, it must be stored in the
system’s swap memory
• It doesn’t have a specific file associated with it, so there’s no predetermined place to store it
• (Similarly, an anonymous page doesn’t have an associated swap location until it has been

evicted at least once…)

12

Page Frame Contents (2)
• A page may also come from a memory-mapped file
• The page’s contents are initially loaded from a specific part of a file on the

computer’s filesystem
• The virtual memory system effectively maps a file’s contents into one or more page frames

• When the page is evicted from physical memory, it can be stored either in a
swap area or in the originating file
• Depends on what the file’s contents are being used for
• Kernel has several options in this circumstance

• Example: a binary program mapped into virtual memory
• Probably want to disallow writing to the virtual pages anyway…
• If page is evicted, don’t need to write anything back to original file
• When page is reloaded into memory, simply retrieve contents of original file again

13

Page Frame Contents (3)
• Example: page containing non-constant initialized data from a binary program
• Definitely need to allow changes to this data in memory…
• (OS can use copy-on-write if multiple processes run the same program)

• If the page is evicted, don’t want to write it back to the original file! Otherwise, future
invocations of the file would see the changes.

• Instead, save it to a separate swap area
• Example: page of a data file mapped into memory
• The program intends to make changes to the data file in memory, and the program intends

those changes to be written back to disk
• In this case, if the page is evicted, write it back to the original file
• (In fact, may want to synchronize the page back to disk more frequently so that other

processes also see the file’s changes)

14

Virtual Pages and Swap Space
• Some pages must be saved into some kind of swap space
• (When a page’s changes will be discarded at process termination)

• Two choices:
• A dedicated swap partition
• A swap file managed on the computer’s filesystem

• Dedicated swap partitions are generally much faster
• No complex filesystem structures to navigate or manage
• Storage layout is optimized for speed
• Even if internal fragmentation occurs, swap partition is reinitialized every time the OS boots

• Problem: much harder to resize a dedicated swap partition
• If swap memory isn’t large enough for OS needs, cannot be resized automatically; requires

administrator intervention

15

Virtual Pages and Swap Space (2)
• Dedicated swap partitions must also handle bad blocks
• Filesystems typically handle this issue for us, but swap partitions don’t have that benefit

• Swap files tend to be slower to access
• Must navigate and manage the filesystem structure
• Swap file may become fragmented across the disk

• But, swap files can be resized much more easily when space needs to be
increased

• Windows and macOS both use swap files
• e.g. macOS swap files reside in /private/var/vm directory

• Linux can use either swap partitions or a swap files
• Swap partition is preferred, for performance reasons

16

Swap Slots
• Storage used for page swapping is divided into slots
• Each slot can hold one virtual page

• Required operations:
• Find a free slot to store a page in, and save the page to the slot
• Load a page from a slot, and possibly release the slot for reuse

• Linux uses a swap map to describe slots in a swap area
• An array of counters specifying how many processes are using each corresponding slot
• 0 means the slot is available for use
• >1 means slot is shared by multiple

processes (e.g. a shared library)
• 32768 means the slot contains

bad sectors and cannot be used

17

Swap Area:

1 3 0 1 32768 0

Swap Map:

Swap Slots (2)
• Linux supports having many swap areas (128 on 32-bit)
• Swap area descriptors are maintained in an array

• A specific swap slot is identified by two values: the index of the swap area,
and the index of the slot within the area

• These values are packed into a 32-bit value:

• Given 4KiB pages, each swap area can hold up to 224 pages, or 64GiB of swap space
• With up to 128 swap areas, can have up to 8TiB of swap space

• The slot ID is stored into the page table entry of a swapped-out virtual page
• Page fault handler can easily use this to reload a page into memory

18

Area Index
31 7 1

Slot Index within Swap Area
8 0

0

Bottommost bit is
IA32 “Present” bit

Swap Slots (3)
• When a page fault occurs, the Linux page-fault handler can easily identify the

specific swap slot that was accessed

• Swap slot information specifies if the page is stored in swap space, or from a
memory-mapped file
• Kernel can go to the appropriate storage location and reload the page into memory

• Kernel page-fault handler:
• Allocate an unused frame from the frame table
• Update the process’ page table to refer to the frame
• Load the page from disk into the frame (either from swap area, or from a specific named file

and offset within the file)

19

Area Index
31 7 1

Slot Index within Swap Area
8 0

0

Virtual Memory Policies
• Two major questions the kernel virtual memory system must answer:

• When a page frame must be reclaimed, how to choose which page to evict
from memory?
• This is determined by the page replacement policy

• How many page frames should each process be allowed to occupy?
• e.g. should higher priority processes receive more page frames?
• This is determined by the page allocation policy

20

Virtual Memory Measurements
• Obvious goal of page replacement policy is to minimize the number of page

faults that occur over time
• There are many different page replacement policies…
• Must evaluate them against example sequences of memory accesses
• Most useful if collected from actual program execution traces
• Can also generate randomly, but this really won’t reflect the typical program behavior

• Given a sequence of memory accesses, simulate a page replacement policy
and determine its page-fault rate

• Better page replacement policies should, on average, generate lower page-
fault rates

21

Virtual Memory Measurements (2)
• A program’s memory access trace can be very verbose
• Given a sequence of memory accesses, e.g.
• 0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,

0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105, …
• Can shrink the size of this sequence in two ways
• First, we only care about which virtual pages were accessed, not the offsets

within the pages
• e.g. if the above memory had 100B pages, sequence becomes:

1, 4, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, …
• Second, adjacent accesses to the same page are highly unlikely to cause a

page fault, in the average case
• Eliminate repeated accesses to adjacent pages to produce:

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1, …
• Resulting sequence is called a reference string

22

Virtual Memory Measurements (3)
• Besides the replacement policy and a reference string, we must also know

how many page frames are available
• Assumption: as the number of frames increases, the number of page faults

should decrease
• Surprisingly, this isn’t always the case (!!!)

• Some replacement policies exhibit Belady’s anomaly
• As the total number of frames increases, the page fault rate may also sometimes increase
• Named after László Bélády, who discovered this anomaly in 1969

• An “ideal” replacement policy will never suffer from Belady’s anomaly
• Adding frames to the system will never increase the page-fault rate

23

FIFO Page Replacement Policy
• Simplest page replacement policy is FIFO policy
• Kernel pager maintains a FIFO queue for virtual pages
• When a page is brought into memory, it is added to the end of the FIFO
• When a page must be evicted from memory, it is taken from front of the FIFO
• Pages will eventually make their way from back of FIFO to the front

• Note that whether a page has been accessed (or whether it is dirty) has
nothing to do with when it is evicted
• An extremely simplistic policy…

24

FIFO Page Replacement Policy (2)
• Example: memory with 3 page frames
• Our FIFO will hold a maximum of 3 pages

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Sequence of accesses:

• Out of 12 accesses, 9 produce page faults. Yuck.

25

1FIFO:Page 1 (fault)
1 2FIFO:Page 2 (fault)

1 2 3FIFO:Page 3 (fault)
2 3 4FIFO:Page 4 (fault)
3 4 1FIFO:Page 1 (fault)
4 1 2FIFO:Page 2 (fault)

1 2 5FIFO:Page 5 (fault)
1 2 5FIFO:Page 1

2 5 3FIFO:Page 3 (fault)
5 3 4FIFO:Page 4 (fault)

Page 2 1 2 5FIFO:

Page 5 5 3 4FIFO:

FIFO Page Replacement Policy (3)
• What about increasing our physical memory to 4 frames?
• Now the FIFO will hold 4 pages

• Same reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Sequence of accesses:

• Now, out of 12 accesses, 10 produce page faults! Worse!

26

Page 1 (fault) FIFO: 1

Page 2 (fault) FIFO: 1 2

Page 3 (fault) FIFO: 1 2 3

Page 4 (fault) FIFO: 1 2 3 4

Page 1 FIFO: 1 2 3 4

Page 2 FIFO: 1 2 3 4

Page 5 (fault) FIFO: 2 3 4 5

Page 1 (fault) FIFO: 3 4 5 1

Page 2 (fault) FIFO: 4 5 1 2

Page 3 (fault) FIFO: 5 1 2 3

Page 4 (fault) FIFO: 1 2 3 4

Page 5 (fault) FIFO: 2 3 4 5

Optimal Page Replacement Policy
• A better policy: the optimal page-replacement policy
• Always evict the page that will not be used for the longest time

• This policy doesn’t suffer from Belady’s anomaly
• Guaranteed to minimize the number of page faults, given a specific number of page frames

• One small problem: the OS must be able to predict the future…
• Kernel pager has no idea what memory processes might access
• (This policy is also called the clairvoyant replacement policy)

• But, we can always try to approximate the optimal policy
• Use a process’ previous behavior to predict its future behavior

• Also, if we have the full memory trace, we can simulate the optimal policy
• Very helpful to compare different policies to the optimal policy
• e.g. “a given policy comes within 5% of optimal, on average”

27

Optimal Page Replacement Policy (2)
• Previous example: memory with 3 page frames
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Since we know the reference string, we know the optimal choices

• Sequence of accesses:

• Optimal policy: only 7 faults

28

1OPT:Page 1 (fault)
1 2OPT:Page 2 (fault)
1 2 3OPT:Page 3 (fault)

1 2 4OPT:Page 1

1 2 5OPT:Page 1
Page 2 1 2 5OPT:

Page 5 3 4 5OPT:

1 2 4OPT:Page 4 (fault)
Page 1 accessed in 1 step
Page 2 accessed in 2 steps

Page 3 accessed in 6 steps
à Evict page 3!

Page 2 1 2 4OPT:

1 2 5OPT:Page 5 (fault)
Page 1 accessed in 1 step
Page 2 accessed in 2 steps

Page 4 accessed in 4 steps
à Evict page 4!

3 2 5OPT:Page 3 (fault)
Only page 5 will be accessed again; evict page 1 or 2

3 4 5OPT:Page 4 (fault)
Only page 5 will be accessed again; evict page 2 or 3

Optimal Page Replacement Policy (3)
• Now, try a memory with 4 page frames
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Sequence of accesses:

• Now the optimal policy only generates 6 faults. Nice.

29

Page 1 (fault) 1OPT:
Page 2 (fault) 1 2OPT:
Page 3 (fault) 1 2 3OPT:
Page 4 (fault) 1 2OPT: 3 4

Page 1 1 2OPT: 3 4

Page 2 1 2OPT: 3 4

Page 5 (fault)
Page 4 is accessed furthest into future à evict page 4

1 2OPT: 3 5

Page 1 1 2OPT: 3 5

Page 2 1 2OPT: 3 5

Page 3 1 2OPT: 3 5

Page 4 (fault)
Only page 5 will be accessed again; evict pages 1-3

4OPT: 2 3 5

Page 5 4OPT: 2 3 5

Next Time
• Continue discussion of page replacement policies
• How can we approximate the optimal replacement policy?

30

