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Last Time:  Memory Descriptors
• Last time, began discussing how the kernel manages virtual memory

• Example:  kernels frequently use memory area
descriptors to describe virtual address space
• Keep track of higher-level details about a process’

address space
• Essential for resolving MMU faults in context of

copy-on-write, shared memory, page allocation, …
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Memory Descriptors (2)
• Besides virtual memory descriptors, kernels must also keep track of several 

other key details:
• Information about physical page frames
• What frames can be used by processes, used for I/O buffers, etc.
• What frames are currently in use, and by whom

• Information about swap space used by the system
• Where is the swap space on disk
• What locations are currently available to store a virtual page
• What locations are occupied by a page, and whose page is it
• (Mobile operating systems won’t have this)

• Managing this information is made more complex by the fact that multiple 
processes can share pages
• Requires careful design to be efficient, avoid race conditions, etc.
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Managing Page Frames
• The kernel maintains details about page frames in a frame table
• Different physical memory regions may be used for different purposes in the 

system
• Kernel will require certain page frames for its own code and data
• Also, many peripherals may require a physically contiguous memory area, in a specific 

address range, for DMA transfers
• Remaining frames can be assigned to user processes for a variety of purposes

• Each entry of the frame table holds flags describing what the frame is being 
used for (or can be used for)
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Managing Page Frames (2)
• Also need to record which frames are currently in use
• What process (or processes) is using each page frame?
• When a page is evicted from a frame, must update the page tables of all processes that 

reference the page
• Where is the data in the page frame from?
• When the page is evicted from the frame, the page’s origin affects what must be done

• Is the page in the frame currently pinned?
• Pinned pages are not allowed to be evicted from physical memory
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Managing Page Frames:  Pinning
• A page can be pinned if it is currently being used by some long-running task
• A common scenario:  a process requests an I/O operation
• e.g. read or write multiple blocks of a disk file

• The kernel sets up a DMA transfer into specific virtual pages in the process’ 
address space
• But, this transfer will take some time to finish…

• If kernel chooses to evict some pages from memory, it
cannot evict pages being used by the external peripheral

• The kernel can pin these pages so that the virtual
memory pager won’t evict them
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Managing Page Frames:  Pinning (2)
• Alternatively, the kernel can maintain its own I/O buffers
• The DMA transfer is set up into the kernel’s pages, not the process
• When the I/O is complete, the kernel copies the data into the process’ pages

• Allows the process to be entirely paged out of memory…
• But, this approach has several issues:
• Data is copied twice instead of once
• Causes a significant performance impact

• Uses up more virtual memory than is strictly required
for the transfer
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Managing Page Frames:  Pinning (3)
• Several other reasons to support pinning pages into frames
• Frequently, some or all of the kernel pages are pinned
• Don’t allow some or all of the kernel to be swapped out of memory

• Also can be used to manage newly swapped-in processes
• Example:  a low-priority process L page-faults…
• Kernel starts loading the required virtual memory page; L is blocked
• When L’s page is loaded, it reenters the ready queue
• But, might be a while before it receives the CPU

• After L’s page is loaded, but before L runs, a high-priority process H also page-faults
• In a low-memory situation, the kernel must find some page to evict…
• “Hey look, L’s page is unaccessed and unmodified…  evict it!”
• As part of the paging policy, the kernel can pin newly loaded pages until the corresponding 

process has had a chance to run
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Multiprocessor Systems and Memory
• Multiprocessor systems can dramatically increase the complexity of memory 

management
• Smaller multiprocessor systems usually implement symmetric multiprocessing 

(a.k.a. SMP)
• All processors have equal access

to a centralized shared memory
• Also called “uniform memory access”

• As multiprocessor systems scale,
this approach becomes infeasible
• Bus contention for accessing central

memory becomes prohibitive
• Doesn’t produce much benefit anyway:  a given memory area usually won’t be 

accessed by that many processors over a short period of time
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Multiprocessor Systems and Memory (2)
• Larger multiprocessor systems often implement

Non-Uniform Memory Access (NUMA)
• A processor (or group of processors) has its own dedicated memory
• Processors can access nonlocal memory transparently, but

it’s significantly slower to access
• Clearly the OS must be aware of what memory regions

are fastest for each processor to access
• Frames can have a processor affinity
• When OS assigns a page to a frame, it must ensure that

the frame is on same CPU as the process
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Frame Table Entries
• Kernels need to use small structures to track frame info
• Don’t want to lose too much memory space due to recording and managing this information

• Example:  Linux page descriptors are 32 bytes
• Each “page descriptor” describes a page frame, including flags, a reference count, how 

many PTEs reference the frame, etc.
• Less than 1% of memory is lost to these page descriptors

• page descriptors indirectly record all processes using a given page frame
• Would be prohibitive to maintain e.g. a list of processes at this level
• Instead, page descriptors contain a pointer to a high-level structure that references all 

virtual memory areas containing the page frame
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Page Frame Contents
• The page in a frame can originate from several places
• Anonymous memory is memory whose contents do not come from a specific 

filesystem file
• Used for general purposes, e.g. the memory heap, process stack, uninitialized program 

data, some kinds of shared memory, etc.
• When an anonymous memory page is initially allocated, the frame’s contents 

are simply initialized to all zeros
• Prevent one process from seeing another process’ data

• When a page of anonymous memory is evicted, it must be stored in the 
system’s swap memory
• It doesn’t have a specific file associated with it, so there’s no predetermined place to store it
• (Similarly, an anonymous page doesn’t have an associated swap location until it has been 

evicted at least once…)
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Page Frame Contents (2)
• A page may also come from a memory-mapped file
• The page’s contents are initially loaded from a specific part of a file on the 

computer’s filesystem
• The virtual memory system effectively maps a file’s contents into one or more page frames

• When the page is evicted from physical memory, it can be stored either in a 
swap area or in the originating file
• Depends on what the file’s contents are being used for
• Kernel has several options in this circumstance

• Example:  a binary program mapped into virtual memory
• Probably want to disallow writing to the virtual pages anyway…
• If page is evicted, don’t need to write anything back to original file
• When page is reloaded into memory, simply retrieve contents of original file again
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Page Frame Contents (3)
• Example:  page containing non-constant initialized data from a binary program
• Definitely need to allow changes to this data in memory…
• (OS can use copy-on-write if multiple processes run the same program)

• If the page is evicted, don’t want to write it back to the original file!  Otherwise, future 
invocations of the file would see the changes.

• Instead, save it to a separate swap area
• Example:  page of a data file mapped into memory
• The program intends to make changes to the data file in memory, and the program intends 

those changes to be written back to disk
• In this case, if the page is evicted, write it back to the original file
• (In fact, may want to synchronize the page back to disk more frequently so that other 

processes also see the file’s changes)
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Virtual Pages and Swap Space
• Some pages must be saved into some kind of swap space
• (When a page’s changes will be discarded at process termination)

• Two choices:
• A dedicated swap partition
• A swap file managed on the computer’s filesystem

• Dedicated swap partitions are generally much faster
• No complex filesystem structures to navigate or manage
• Storage layout is optimized for speed
• Even if internal fragmentation occurs, swap partition is reinitialized every time the OS boots

• Problem:  much harder to resize a dedicated swap partition
• If swap memory isn’t large enough for OS needs, cannot be resized automatically; requires 

administrator intervention
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Virtual Pages and Swap Space (2)
• Dedicated swap partitions must also handle bad blocks
• Filesystems typically handle this issue for us, but swap partitions don’t have that benefit

• Swap files tend to be slower to access
• Must navigate and manage the filesystem structure
• Swap file may become fragmented across the disk

• But, swap files can be resized much more easily when space needs to be 
increased

• Windows and macOS both use swap files
• e.g. macOS swap files reside in /private/var/vm directory

• Linux can use either swap partitions or a swap files
• Swap partition is preferred, for performance reasons
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Swap Slots
• Storage used for page swapping is divided into slots
• Each slot can hold one virtual page

• Required operations:
• Find a free slot to store a page in, and save the page to the slot
• Load a page from a slot, and possibly release the slot for reuse

• Linux uses a swap map to describe slots in a swap area
• An array of counters specifying how many processes are using each corresponding slot
• 0 means the slot is available for use
• >1 means slot is shared by multiple

processes (e.g. a shared library)
• 32768 means the slot contains

bad sectors and cannot be used
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Swap Slots (2)
• Linux supports having many swap areas (128 on 32-bit)
• Swap area descriptors are maintained in an array

• A specific swap slot is identified by two values:  the index of the swap area, 
and the index of the slot within the area

• These values are packed into a 32-bit value:

• Given 4KiB pages, each swap area can hold up to 224 pages, or 64GiB of swap space
• With up to 128 swap areas, can have up to 8TiB of swap space

• The slot ID is stored into the page table entry of a swapped-out virtual page
• Page fault handler can easily use this to reload a page into memory
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Swap Slots (3)
• When a page fault occurs, the Linux page-fault handler can easily identify the 

specific swap slot that was accessed

• Swap slot information specifies if the page is stored in swap space, or from a 
memory-mapped file
• Kernel can go to the appropriate storage location and reload the page into memory

• Kernel page-fault handler:
• Allocate an unused frame from the frame table
• Update the process’ page table to refer to the frame
• Load the page from disk into the frame (either from swap area, or from a specific named file 

and offset within the file)
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Virtual Memory Policies
• Two major questions the kernel virtual memory system must answer:

• When a page frame must be reclaimed, how to choose which page to evict 
from memory?
• This is determined by the page replacement policy

• How many page frames should each process be allowed to occupy?
• e.g. should higher priority processes receive more page frames?
• This is determined by the page allocation policy
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Virtual Memory Measurements
• Obvious goal of page replacement policy is to minimize the number of page 

faults that occur over time
• There are many different page replacement policies…
• Must evaluate them against example sequences of memory accesses
• Most useful if collected from actual program execution traces
• Can also generate randomly, but this really won’t reflect the typical program behavior

• Given a sequence of memory accesses, simulate a page replacement policy 
and determine its page-fault rate

• Better page replacement policies should, on average, generate lower page-
fault rates
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Virtual Memory Measurements (2)
• A program’s memory access trace can be very verbose
• Given a sequence of memory accesses, e.g.
• 0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,

0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105, …
• Can shrink the size of this sequence in two ways
• First, we only care about which virtual pages were accessed, not the offsets 

within the pages
• e.g. if the above memory had 100B pages, sequence becomes:

1, 4, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, …
• Second, adjacent accesses to the same page are highly unlikely to cause a 

page fault, in the average case
• Eliminate repeated accesses to adjacent pages to produce:

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1, …
• Resulting sequence is called a reference string
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Virtual Memory Measurements (3)
• Besides the replacement policy and a reference string, we must also know 

how many page frames are available
• Assumption:  as the number of frames increases, the number of page faults 

should decrease
• Surprisingly, this isn’t always the case (!!!)

• Some replacement policies exhibit Belady’s anomaly
• As the total number of frames increases, the page fault rate may also sometimes increase
• Named after László Bélády, who discovered this anomaly in 1969

• An “ideal” replacement policy will never suffer from Belady’s anomaly
• Adding frames to the system will never increase the page-fault rate
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FIFO Page Replacement Policy
• Simplest page replacement policy is FIFO policy
• Kernel pager maintains a FIFO queue for virtual pages
• When a page is brought into memory, it is added to the end of the FIFO
• When a page must be evicted from memory, it is taken from front of the FIFO
• Pages will eventually make their way from back of FIFO to the front

• Note that whether a page has been accessed (or whether it is dirty) has 
nothing to do with when it is evicted
• An extremely simplistic policy…

24



FIFO Page Replacement Policy (2)
• Example:  memory with 3 page frames
• Our FIFO will hold a maximum of 3 pages

• Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Sequence of accesses:

• Out of 12 accesses, 9 produce page faults.  Yuck.
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1FIFO:Page 1 (fault)
1 2FIFO:Page 2 (fault)

1 2 3FIFO:Page 3 (fault)
2 3 4FIFO:Page 4 (fault)
3 4 1FIFO:Page 1 (fault)
4 1 2FIFO:Page 2 (fault)

1 2 5FIFO:Page 5 (fault)
1 2 5FIFO:Page 1

2 5 3FIFO:Page 3 (fault)
5 3 4FIFO:Page 4 (fault)

Page 2 1 2 5FIFO:

Page 5 5 3 4FIFO:



FIFO Page Replacement Policy (3)
• What about increasing our physical memory to 4 frames?
• Now the FIFO will hold 4 pages

• Same reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Sequence of accesses:

• Now, out of 12 accesses, 10 produce page faults!  Worse!
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Page 1 (fault) FIFO: 1

Page 2 (fault) FIFO: 1 2

Page 3 (fault) FIFO: 1 2 3

Page 4 (fault) FIFO: 1 2 3 4

Page 1 FIFO: 1 2 3 4

Page 2 FIFO: 1 2 3 4

Page 5 (fault) FIFO: 2 3 4 5

Page 1 (fault) FIFO: 3 4 5 1

Page 2 (fault) FIFO: 4 5 1 2

Page 3 (fault) FIFO: 5 1 2 3

Page 4 (fault) FIFO: 1 2 3 4

Page 5 (fault) FIFO: 2 3 4 5



Optimal Page Replacement Policy
• A better policy:  the optimal page-replacement policy
• Always evict the page that will not be used for the longest time

• This policy doesn’t suffer from Belady’s anomaly
• Guaranteed to minimize the number of page faults, given a specific number of page frames

• One small problem:  the OS must be able to predict the future…
• Kernel pager has no idea what memory processes might access
• (This policy is also called the clairvoyant replacement policy)

• But, we can always try to approximate the optimal policy
• Use a process’ previous behavior to predict its future behavior

• Also, if we have the full memory trace, we can simulate the optimal policy
• Very helpful to compare different policies to the optimal policy
• e.g. “a given policy comes within 5% of optimal, on average”
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Optimal Page Replacement Policy (2)
• Previous example:  memory with 3 page frames
• Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Since we know the reference string, we know the optimal choices

• Sequence of accesses:

• Optimal policy:  only 7 faults
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1OPT:Page 1 (fault)
1 2OPT:Page 2 (fault)
1 2 3OPT:Page 3 (fault)

1 2 4OPT:Page 1

1 2 5OPT:Page 1
Page 2 1 2 5OPT:

Page 5 3 4 5OPT:

1 2 4OPT:Page 4 (fault)
Page 1 accessed in 1 step
Page 2 accessed in 2 steps

Page 3 accessed in 6 steps
à Evict page 3!

Page 2 1 2 4OPT:

1 2 5OPT:Page 5 (fault)
Page 1 accessed in 1 step
Page 2 accessed in 2 steps

Page 4 accessed in 4 steps
à Evict page 4!

3 2 5OPT:Page 3 (fault)
Only page 5 will be accessed again; evict page 1 or 2

3 4 5OPT:Page 4 (fault)
Only page 5 will be accessed again; evict page 2 or 3



Optimal Page Replacement Policy (3)
• Now, try a memory with 4 page frames
• Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Sequence of accesses:

• Now the optimal policy only generates 6 faults.  Nice.
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Page 1 (fault) 1OPT:
Page 2 (fault) 1 2OPT:
Page 3 (fault) 1 2 3OPT:
Page 4 (fault) 1 2OPT: 3 4

Page 1 1 2OPT: 3 4

Page 2 1 2OPT: 3 4

Page 5 (fault)
Page 4 is accessed furthest into future à evict page 4

1 2OPT: 3 5

Page 1 1 2OPT: 3 5

Page 2 1 2OPT: 3 5

Page 3 1 2OPT: 3 5

Page 4 (fault)
Only page 5 will be accessed again; evict pages 1-3

4OPT: 2 3 5

Page 5 4OPT: 2 3 5



Next Time
• Continue discussion of page replacement policies
• How can we approximate the optimal replacement policy?
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