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Virtual Memory Abstraction
• Last time, officially introduced concept of virtual memory
• Programs use virtual addresses (a.k.a. logical addresses) to reference 

instructions, variables, the memory heap, etc.
• The processor translates these into physical addresses using the Memory 

Management Unit
• Many different ways that the MMU can perform this translation
• e.g. relocation register, memory segments, paging
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Virtual Memory Abstraction (2)
• Most processors currently use paging to map virtual addresses to physical 

addresses
• Virtual and physical memory are divided into uniform blocks
• Virtual memory pages are mapped to physical page frames

• Again, many ways to manage the mapping of virtual to physical pages
• Simple page tables, hierarchical page tables, hashed page tables, inverted page tables
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Virtual Memory Abstraction (3)
• Several big benefits from virtual memory abstraction
• Process isolation is extremely important for multitasking systems
• Simplified application binary interface (ABI)

• One of the greatest benefits is the ability to move pages to and from a backing 
store (e.g. SSD or hard disk)
• Allows programs to use much more memory than the system’s actual physical memory size
• Observation:  programs don’t always access all of their memory…

Move unused pages to a backing store to free up physical memory
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Virtual Memory and Paging
• To support moving pages between physical memory and the backing store, 

must extend page tables with more info
• Need a valid/invalid bit for every entry in the page table
• “Valid” indicates the virtual page corresponds to a physical frame, and thus is in memory
• “Invalid” indicates that the page doesn’t

currently map to a frame in memory
• IA32 calls this bit “present”

(makes more sense)
• If “valid” bit is 0, MMU ignores

the rest of page table entry
• OS can store its own details there

if it wishes to
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Virtual Memory and Paging (2)
• When MMU translates a memory access, it examines this valid/invalid bit
• If bit is “valid,” MMU can handle address translation all by itself
• If bit is “invalid,” MMU cannot proceed!

• MMU generates a page fault, allowing the OS kernel to resolve the fault
(if it can be resolved)
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• Example:  small virtual memory
• 4 physical page frames (PF), 8 virtual pages (VP)

• Some virtual pages are in physical memory
• VP1, VP2, VP4, VP7

• Some virtual pages are only in the backing store
• VP3, VP6

• Two virtual pages have not been allocated
• VP0, VP5
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Virtual Memory Accesses
• Program accesses a word in Virtual Page 2
• MMU looks in page table for virtual page 2 (PTE2)

• “Valid” flag is 1:
• Page is in physical memory

• Virtual page 2 is stored in physical frame 1…
• MMU uses entry to translate the virtual address
• Physical frame number is used to generate the

physical address
• Physical address is sent to main memory
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Virtual Memory Accesses (2)
• Next, program accesses a word in Virtual Page 6
• Again, MMU looks in page table for VP6, but valid flag is 0
• MMU cannot satisfy the request…

• MMU generates a page fault to allow the kernel
to resolve the issue

• Kernel handler sees that VP6 is on the
backing store
• Can move this page back into memory

• Problem:  no frame is available to hold the
virtual page
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Virtual Memory Accesses (3)
• Kernel must select a victim page to evict from memory
• e.g. kernel selects VP4 as the victim page

• Want to avoid writing VP4 to disk if it didn’t change…
• Both physical memory and the swap disk have

a copy of VP4
• If two versions of VP4 are the same, why write it back?
• (Disk accesses are SLOW)

• Extend page table to also include a dirty bit
• MMU sets this bit to 1 when a valid virtual page is

written to
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Virtual Memory Accesses (4)
• Kernel selects virtual page 4 as the victim page…
• If VP4 has been changed, kernel writes it back to the disk

• Now that virtual page 4 is no longer valid, the kernel
updates the page table to reflect this

save
to disk
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Virtual Memory Accesses (5)
• Now kernel can load virtual page 6 into physical page 3
• Update PTE6 to point to physical page 3 in DRAM memory

• Finally, kernel returns from the page-fault handler
• Since it’s a fault, the CPU reruns the faulting instruction

• Program repeats the access to virtual page 6
• This time, MMU finds that PTE6 is valid
• MMU performs address translation, and retrieves

the value from physical page 3
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Page Tables and Dirty Flags
• Page table dirty flags must be used with caution
• Multiple virtual pages can map to one physical

page-frame
• e.g. shared memory used by multiple processes
• e.g. pages mapped into kernel-space addresses,

and also into a process’ user-space addresses
• MMU only sets the dirty flag in the page-table

entry that was used for the access
• Other page-table entries that use the same

physical page are not marked dirty
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Page Tables and Dirty Flags (2)
• Example:  Process 1 writes to virtual page 5
• MMU translates this to PP1
• Since it’s a write, the dirty bit is set

• Later, kernel decides to page out Process 2’s
virtual page 1
• Use frame 1 for a different page

• Problem:
• Virtual page is dirty from earlier write, but Process 2’s

PTE1 doesn’t show the page as dirty
• Kernel must handle aliases in the various

page tables
• Multiple pages referring to a single physical frame
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Page Tables and Dirty Flags (3)
• Generally, kernel must check all PTEs for

a given page before evicting that page
• Kernel must do this anyway:
• If a page is evicted, all PTEs that referenced the page

must be set to invalid…
• Can make this faster with kernel data structures
• e.g. a frame table that records this information
• Record areas that are actually shared between processes

• When a page is evicted:
• If page is in a shared area, use additional kernel data

to check and modify all relevant PTEs
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Swapping and Paging
• Paging allows the kernel to move parts of a process into and out of memory
• Much better than standard swapping, where entire processes are moved between memory 

and the backing store
• In fact, the kernel can implement a demand paging policy
• Only swap (or allocate) a virtual page into physical memory when it is actually used

• Example:  running a program stored on disk
• Kernel sets up a page table that references the program’s binary…
• But, none of the program’s pages are actually in virtual memory!  All pages are still on disk.
• When the process begins running, it immediately triggers a page fault

• Kernel loads the first page of the program’s code into memory
• As the program runs, accesses to new pages cause page faults

• Those pages are loaded into memory as they are required
• Only the parts of the program that actually run are loaded into memory

16



Demand Paging (2)
• Another example:  managing a process’ memory heap
• Initially, the kernel sets up a memory area for the process’ heap, but all virtual 

pages in that memory area are initially invalid
• As the process actually interacts with the heap, the kernel allocates virtual 

pages to back the heap memory area
• e.g. as program allocates space, manipulates data, deallocates space

• If process’ heap size must be increased, kernel repeats this task
• Expand the memory area, but don’t allocate virtual pages until the process actually tries to 

use the memory area
• The kernel will only allocate as many virtual pages to the heap as are actually 

required by the program
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Demand Paging (3)
• At some point, the kernel won’t have frames available to hold a virtual page
• When a new frame is needed, the kernel must choose a victim page to evict
• Victim page is chosen according to the page replacement policy of the system
• This page is written to a swap area on disk, and the frame is used for the new virtual page

• A kernel can implement pure demand paging
• Only ever allocate/load virtual pages when they are required
• Only ever evict pages when the system is out of physical frames

• Usually, kernels manage memory more actively than this
• Increase application responsiveness by prefetching virtual pages, reduce amount of dirty 

data cached in memory, etc., etc.
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Copy-On-Write
• A similar technique is used to give processes the illusion of independent 

copies of specific pages
• Example:  forking a process on UNIX
• The parent and child processes are identical copies of each other, but their state is isolated 

from each other
• Parent and child execution begins to diverge, and their state starts to diverge as well

• The kernel can use a copy-on-write technique for forking
• When parent and child process split, share all pages between them
• As long as pages are shared, they cannot be written to; otherwise each process would see 

the other’s changes
• The kernel sets all shared pages to be read-only in the PTEs
• The MMU enforces this constraint by raising a fault on writes
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Copy-On-Write (2)
• When a process tries to write to a read-only page, the MMU triggers a fault
• The kernel determines that the page is in a copy-on-write area
• If more than one process is still sharing this page, kernel makes a private copy for the writer

• (If only one process is using the page then a copy step is not needed)
• Kernel updates the process’ page table to point to the private page
• Kernel returns to the faulting write-instruction, which now succeeds

• This mechanism greatly improves fork() performance
• Instead of duplicating all the virtual pages, only the page table needs to be duplicated (and 

updated to set up copy-on-write)
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Memory Area Descriptors
• All of these virtual memory features require kernels to record details beyond 

what the page table holds
• Structure is sometimes called

a supplemental page table

• MMU page-table structure holds CPU config:
valid bit, read/write/execute permissions, etc.

• Memory area descriptors specify OS-level details:
“copy-on-write,” “shared with …,” “valid but
unallocated,” etc.
• CPU doesn’t understand these concepts, and doesn’t care

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

pgd

mmap

mm_struct

mm

task_struct



Memory Area Descriptors (2)
• This example of descriptors is from the Linux 2.6 kernel
• task_struct is the Linux process (thread) control block

• pgd is the process’ CPU/MMU page table
• “pgd” = pointer to the page directory

• mmap is the process’ memory mapping
• vm_area_struct elements describe

virtual memory areas the process is using

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

pgd

mmap

mm_struct

mm

task_struct



Memory Area Descriptors (3)
• vm_area_struct specifies details of each memory area
• vm_start, vm_end specify the extent of the memory area
• vm_prot specifies the read/write permissions for the

memory area
• vm_flags specifies whether memory area is shared

among processes, or private
• Normal memory accesses:
• (i.e. virtual page is in memory, and the operation

is allowed)
• No intervention is needed from the kernel…
• CPU and MMU handle these accesses themselves
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Handling Page Faults
• When a fault occurs, the kernel must resolve the situation
• Process’ vm_area_struct list tells kernel how to handle the fault

• If MMU raises a page fault:
• Page isn’t currently in the process’ address space

• Kernel checks all areas to see if the address
is valid
• Does it fall within some vm_start and vm_end?

• If address isn’t valid, kernel sends an
appropriate signal to the process
• e.g. SIGSEGV; usually causes the process to

terminate
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Handling Page Faults (2)
• At this point, the page is either swapped out to storage, or the page hasn’t yet 

been allocated by the kernel
• If the page is swapped out, kernel initiates a

page-load, then switches to another process
• If page isn’t allocated yet, the kernel allocates

a new page to the process
• New page is filled with zeros to prevent leaking data

between processes
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Handling Protection Faults
• If MMU raises a general protection fault:
• Process tried to do something that is prohibited by the page table
• e.g. write to a read-only page

• Kernel checks to see how the virtual
memory area is configured
• Is it a copy-on-write area?

• If memory area doesn’t allow the operation,
again a signal is sent to the process
• e.g. SIGSEGV; usually causes process to terminate
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Handling Protection Faults (2)
• If the memory area does allow the operation, the kernel carries it out
• Example:  copy-on-write
• If necessary, duplicate the faulting page
• Update the process’ page table:

• Point the entry to the new frame containing the copy
• Mark the page as read-write Shared Libraries
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Next Time
• More kernel virtual memory management details
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