
PROCESS VIRTUAL MEMORY PART 2
CS124 – Operating Systems
Spring 2024, Lecture 16

Virtual Memory Abstraction
• Last time, officially introduced concept of virtual memory
• Programs use virtual addresses (a.k.a. logical addresses) to reference

instructions, variables, the memory heap, etc.
• The processor translates these into physical addresses using the Memory

Management Unit
• Many different ways that the MMU can perform this translation
• e.g. relocation register, memory segments, paging

2

CPU

Program

logical
addresses Main

Memory

physical
addresses

MMU

Virtual Memory Abstraction (2)
• Most processors currently use paging to map virtual addresses to physical

addresses
• Virtual and physical memory are divided into uniform blocks
• Virtual memory pages are mapped to physical page frames

• Again, many ways to manage the mapping of virtual to physical pages
• Simple page tables, hierarchical page tables, hashed page tables, inverted page tables

3

CPU

Program

logical
addresses Main

Memory

physical
addresses

MMU

Virtual Memory Abstraction (3)
• Several big benefits from virtual memory abstraction
• Process isolation is extremely important for multitasking systems
• Simplified application binary interface (ABI)

• One of the greatest benefits is the ability to move pages to and from a backing
store (e.g. SSD or hard disk)
• Allows programs to use much more memory than the system’s actual physical memory size
• Observation: programs don’t always access all of their memory…

Move unused pages to a backing store to free up physical memory

4

CPU

Program

logical
addresses Main

Memory

physical
addresses

MMU

Virtual Memory and Paging
• To support moving pages between physical memory and the backing store,

must extend page tables with more info
• Need a valid/invalid bit for every entry in the page table
• “Valid” indicates the virtual page corresponds to a physical frame, and thus is in memory
• “Invalid” indicates that the page doesn’t

currently map to a frame in memory
• IA32 calls this bit “present”

(makes more sense)
• If “valid” bit is 0, MMU ignores

the rest of page table entry
• OS can store its own details there

if it wishes to

5

Physical Page OffsetPhysical Page Number
m-1 p p-1 0

Page Table

Physical Page Number
Physical Page Number

Physical Page Number
…

Physical Page Number

Virtual Page Number Virtual Page Offset
n-1 p p-1 0Virtual Address

Physical Address

Page Table
Base Register

Valid
Valid
Valid
Valid

…

Virtual Memory and Paging (2)
• When MMU translates a memory access, it examines this valid/invalid bit
• If bit is “valid,” MMU can handle address translation all by itself
• If bit is “invalid,” MMU cannot proceed!

• MMU generates a page fault, allowing the OS kernel to resolve the fault
(if it can be resolved)

6

Physical Page OffsetPhysical Page Number
m-1 p p-1 0

Page Table

Physical Page Number
Physical Page Number

Physical Page Number
…

Physical Page Number

Virtual Page Number Virtual Page Offset
n-1 p p-1 0Virtual Address

Physical Address

Page Table
Base Register

Valid
Valid
Valid
Valid

…

• Example: small virtual memory
• 4 physical page frames (PF), 8 virtual pages (VP)

• Some virtual pages are in physical memory
• VP1, VP2, VP4, VP7

• Some virtual pages are only in the backing store
• VP3, VP6

• Two virtual pages have not been allocated
• VP0, VP5

Virtual Memory Example

VP2
VP7
VP4

VP1

VP2
VP3
VP4

VP1

VP6
VP7

Backing Store

Physical Memory

PF0
PF1
PF2
PF3

0
1
1
0 null

1
0
0 null
1

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

Valid Address

Page Table

Virtual Memory Accesses
• Program accesses a word in Virtual Page 2
• MMU looks in page table for virtual page 2 (PTE2)

• “Valid” flag is 1:
• Page is in physical memory

• Virtual page 2 is stored in physical frame 1…
• MMU uses entry to translate the virtual address
• Physical frame number is used to generate the

physical address
• Physical address is sent to main memory

VP2
VP7
VP4

VP1

VP2
VP3
VP4

VP1

VP6
VP7

Backing Store

Physical Memory

PF0
PF1
PF2
PF3

0
1
1
0 null

1
0
0 null
1

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

Valid Address

Page Table

Virtual Memory Accesses (2)
• Next, program accesses a word in Virtual Page 6
• Again, MMU looks in page table for VP6, but valid flag is 0
• MMU cannot satisfy the request…

• MMU generates a page fault to allow the kernel
to resolve the issue

• Kernel handler sees that VP6 is on the
backing store
• Can move this page back into memory

• Problem: no frame is available to hold the
virtual page

VP2
VP7
VP4

VP1

VP2
VP3
VP4

VP1

VP6
VP7

Backing Store

Physical Memory

PF0
PF1
PF2
PF3

0
1
1
0 null

1
0
0 null
1

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

Valid Address

Page Table

Virtual Memory Accesses (3)
• Kernel must select a victim page to evict from memory
• e.g. kernel selects VP4 as the victim page

• Want to avoid writing VP4 to disk if it didn’t change…
• Both physical memory and the swap disk have

a copy of VP4
• If two versions of VP4 are the same, why write it back?
• (Disk accesses are SLOW)

• Extend page table to also include a dirty bit
• MMU sets this bit to 1 when a valid virtual page is

written to

VP2
VP7
VP4

VP1

VP2
VP3
VP4

VP1

VP6
VP7

Backing Store

Physical Memory

PF0
PF1
PF2
PF3

0
1
1
0 null

1
0
0 null
1

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

Valid Address

Page Table

Virtual Memory Accesses (4)
• Kernel selects virtual page 4 as the victim page…
• If VP4 has been changed, kernel writes it back to the disk

• Now that virtual page 4 is no longer valid, the kernel
updates the page table to reflect this

save
to disk

VP2
VP7
VP4

VP1

VP2
VP3
VP4

VP1

VP6
VP7

Backing Store

Physical Memory

PF0
PF1
PF2
PF3

0
1
1
0 null

1
0
0 null
1

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

Valid Address

Page Table

0

Virtual Memory Accesses (5)
• Now kernel can load virtual page 6 into physical page 3
• Update PTE6 to point to physical page 3 in DRAM memory

• Finally, kernel returns from the page-fault handler
• Since it’s a fault, the CPU reruns the faulting instruction

• Program repeats the access to virtual page 6
• This time, MMU finds that PTE6 is valid
• MMU performs address translation, and retrieves

the value from physical page 3

VP2
VP7

VP1

VP2
VP3
VP4

VP1

VP7

PF0
PF1
PF2

0
1
1
0 null

1

0 null
0

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

Valid Address
Page Table

VP6

PF3

01

load
from
disk

VP6

Backing Store

Physical Memory

Page Tables and Dirty Flags
• Page table dirty flags must be used with caution
• Multiple virtual pages can map to one physical

page-frame
• e.g. shared memory used by multiple processes
• e.g. pages mapped into kernel-space addresses,

and also into a process’ user-space addresses
• MMU only sets the dirty flag in the page-table

entry that was used for the access
• Other page-table entries that use the same

physical page are not marked dirty

Physical Memory

PF0
PF1
PF2
PF3

Process 2 Page Table

0
Valid

0
Dirty Address

PTE0
1 0PTE1
1 0PTE2
0 0PTE3
0 0PTE4
0 0PTE5
0 0PTE6
0 0PTE7

Process 1 Page Table

1
Valid

0
Dirty Address

PTE0
0 0PTE1
1 0PTE2
0 0PTE3
0 0PTE4
1 0PTE5
0 0PTE6
1 0PTE7

Page Tables and Dirty Flags (2)
• Example: Process 1 writes to virtual page 5
• MMU translates this to PP1
• Since it’s a write, the dirty bit is set

• Later, kernel decides to page out Process 2’s
virtual page 1
• Use frame 1 for a different page

• Problem:
• Virtual page is dirty from earlier write, but Process 2’s

PTE1 doesn’t show the page as dirty
• Kernel must handle aliases in the various

page tables
• Multiple pages referring to a single physical frame

Physical Memory

PF0
PF1
PF2
PF3

Process 2 Page Table

0
Valid

0
Dirty Address

PTE0
1 0PTE1
1 0PTE2
0 0PTE3
0 0PTE4
0 0PTE5
0 0PTE6
0 0PTE7

Process 1 Page Table

1
Valid

0
Dirty Address

PTE0
0 0PTE1
1 0PTE2
0 0PTE3
0 0PTE4
1 0PTE5
0 0PTE6
1 0PTE7

1

D

Page Tables and Dirty Flags (3)
• Generally, kernel must check all PTEs for

a given page before evicting that page
• Kernel must do this anyway:
• If a page is evicted, all PTEs that referenced the page

must be set to invalid…
• Can make this faster with kernel data structures
• e.g. a frame table that records this information
• Record areas that are actually shared between processes

• When a page is evicted:
• If page is in a shared area, use additional kernel data

to check and modify all relevant PTEs

Physical Memory

PF0
PF1
PF2
PF3

Process 2 Page Table

0
Valid

0
Dirty Address

PTE0
1 0PTE1
1 0PTE2
0 0PTE3
0 0PTE4
0 0PTE5
0 0PTE6
0 0PTE7

Process 1 Page Table

1
Valid

0
Dirty Address

PTE0
0 0PTE1
1 0PTE2
0 0PTE3
0 0PTE4
1 0PTE5
0 0PTE6
1 0PTE7

1

D

Swapping and Paging
• Paging allows the kernel to move parts of a process into and out of memory
• Much better than standard swapping, where entire processes are moved between memory

and the backing store
• In fact, the kernel can implement a demand paging policy
• Only swap (or allocate) a virtual page into physical memory when it is actually used

• Example: running a program stored on disk
• Kernel sets up a page table that references the program’s binary…
• But, none of the program’s pages are actually in virtual memory! All pages are still on disk.
• When the process begins running, it immediately triggers a page fault

• Kernel loads the first page of the program’s code into memory
• As the program runs, accesses to new pages cause page faults

• Those pages are loaded into memory as they are required
• Only the parts of the program that actually run are loaded into memory

16

Demand Paging (2)
• Another example: managing a process’ memory heap
• Initially, the kernel sets up a memory area for the process’ heap, but all virtual

pages in that memory area are initially invalid
• As the process actually interacts with the heap, the kernel allocates virtual

pages to back the heap memory area
• e.g. as program allocates space, manipulates data, deallocates space

• If process’ heap size must be increased, kernel repeats this task
• Expand the memory area, but don’t allocate virtual pages until the process actually tries to

use the memory area
• The kernel will only allocate as many virtual pages to the heap as are actually

required by the program

17

Demand Paging (3)
• At some point, the kernel won’t have frames available to hold a virtual page
• When a new frame is needed, the kernel must choose a victim page to evict
• Victim page is chosen according to the page replacement policy of the system
• This page is written to a swap area on disk, and the frame is used for the new virtual page

• A kernel can implement pure demand paging
• Only ever allocate/load virtual pages when they are required
• Only ever evict pages when the system is out of physical frames

• Usually, kernels manage memory more actively than this
• Increase application responsiveness by prefetching virtual pages, reduce amount of dirty

data cached in memory, etc., etc.

18

Copy-On-Write
• A similar technique is used to give processes the illusion of independent

copies of specific pages
• Example: forking a process on UNIX
• The parent and child processes are identical copies of each other, but their state is isolated

from each other
• Parent and child execution begins to diverge, and their state starts to diverge as well

• The kernel can use a copy-on-write technique for forking
• When parent and child process split, share all pages between them
• As long as pages are shared, they cannot be written to; otherwise each process would see

the other’s changes
• The kernel sets all shared pages to be read-only in the PTEs
• The MMU enforces this constraint by raising a fault on writes

19

Copy-On-Write (2)
• When a process tries to write to a read-only page, the MMU triggers a fault
• The kernel determines that the page is in a copy-on-write area
• If more than one process is still sharing this page, kernel makes a private copy for the writer

• (If only one process is using the page then a copy step is not needed)
• Kernel updates the process’ page table to point to the private page
• Kernel returns to the faulting write-instruction, which now succeeds

• This mechanism greatly improves fork() performance
• Instead of duplicating all the virtual pages, only the page table needs to be duplicated (and

updated to set up copy-on-write)

20

Memory Area Descriptors
• All of these virtual memory features require kernels to record details beyond

what the page table holds
• Structure is sometimes called

a supplemental page table

• MMU page-table structure holds CPU config:
valid bit, read/write/execute permissions, etc.

• Memory area descriptors specify OS-level details:
“copy-on-write,” “shared with …,” “valid but
unallocated,” etc.
• CPU doesn’t understand these concepts, and doesn’t care

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

pgd

mmap

mm_struct

mm

task_struct

Memory Area Descriptors (2)
• This example of descriptors is from the Linux 2.6 kernel
• task_struct is the Linux process (thread) control block

• pgd is the process’ CPU/MMU page table
• “pgd” = pointer to the page directory

• mmap is the process’ memory mapping
• vm_area_struct elements describe

virtual memory areas the process is using

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

pgd

mmap

mm_struct

mm

task_struct

Memory Area Descriptors (3)
• vm_area_struct specifies details of each memory area
• vm_start, vm_end specify the extent of the memory area
• vm_prot specifies the read/write permissions for the

memory area
• vm_flags specifies whether memory area is shared

among processes, or private
• Normal memory accesses:
• (i.e. virtual page is in memory, and the operation

is allowed)
• No intervention is needed from the kernel…
• CPU and MMU handle these accesses themselves

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

Handling Page Faults
• When a fault occurs, the kernel must resolve the situation
• Process’ vm_area_struct list tells kernel how to handle the fault

• If MMU raises a page fault:
• Page isn’t currently in the process’ address space

• Kernel checks all areas to see if the address
is valid
• Does it fall within some vm_start and vm_end?

• If address isn’t valid, kernel sends an
appropriate signal to the process
• e.g. SIGSEGV; usually causes the process to

terminate

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

access

Handling Page Faults (2)
• At this point, the page is either swapped out to storage, or the page hasn’t yet

been allocated by the kernel
• If the page is swapped out, kernel initiates a

page-load, then switches to another process
• If page isn’t allocated yet, the kernel allocates

a new page to the process
• New page is filled with zeros to prevent leaking data

between processes

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

access

Handling Protection Faults
• If MMU raises a general protection fault:
• Process tried to do something that is prohibited by the page table
• e.g. write to a read-only page

• Kernel checks to see how the virtual
memory area is configured
• Is it a copy-on-write area?

• If memory area doesn’t allow the operation,
again a signal is sent to the process
• e.g. SIGSEGV; usually causes process to terminate

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

write

Handling Protection Faults (2)
• If the memory area does allow the operation, the kernel carries it out
• Example: copy-on-write
• If necessary, duplicate the faulting page
• Update the process’ page table:

• Point the entry to the new frame containing the copy
• Mark the page as read-write Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

write

Next Time
• More kernel virtual memory management details

29

