PROCESS VIRTUAL MEMORY

CS124 — Operating Systems
Spring 2024, Lecture 15

Programs and Memory

- Programs perform many interactions with memory...
- Accessing variables stored at specific memory locations
- Calls to functions that reside at specific memory locations

- Source code usually doesn’t include absolute addresses
- Rather, programs use symbols to refer to variables, functions, etc.

- At some point between compiling and running a program, addresses must be
assigned to functions and variables

- Ultimately, the operating system must specify how executable programs must
be laid out in memory
- The OS is responsible for loading a binary program and running it
- The OS is responsible for resolving references to shared libraries

- Specification is called application binary interface (ABI)

.
Programs and Memory (2)

- If the locations of functions and data can be set at compile time, the compiler
can generate absolute code
- Code that contains absolute addresses of functions and data

- If a program’s location can vary from invocation to invocation, compiler must
generate relocatable code
- The final binding of symbols to their addresses occurs at load time

- The loader updates the image of the binary program in memory, based on where the
program will actually be loaded

- To support this, programs must include details of what symbols are used in the program,
and where they are referenced in the binary

- Programs can also be compiled to produce position independent code
- All accesses are relative to the start of the binary in memory
- The program determines its own starting address at runtime

. S
Programs and Memory (3)

- UNIX Executable and Linkable Format (ELF) supports both absolute and
relocatable binary programs

- On 32-bit Linux:

- “Executable object files” are positioned at an absolute starting address of 0x08048000

- “Relocatable object files” (.o files produced during compilation) include extra details
specifying the locations of function and memory accesses within the binary file

- Shared libraries are compiled with position-independent code

- Windows Portable Executable (PE) format also supports both absolute and
relocatable programs
- Windows programs are compiled relative to a preferred base address (absolute position)

- If a program can’t be loaded at its preferred base address for some reason, it can be
relocated at runtime (called “rebasing”)

Programs and Memory (4)

- The addresses used by programs are virtual addresses (logical addresses)
- The range of addresses a program uses is called its virtual address space

- The computer memory receives physical addresses

- The processor translates virtual addresses to physical addresses via the
Memory Management Unit (MMU)

- The nature of the processor’'s MMU governs how this translation takes place

logical CPU physical
addresses addresses Main
—_— —_—
Memory
MMU

Program

5
Why Virtual Memory?

- Virtual memory has several benefits

- Frequently talk about process isolation:

- A process should be protected from access or manipulation by other processes on the
system, unless the process specifically allows collaboration with other processes
- By running processes in separate address spaces, it's impossible for them to
access each other’s data
- (...unless the processes arrange to do so, of course)

- Each process’ virtual address space is mapped to a separate region of the computer’s
physical address space

- Only the kernel can directly manipulate this mapping; processes are not allowed to do so

Why Virtual Memory? (2)

- Virtual memory also greatly simplifies the design of the operating system’s
application binary interface (ABI):

- If every process has its own virtual address space, different processes can use the same
virtual addresses without a problem

- All binary programs can be laid out using the same basic structure and pattern
- e.g. 32-bit Linux:
- Program text always starts at virtual address 0x08048000

- Process stack always grows downward from 0xc0000000
- (ignoring Address-Space Layout Randomization / ASLR)

- Without virtual addressing, this would be impossible

I
Why Virtual Memory? (3)

- A third benefit for virtual memory is that it allows the OS to move processes
from memory to disk, and vice versa
- Mechanism is called swapping

- A program must be in main memory to run, but processes aren’t always ready
to run...

- When a process is blocked or suspended, OS can swap it from memory to a backing store
(e.g. a hard disk)

- Most or all of the process’ context is saved to disk

- When the scheduler switches to a new process, the dispatcher checks to see
if the process is in memory
- If not, the dispatcher can swap in the process and begin running it

- If there isn’t enough room, the dispatcher can swap out other processes from memory to the
backing store

. ___°
Swapping

- With swapping, the total memory used by all processes can exceed the total
physical memory in the system

- Allows more programs to be run on the system at once, especially if many of these
programs are usually blocked on I/O

- (e.g. user applications waiting for user input)
- Unfortunately, swapping tends to take a lot of time
- Even though the backing store is usually a fast disk, still much slower than main memory

- Standard swapping involves moving entire processes into or out of physical
memory

- For a large process, can easily take several seconds or more!
- Operating systems don’t generally use standard swapping

- Instead, focus on swapping portions of processes out of memory
- Much faster than swapping entire processes out of memory

. N
Swapping (2)

- Mobile processors generally have virtual memory support

- Mobile OSes usually don’t implement swapping
- Don’t have a large backing store to use for swapping
- Usually have a small flash memory with a limited number of writes

- Generally, when OS needs more memory for a process, it asks (or forces)
other processes to relinquish memory

- e.g. if a process is taking up too much memory, the OS Kkills it
- iI0S tends to be aggressive in reclaiming memory from processes

- Android will write application state to flash memory before killing a process, so
that it can be restarted quickly

- In general, mobile application developers must be more careful about efficient
memory (and other resource) usage

. A
MMU: Relocation

- A simple strategy for the memory management unit: relocate all virtual
addresses by a constant amount

- A relocation register holds a constant, which is added to logical addresses to generate
physical addresses

- phys_addr = virt_addr + relocation

- Additionally, can use a limit register to enforce the upper bound on the
process’ virtual address space
if virt_addr = limit.
raise fault
else:
phys _addr = virt_addr + relocation

- Interaction with these registers is protected: only the kernel is allowed to read
and write these registers

MMU: Relocation (2)

- Using this strategy:

- Programs can be compiled with absolute addresses, e.g. starting at address 0 (or some
other common starting point)

- When a program is executed, the OS kernel can choose values for the corresponding
process’ relocation and limit registers based on the program’s memory requirements
- Processes are isolated from each other, and from the kernel

- Using this kind of address translation mechanism gives us a
contiguous memory allocation scheme

- Each process occupies a single contiguous region of physical memory
- Processes occupy adjacent regions of memory

MMU: Relocation (3)

- Contiguous memory allocation mechanism is prone to fragmentation of
physical memory

- As processes terminate and other processes are started, must determine where to place
each process in physical memory

- Placement strategies are same as always, e.g. best fit, first fit, ...
- (OS can use another strategy too; in a moment...)

- This mechanism also requires standard swapping
- Not really possible to swap out parts of a process

- Does this virtual addressing mechanism allow shared memory areas?
- phys _addr = virt_addr + relocation
- Not without great difficulty:

- Two processes could be given overlapping regions, but it would complicate
other parts of process management

I |
MMU: Segmentation

- A more advanced virtual address mapping technique is called segmentation

- Virtual addresses also include a segment number
- Virtual address = segment number + offset within segment

- Segment number used to find an entry in segment table

- Similar mechanism to the relocation register:

- Virtual offset is checked against the segment’s limit; if limit is exceeded, then the MMU
generates a fault

- Otherwise, virtual address is added to the segment’s
base value to get a physical address

limit | base ?eéilment
- Each process has its own segment table -imit___base P
imi ase
- Only manipulated by kernel limit | base
A 4
Virtual address: | segment | offset > + >| physical address

5
MMU: Segmentation (2)

- Segments can specify additional characteristics:
- Read-only vs. read-write, executable code vs. data
- MMU can also enforce these constraints

- Programs frequently contain different kinds of data
- Program text (read-only, executable)
- Constants/read-only data (read-only, not executable)
- Global variables (read-write, not executable)
- Memory heap
- Program stack (or stacks, for multithreaded programs)

limit | base | Segment

- Shared libraries limit | base | Table
. > limit | base
- Segmentation matches more closely to imit | base
what programs actually require
A 4
Virtual address: | segment | offset > + >| physical address

. R
MMU: Segmentation (3)

- Segmentation allows a program’s virtual memory to be non-contiguous in
physical memory

- Reduces physical memory fragmentation issues somewhat, but it will still become an issue
over time

- Also supports shared memory areas very easily

- Multiple processes can have segments with the same base and limit values, allowing
access to the same physical memory area

- Still not particularly great for swapping processes

- Could swap individual segments, but segments can
easily be very large (e.g. program text, memory heap)

limit | base | Segment
limit | base | 1able

> limit | base
limit | base

+ €

Virtual address: | segment | offset > >| physical address

Compaction

- Both relocation register and segmented memory models can suffer from
external fragmentation of physical memory

- OS can mitigate this by compacting physical memory:
- Move programs within physical memory to create a single contiguous area of free memory

- A program’s code and data can be moved within physical memory, then the base
address(es) can be adjusted to reflect new location

- Increases the number of processes that a system can run

- Clearly has a time impact on system performance
- Particularly when large programs or data areas must be moved

- OS can perform compaction when system load is lighter
- e.g. via a low-priority kernel thread

- Or, just force compaction when it can’t be avoided

. ©___
MMU: Paging

- Paging is the most common technique for mapping virtual addresses to
physical addresses

- Physical and virtual memory are divided into fixed-size blocks of a particular size, e.g. 4KiB,
8KiB, etc.

- Blocks of physical memory are called frames
- Blocks of virtual memory are called pages
- Every virtual page is mapped to a corresponding frame in physical memory

virtual address physical address

¥ *

virtual page number | offset > mapping physical page number| offset

']

. N
MMU: Paging (2)

- Paging causes no external fragmentation whatsoever
- Memory is always allocated or released in page-size chunks

- Will have some limited amount of internal fragmentation
- e.g. a process needs less than one page of space, but receives a whole page

- Motivates choice of a page size that is relatively small, but still large enough to

make swapping reasonably efficient

- Most allocations require a larger number of pages, reducing the actual internal
fragmentation costs

virtual address physical address

¥ *

virtual page number | offset > mapping physical page number| offset

']

2
MMU: Paging (3)

- Some systems have a very small mapping of virtual pages to physical pages
- Store this mapping in dedicated registers
- Example: DEC PDP-11
- Address space: 16 bits (64KB)
- Page size: 8KB (13 bits of addresses); only 8 pages total
- Virtual to physical page mapping is stored in 8 registers

virtual address physical address

¥ *

virtual pa?e number | offset > mapping physical page number | offset

]

. B
MMU: Paging (4)

- Most modern systems must support very large mappings in a page table
- An entry for every virtual page, specifying the corresponding physical page
- This page table is stored in main memory...
- Page table must be consulted for every memory access, including code and data access
- Main memory is very slow, e.g. ~100 clocks per access
- MMUs include Translation Lookaside Buffers (TLBs) to maximize performance
of address translation

virtual address TLBs physical address

¥ $ *

virtual page number | offset > mapping physical page number| offset

']

2
MMU: Paging (5)

- During address translation, the MMU checks the TLBs to see if the mapping is
already cached
- Frequently will be, if the program has good locality of access

- If not, the MMU suffers a TLB miss
- Must look at the actual page table in memory to complete the address translation

- TLB misses can be resolved by hardware or by software

- If page table format is simple, hardware can look up the information
- Some CPUs can also fire a “TLB miss” interrupt to allow the OS kernel to resolve the TLB
miss (much slower, obviously...)

virtual address TLBs physical address

virtual page number | offset > mapping physical page number| offset

']

3
Simple Page Tables

- Simplest page table holds one entry for each virtual page

- As the size of the address space grows, the page table also becomes
prohibitively large

- Example: |A32 address space = 32 bits (4GB)
- Page size is 4KB; 1048576 entries in page table!

- Entries are 32 bits; table takes up 4MB _ n-1 p_p-1 0
Virtual Address Virtual Page Number Virtual Page Offset
Page Table
Base Register > el el

Physical Page Number
Physical Page Number
—> Physical Page Number ¢
Physical Page Number

m-1 WP p-1 V 0
Physical Address Physical Page Number | Physical Page Offset

Hierarchical Paging

- To support larger address spaces, many systems use hierarchical paging
- Page table is a sparse data structure

- Virtual page number is broken into parts — each part is used to index a page
table at a different level

- If a memory area is unused, the corresponding page table entries are empty

n-1 Virtual Address p p-1 0
VPN 1 VPN 2 VPN k Virtual Page Offset

Level 1 N Level 2 >

— Level k
Page Table Page Table

PTBR Page Table

A 4

5 —

- ®

m-1 Physical Address Vv p p-1 V 0
Physical Page Number Physical Page Offset

.
Hierarchical Paging (2)

- Example: 1A32 has 32-bit (4GB) address space
- 4KB pages; 12 bits of address are offset within page
- 20 bits of address specify virtual/physical page number

- IA32 has a two-level page table hierarchy
- Top 10 bits are used to index into the page directory
- Next 10 bits are used to index into a second-level page table

31 22 21 1211 0
Virtual Address Page Directory Entry Page Table Entry Virtual Page Offset
Page Directory »| Page y| Page
Base Register Directory Table
— P
— ®
31 V 1211 V 0

Physical Address Physical Page Number Physical Page Offset

%
Hierarchical Paging (3)

- Similarly, x86-64 has 48-bit address space
- Also 4KB pages; 12 bits of address are offset within page
- 36 bits of address specify virtual/physical page number

- X86-64 has a four-level page table hierarchy
- Each level has 9 bits to specify the page-table index

- Problem: as address space grows, number of accesses for page-table lookup
will clearly become prohibitive...

31 22 21 1211 0
Virtual Address Page Directory Entry Page Table Entry Virtual Page Offset
Page Directory »| Page y| Page
Base Register Directory Table
— P
— ®
31 V 1211 V 0

Physical Address Physical Page Number Physical Page Offset

Hashed Page Tables

- Some processors support hashed page tables
- Virtual page number is hashed to find corresponding physical page

- Obvious issue: hash collisions in the page table
- Must have some way of resolving hash collisions, e.g. overflow buckets or open addressing

- Must store both the virtual page number and the corresponding physical page number to
resolve collisions

- Systems with large address spaces can use clustered page tables
- Entries in the hash table hold multiple virtual/physical mappings
- e.g. a clustered page table might hold 16 virtual/physical mappings instead of just one

- Usually requires kernel intervention to resolve TLB misses
- More advanced CPUs can do this in microcode on the processor

Inverted Page Tables

- Another solution to the “large page table” problem is inverted page tables

- Instead of using a table that stores the virtual-to-physical mapping, store a physical-to-
virtual mapping instead

- With traditional page tables, each process has its own page table...

- With inverted page tables, the entire system has one page table containing the
mappings of all processes
- Problem: processes use virtual addresses...

- Very difficult to find a process’ virtual-to-physical mapping in the inverted page table

- Frequently, such systems use a hashing mechanism on top of the inverted page table, to
find the appropriate records

- (PowerPC and UltraSPARC processors use this approach.)

. »®
Inverted Page Tables (2)

- Inverted page tables have a second problem:
- Each physical page is mapped to one virtual page...
- Providing shared memory on such systems is complicated

- A simple solution:

- When the kernel dispatches to the current process, check if it has any
shared memory areas it is using

- If so, update the inverted page table to reflect that the physical pages are
owned by the current process

- When another process is scheduled, update the page table to show the
pages as owned by the next process

- Various other solutions to this problem as well...

Next Time

- Continue discussion of virtual memory and paging

