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Programs and Memory
• Programs perform many interactions with memory…
• Accessing variables stored at specific memory locations
• Calls to functions that reside at specific memory locations

• Source code usually doesn’t include absolute addresses
• Rather, programs use symbols to refer to variables, functions, etc.

• At some point between compiling and running a program, addresses must be 
assigned to functions and variables

• Ultimately, the operating system must specify how executable programs must 
be laid out in memory
• The OS is responsible for loading a binary program and running it
• The OS is responsible for resolving references to shared libraries

• Specification is called application binary interface (ABI)
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Programs and Memory (2)
• If the locations of functions and data can be set at compile time, the compiler 

can generate absolute code
• Code that contains absolute addresses of functions and data

• If a program’s location can vary from invocation to invocation, compiler must 
generate relocatable code
• The final binding of symbols to their addresses occurs at load time
• The loader updates the image of the binary program in memory, based on where the 

program will actually be loaded
• To support this, programs must include details of what symbols are used in the program, 

and where they are referenced in the binary
• Programs can also be compiled to produce position independent code
• All accesses are relative to the start of the binary in memory
• The program determines its own starting address at runtime
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Programs and Memory (3)
• UNIX Executable and Linkable Format (ELF) supports both absolute and 

relocatable binary programs
• On 32-bit Linux:
• “Executable object files” are positioned at an absolute starting address of 0x08048000
• “Relocatable object files” (.o files produced during compilation) include extra details 

specifying the locations of function and memory accesses within the binary file
• Shared libraries are compiled with position-independent code

• Windows Portable Executable (PE) format also supports both absolute and 
relocatable programs
• Windows programs are compiled relative to a preferred base address (absolute position)
• If a program can’t be loaded at its preferred base address for some reason, it can be 

relocated at runtime (called “rebasing”)
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Programs and Memory (4)
• The addresses used by programs are virtual addresses (logical addresses)
• The range of addresses a program uses is called its virtual address space

• The computer memory receives physical addresses
• The processor translates virtual addresses to physical addresses via the 

Memory Management Unit (MMU)
• The nature of the processor’s MMU governs how this translation takes place
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Why Virtual Memory?
• Virtual memory has several benefits
• Frequently talk about process isolation:
• A process should be protected from access or manipulation by other processes on the 

system, unless the process specifically allows collaboration with other processes
• By running processes in separate address spaces, it’s impossible for them to 

access each other’s data
• (…unless the processes arrange to do so, of course)
• Each process’ virtual address space is mapped to a separate region of the computer’s 

physical address space
• Only the kernel can directly manipulate this mapping; processes are not allowed to do so
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Why Virtual Memory? (2)
• Virtual memory also greatly simplifies the design of the operating system’s 

application binary interface (ABI):
• If every process has its own virtual address space, different processes can use the same 

virtual addresses without a problem
• All binary programs can be laid out using the same basic structure and pattern
• e.g. 32-bit Linux:
• Program text always starts at virtual address 0x08048000
• Process stack always grows downward from 0xc0000000
• (ignoring Address-Space Layout Randomization / ASLR)

• Without virtual addressing, this would be impossible
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Why Virtual Memory? (3)
• A third benefit for virtual memory is that it allows the OS to move processes 

from memory to disk, and vice versa
• Mechanism is called swapping

• A program must be in main memory to run, but processes aren’t always ready 
to run…
• When a process is blocked or suspended, OS can swap it from memory to a backing store 

(e.g. a hard disk)
• Most or all of the process’ context is saved to disk

• When the scheduler switches to a new process, the dispatcher checks to see 
if the process is in memory
• If not, the dispatcher can swap in the process and begin running it
• If there isn’t enough room, the dispatcher can swap out other processes from memory to the 

backing store
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Swapping
• With swapping, the total memory used by all processes can exceed the total 

physical memory in the system
• Allows more programs to be run on the system at once, especially if many of these 

programs are usually blocked on I/O
• (e.g. user applications waiting for user input)

• Unfortunately, swapping tends to take a lot of time
• Even though the backing store is usually a fast disk, still much slower than main memory

• Standard swapping involves moving entire processes into or out of physical 
memory
• For a large process, can easily take several seconds or more!

• Operating systems don’t generally use standard swapping
• Instead, focus on swapping portions of processes out of memory
• Much faster than swapping entire processes out of memory
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Swapping (2)
• Mobile processors generally have virtual memory support
• Mobile OSes usually don’t implement swapping
• Don’t have a large backing store to use for swapping
• Usually have a small flash memory with a limited number of writes

• Generally, when OS needs more memory for a process, it asks (or forces) 
other processes to relinquish memory
• e.g. if a process is taking up too much memory, the OS kills it
• iOS tends to be aggressive in reclaiming memory from processes

• Android will write application state to flash memory before killing a process, so 
that it can be restarted quickly

• In general, mobile application developers must be more careful about efficient 
memory (and other resource) usage
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MMU:  Relocation
• A simple strategy for the memory management unit:  relocate all virtual 

addresses by a constant amount
• A relocation register holds a constant, which is added to logical addresses to generate 

physical addresses
• phys_addr = virt_addr + relocation

• Additionally, can use a limit register to enforce the upper bound on the 
process’ virtual address space
if virt_addr ≥ limit:
    raise fault
else:
    phys_addr = virt_addr + relocation

• Interaction with these registers is protected:  only the kernel is allowed to read 
and write these registers
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MMU:  Relocation (2)
• Using this strategy:
• Programs can be compiled with absolute addresses, e.g. starting at address 0 (or some 

other common starting point)
• When a program is executed, the OS kernel can choose values for the corresponding 

process’ relocation and limit registers based on the program’s memory requirements
• Processes are isolated from each other, and from the kernel
• Using this kind of address translation mechanism gives us a

contiguous memory allocation scheme
• Each process occupies a single contiguous region of physical memory
• Processes occupy adjacent regions of memory
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MMU:  Relocation (3)
• Contiguous memory allocation mechanism is prone to fragmentation of 

physical memory
• As processes terminate and other processes are started, must determine where to place 

each process in physical memory
• Placement strategies are same as always, e.g. best fit, first fit, …
• (OS can use another strategy too; in a moment…)

• This mechanism also requires standard swapping
• Not really possible to swap out parts of a process

• Does this virtual addressing mechanism allow shared memory areas?
• phys_addr = virt_addr + relocation

• Not without great difficulty:
• Two processes could be given overlapping regions, but it would complicate

other parts of process management
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MMU:  Segmentation
• A more advanced virtual address mapping technique is called segmentation
• Virtual addresses also include a segment number
• Virtual address = segment number + offset within segment

• Segment number used to find an entry in segment table
• Similar mechanism to the relocation register:
• Virtual offset is checked against the segment’s limit; if limit is exceeded, then the MMU 

generates a fault
• Otherwise, virtual address is added to the segment’s

base value to get a physical address
• Each process has its own segment table
• Only manipulated by kernel
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MMU:  Segmentation (2)
• Segments can specify additional characteristics:
• Read-only vs. read-write, executable code vs. data
• MMU can also enforce these constraints

• Programs frequently contain different kinds of data
• Program text (read-only, executable)
• Constants/read-only data (read-only, not executable)
• Global variables (read-write, not executable)
• Memory heap
• Program stack (or stacks, for multithreaded programs)
• Shared libraries

• Segmentation matches more closely to
what programs actually require
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MMU:  Segmentation (3)
• Segmentation allows a program’s virtual memory to be non-contiguous in 

physical memory
• Reduces physical memory fragmentation issues somewhat, but it will still become an issue 

over time
• Also supports shared memory areas very easily
• Multiple processes can have segments with the same base and limit values, allowing 

access to the same physical memory area
• Still not particularly great for swapping processes
• Could swap individual segments, but segments can

easily be very large (e.g. program text, memory heap)
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Compaction
• Both relocation register and segmented memory models can suffer from 

external fragmentation of physical memory
• OS can mitigate this by compacting physical memory:
• Move programs within physical memory to create a single contiguous area of free memory
• A program’s code and data can be moved within physical memory, then the base 

address(es) can be adjusted to reflect new location
• Increases the number of processes that a system can run
• Clearly has a time impact on system performance
• Particularly when large programs or data areas must be moved

• OS can perform compaction when system load is lighter
• e.g. via a low-priority kernel thread

• Or, just force compaction when it can’t be avoided
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MMU:  Paging
• Paging is the most common technique for mapping virtual addresses to 

physical addresses
• Physical and virtual memory are divided into fixed-size blocks of a particular size, e.g. 4KiB, 

8KiB, etc.
• Blocks of physical memory are called frames
• Blocks of virtual memory are called pages
• Every virtual page is mapped to a corresponding frame in physical memory
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MMU:  Paging (2)
• Paging causes no external fragmentation whatsoever
• Memory is always allocated or released in page-size chunks

• Will have some limited amount of internal fragmentation
• e.g. a process needs less than one page of space, but receives a whole page

• Motivates choice of a page size that is relatively small, but still large enough to 
make swapping reasonably efficient
• Most allocations require a larger number of pages, reducing the actual internal 

fragmentation costs
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MMU:  Paging (3)
• Some systems have a very small mapping of virtual pages to physical pages
• Store this mapping in dedicated registers

• Example:  DEC PDP-11
• Address space:  16 bits (64KB)
• Page size:  8KB (13 bits of addresses); only 8 pages total
• Virtual to physical page mapping is stored in 8 registers
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MMU:  Paging (4)
• Most modern systems must support very large mappings in a page table
• An entry for every virtual page, specifying the corresponding physical page

• This page table is stored in main memory…
• Page table must be consulted for every memory access, including code and data access
• Main memory is very slow, e.g. ~100 clocks per access

• MMUs include Translation Lookaside Buffers (TLBs) to maximize performance 
of address translation
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MMU:  Paging (5)
• During address translation, the MMU checks the TLBs to see if the mapping is 

already cached
• Frequently will be, if the program has good locality of access

• If not, the MMU suffers a TLB miss
• Must look at the actual page table in memory to complete the address translation

• TLB misses can be resolved by hardware or by software
• If page table format is simple, hardware can look up the information
• Some CPUs can also fire a “TLB miss” interrupt to allow the OS kernel to resolve the TLB 

miss (much slower, obviously…)
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Simple Page Tables
• Simplest page table holds one entry for each virtual page
• As the size of the address space grows, the page table also becomes 

prohibitively large
• Example:  IA32 address space = 32 bits (4GB)
• Page size is 4KB; 1048576 entries in page table!
• Entries are 32 bits; table takes up 4MB
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Hierarchical Paging
• To support larger address spaces, many systems use hierarchical paging
• Page table is a sparse data structure

• Virtual page number is broken into parts – each part is used to index a page 
table at a different level

• If a memory area is unused, the corresponding page table entries are empty
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Hierarchical Paging (2)
• Example:  IA32 has 32-bit (4GB) address space
• 4KB pages; 12 bits of address are offset within page
• 20 bits of address specify virtual/physical page number

• IA32 has a two-level page table hierarchy
• Top 10 bits are used to index into the page directory
• Next 10 bits are used to index into a second-level page table
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Hierarchical Paging (3)
• Similarly, x86-64 has 48-bit address space
• Also 4KB pages; 12 bits of address are offset within page
• 36 bits of address specify virtual/physical page number

• x86-64 has a four-level page table hierarchy
• Each level has 9 bits to specify the page-table index

• Problem:  as address space grows, number of accesses for page-table lookup 
will clearly become prohibitive…
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Hashed Page Tables
• Some processors support hashed page tables
• Virtual page number is hashed to find corresponding physical page

• Obvious issue:  hash collisions in the page table
• Must have some way of resolving hash collisions, e.g. overflow buckets or open addressing
• Must store both the virtual page number and the corresponding physical page number to 

resolve collisions
• Systems with large address spaces can use clustered page tables
• Entries in the hash table hold multiple virtual/physical mappings
• e.g. a clustered page table might hold 16 virtual/physical mappings instead of just one

• Usually requires kernel intervention to resolve TLB misses
• More advanced CPUs can do this in microcode on the processor
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Inverted Page Tables
• Another solution to the “large page table” problem is inverted page tables
• Instead of using a table that stores the virtual-to-physical mapping, store a physical-to-

virtual mapping instead
• With traditional page tables, each process has its own page table…
• With inverted page tables, the entire system has one page table containing the 

mappings of all processes
• Problem:  processes use virtual addresses…
• Very difficult to find a process’ virtual-to-physical mapping in the inverted page table
• Frequently, such systems use a hashing mechanism on top of the inverted page table, to 

find the appropriate records
• (PowerPC and UltraSPARC processors use this approach.)
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Inverted Page Tables (2)
• Inverted page tables have a second problem:

• Each physical page is mapped to one virtual page…
• Providing shared memory on such systems is complicated

• A simple solution:
• When the kernel dispatches to the current process, check if it has any 

shared memory areas it is using
• If so, update the inverted page table to reflect that the physical pages are 

owned by the current process
• When another process is scheduled, update the page table to show the 

pages as owned by the next process
• Various other solutions to this problem as well…
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Next Time
• Continue discussion of virtual memory and paging
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