
SYSTEM CALL IMPLEMENTATION
CS124 – Operating Systems
Spring 2024, Lecture 13

User Processes and System Calls
• Previously stated that user applications interact with kernel via system calls
• Typically invoked via a trap instruction
• An intentional software-generated exception

• The kernel registers a handler for a specific trap
• int $0x80 for Linux system calls
• int $0x2e for Windows system calls
• int $0x30 for Pintos system calls

• Can’t easily pass arguments to system calls on the stack
• Trap instruction causes CPU to switch operating modes (from user mode to kernel mode)
• Different operating modes have different stacks

2

User Processes and System Calls (2)
• Typically, arguments to system calls are passed in registers, and the return-

value(s) come back in registers
• One of the arguments is an integer indicating which system call to invoke
• e.g. on Linux and Windows, %eax is set to operation to perform
• e.g. on UNIX systems, sys/syscall.h specifies these numbers
• Note: UNIX syscall IDs are not uniform across different UNIXes

• Obvious constraint: system-call arguments can’t be wider than the registers
• Several possible approaches:
• Can split larger arguments across multiple registers
• Can store larger arguments in a struct, then pass a pointer to the struct as an argument

3

User Processes and System Calls (3)
• The operating system frequently exposes system calls via a standard library
• e.g. UNIX syscalls are exposed via the C standard library (libc)
• e.g. Windows syscalls exposed via the (largely undocumented) Native API (ntapi.dll)

• The library serves as an intermediary between apps and the operating system
• Some functions are direct wrappers for system calls
• e.g. ssize_t read(int fd, void *buf, size_t nbyte)
• Implementation stores arguments from stack into registers, invokes the system call entry-

point (e.g. int $0x80), and returns result

• Others utilize system call wrappers internally
• e.g. malloc() is mainly implemented in user space, but uses system calls to increase the

process’ heap size

4

Review: Interrupt Mechanics
• Previously discussed how interrupts and traps are handled on IA32 (see

lecture 8 for details)
• User process has its own stack
• Executing the trap causes the CPU to switch to the

kernel-mode stack associated with the process
• Since system calls change from user mode

to kernel mode, IA32 saves a pointer to the
previous stack on the new stack

• Next, CPU saves the user process’ execution
state: cs, eip and eflags

5

Kernel Thread Stack

Caller’s SS

Caller’s ESP

User Process Stack

current contents
of user process

stack Caller’s EFLAGS

Caller’s CS

Caller’s EIP

trap

Review: Interrupt Mechanics (2)
• Operating system has a stub for every possible interrupt
• Some interrupts push an error code onto the stack; if not, the OS stub will

push a dummy value for consistency
• Next, the stub pushes the interrupt number

onto the stack
• Finally, the stub records all register state

onto kernel stack

• Now the Interrupt Service Routine (ISR) can
run without disrupting the interrupted code

6

Kernel Thread Stack

Caller’s SS

Caller’s ESP

Caller’s EFLAGS

Caller’s CS

Caller’s EIP

User Process Stack

current contents
of user process

stack

Error Code

Interrupt No.
Register State
of Interrupted

Program

System Call Mechanics
• The operating system exposes the user program’s CPU and register state as

arguments to the ISR
• Typically exposed to ISR as a struct with a field for each register

• System call handler needs to receive arguments
from the user program
• Can easily access these values on the kernel stack

• Syscall handler also returns a status result in eax
• Can modify user program’s eax on the kernel stack
• When the kernel returns to the user program, its context

is restored
• Program sees new value of eax

7

Kernel Thread Stack

Caller’s SS

Caller’s ESP

Caller’s EFLAGS

Caller’s CS

Caller’s EIP

User Process Stack

current contents
of user process

stack

Error Code

Interrupt No.
Register State
of Interrupted

Program

System Call Mechanics (2)
• The ID of the system call is used to dispatch to a function that implements the

system call
• Called a system call service routine

• System call service routines are usually named after their user-mode entry
points
• e.g. sys_write() implements write()
• e.g. sys_fork() implements fork()
• (Aside: these service routines are sometimes called within the kernel implementation to

implement more complex operations)
• A system call table holds an array of function pointers to all system call service

routines
• The syscall ID is used to index into this table when making the call

8

System Call Mechanics (3)
• Need to check the system call ID to ensure it’s valid…
• If it’s invalid, return ENOSYS “Function not implemented” error

• Can easily check that the ID is below the max syscall ID
• If a specific syscall ID below the max is not supported, simply register a

service routine that returns ENOSYS

9

Example: Linux System Calls
• Snippet [paraphrased] of Linux system_call() handler:

 ... # Save registers onto stack

 # Make sure it's a valid syscall ID
 cmpl $(NR_syscalls), %eax
 jb nobadsys

 # Return-value of syscall() will be in eax
 # as usual, so set value of eax stored on
 # kernel stack to ENOSYS to indicate error
 movl $(-ENOSYS), 24(%esp)
 jmp ret_from_sys_call
nobadsys:
 ...

Example: Linux System Calls (2)
• Linux system_call() handler, continued:

 ...
nobadsys:
 # Dispatch to the function in the system-call
 # table corresponding to the specified ID
 # (On IA32, pointers are 4 bytes, so use
 # ID*4 as the address within the table)
 call *sys_call_table(, %eax, 4)

 # Store return-value from routine into
 # location of eax on the kernel stack
 movl %eax, 24(%esp)
 jmp ret_from_sys_call

Example: Linux System Calls (3)
• Different syscalls require different numbers of arguments
• e.g. getpid() and fork() require no arguments
• e.g. mmap() requires up to six arguments

• System-call arguments are passed from the user process
in specific registers
• ebx is first argument, ecx is second argument, etc.

• Syscall service routines are written in C, and expect their
arguments on the kernel stack (cdecl calling convention)

• Linux system_call() handler pushes all of the process’
registers onto the kernel stack in a specific order
• Specifically, the reverse order that registers are used to pass arguments

to system calls

12

Kernel Thread Stack

…

ebp = arg6

edi = arg5

esi = arg4

edx = arg3

ecx = arg2

ebx = arg1

Example: Linux System Calls (4)
• Arguments to syscall service routines are pushed in reverse order, following

the cdecl calling convention
• Under cdecl, if a function is passed more arguments than it expects, the extra

arguments are ignored
• Allows system_call() to dispatch to all the different service

routines, regardless of the number of arguments they take
• e.g. int sys_write(int fd, char *buf, int size)
• Service routine for write(int fd, char *buf, int size)

• When system_call() dispatches to sys_write(),
sys_write() sees only the expected arguments
• Extra arguments are simply ignored by sys_write()

13

Kernel Thread Stack

…

ebp = arg6

edi = arg5

esi = arg4

edx = arg3

ecx = arg2

ebx = arg1

edx = size

ecx = buf

ebx = fd

return address

sys_write() frame
…

System Calls: Security Holes?
• It goes without saying that the system call service routine must carefully check

all arguments to the system call…

• Are there potential security holes in accepting pointers as arguments to
system calls?

• Example: ssize_t read(int fd, void *buf, size_t nbytes)
• Reads bytes from a file descriptor into a buffer

• Caller specifies:
• The file-descriptor to read
• A pointer to the buffer to store the data in
• A number of bytes to read

14

System Calls: Security Holes?!
• Example: ssize_t read(int fd, void *buf, size_t nbytes)
• Generally the pointers are expected to be in user space…
• What if user-mode program specifies an address in kernel’s address space?
• As long as the user-mode program doesn’t access this address, it won’t cause a general

protection fault…
• But, the kernel is allowed to write to this address!
• If kernel naïvely accepts address from the user program, it could overwrite critical data

• Example: target critical kernel data structures
• Program opens file containing the data it wants to insert into kernel
• Program passes that file descriptor and address of kernel struct…

15

System Calls: Security Holes
• Very important to verify all addresses that come from

user-mode programs:
• Addresses must be in userspace!
• If an address is in kernel space, it’s an access violation

• A fast way to verify addresses:
• Make sure the address is below the kernel/user address boundary

(e.g. 0xc0000000 in 32b-Linux/Pintos, called PHYS_BASE in Pintos)

Process-specific
data structures
Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Ke
rn

el
 S

pa
ce

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

U
se

r S
pa

ce

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

16

System Calls and Page Faults
• Addresses below kernel/user boundary could still be invalid…
• e.g. pass a pointer to unallocated memory to a read() system call
• e.g. pass a pointer to read-only memory to a write() system call

• OS will see a page fault or a general protection fault
within the kernel

• Problem: this isn’t always an error!
• Many OSes don’t allocate virtual memory pages until they are

actually accessed
• Private copy-on-write pages are marked read-only; first attempt

to write causes the page to be copied for the writing process

Process-specific
data structures
Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Ke
rn

el
 S

pa
ce

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

U
se

r S
pa

ce

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

17

System Calls and Page Faults (2)
• Aside:
• In the Pintos system-call lab, virtual memory management isn’t completed yet, so a page

fault does mean an invalid address J

• The OS may see memory faults within the kernel:
• Sometimes these are valid scenarios
• Sometimes it’s an invalid pointer passed to a syscall L
• Sometimes it is a kernel bug L L

• Assume there is a way to identify the valid scenarios…
• (We will examine that question in a few weeks)

• How do we distinguish between the remaining two cases?

18

System Calls and Page Faults (3)
• How to distinguish between:
• Faults caused by invalid addresses passed to system calls
• Faults caused by kernel bugs

• Linux has a very interesting solution to this problem

• How much kernel code actually interacts with user space?
• (Remember, the CPU state of user processes is saved onto the kernel stack, which is in

kernel space)

19

System Calls and Page Faults (4)
• The amount of kernel code that interacts with user space is actually very

small…

• Linux kernel keeps an exception table, which records the addresses of all
instructions that touch user space

• In the fault handler, consult the exception table:
• If the faulting instruction is in the exception table, then the user program passed the kernel a

bad pointer
• Otherwise, it’s a kernel bug L

• Aside: if it’s a kernel bug, Linux performs a kernel oops
• Print out suitable info for a kernel developer to debug the error, and log it to the system log
• Then terminate the process!
• Keeps kernel bugs from bringing down the entire system…

20

Example Kernel Oops

21

Pintos System Calls
• Pintos doesn’t follow the Linux syscall mechanism
• Syscall arguments are on the user stack, not in the registers

• This complicates the syscall mechanism, but only slightly
• Pictorially:

22

Kernel Thread Stack

Caller’s SS

Caller’s ESP

Caller’s EFLAGS

Caller’s CS

Caller’s EIP

User Process Stack

current contents
of user process

stack

Error Code

Interrupt No.
Register State
of Interrupted

Program

Arguments to
System Call

struct intr_frame
(threads/interrupt.h)

Pointer is passed to
system-call function
(userprog/syscall.c)

Sys-Call Args

Pintos System Calls (2)
• intr_frame struct exposes process

machine context
• Note that topmost values on stack

appear at bottom of the structure…
• Recall: C structure members are assigned

increasing offsets from start of struct
• Last struct members have highest addresses

• This struct makes it easy to access the
user process’ stack contents
• e.g. retrieve esp member, cast to uint32_t*,

then access user stack like an array

23

struct intr_frame {
// Pushed by intr_entry (intr-stubs.S).
// The interrupted task's saved registers.
uint32_t edi; // Saved EDI
uint32_t esi; // Saved ESI
uint32_t ebp; // Saved EBP
uint32_t esp_dummy; // Not used
uint32_t ebx; // Saved EBX
...

// Pushed by intrNN_stub (intr-stubs.S).
uint32_t vec_no; // Interrupt vector no.
// Sometimes pushed by CPU; otherwise for
// consistency, 0 is pushed (intrNN_stub).
uint32_t error_code;

// Pushed by the CPU. These are the
// interrupted task's saved registers.
void (*eip) (void); // Next instruction
uint16_t cs, :16; // Code segment
uint32_t eflags; // Saved CPU flags
void *esp; // Saved stack ptr
uint16_t ss, :16; // Stack segment

};

Pintos System Calls (3)
• Pintos system-call arguments are pushed on the user process stack
• Arguments themselves are pushed in reverse order
• Finally, system-call number is pushed

• Caller’s esp points to the system-call number
• Use syscall number to determine how many

arguments are required
• Finally, read in the arguments themselves
• The kernel is accessing user-space, so it

needs to do this carefully

24

Kernel Thread Stack

Caller’s SS

Caller’s ESP

Caller’s EFLAGS

Caller’s CS

User Process Stack

current contents
of user process

stack

Arguments to
System Call

Caller’s EIP

Error Code

Interrupt No.
Register State
of Interrupted

Program

Arg N

…

Arg 1

Syscall Number

Next Time
• Begin discussing virtual memory abstraction

25

