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User Processes and System Calls
• Previously stated that user applications interact with kernel via system calls
• Typically invoked via a trap instruction
• An intentional software-generated exception

• The kernel registers a handler for a specific trap
• int $0x80 for Linux system calls
• int $0x2e for Windows system calls
• int $0x30 for Pintos system calls

• Can’t easily pass arguments to system calls on the stack
• Trap instruction causes CPU to switch operating modes (from user mode to kernel mode)
• Different operating modes have different stacks
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User Processes and System Calls (2)
• Typically, arguments to system calls are passed in registers, and the return-

value(s) come back in registers
• One of the arguments is an integer indicating which system call to invoke
• e.g. on Linux and Windows, %eax is set to operation to perform
• e.g. on UNIX systems, sys/syscall.h specifies these numbers
• Note:  UNIX syscall IDs are not uniform across different UNIXes

• Obvious constraint:  system-call arguments can’t be wider than the registers
• Several possible approaches:
• Can split larger arguments across multiple registers
• Can store larger arguments in a struct, then pass a pointer to the struct as an argument
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User Processes and System Calls (3)
• The operating system frequently exposes system calls via a standard library
• e.g. UNIX syscalls are exposed via the C standard library (libc)
• e.g. Windows syscalls exposed via the (largely undocumented) Native API (ntapi.dll)

• The library serves as an intermediary between apps and the operating system
• Some functions are direct wrappers for system calls
• e.g. ssize_t read(int fd, void *buf, size_t nbyte)
• Implementation stores arguments from stack into registers, invokes the system call entry-

point (e.g. int $0x80), and returns result

• Others utilize system call wrappers internally
• e.g. malloc() is mainly implemented in user space, but uses system calls to increase the 

process’ heap size
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Review:  Interrupt Mechanics
• Previously discussed how interrupts and traps are handled on IA32 (see 

lecture 8 for details)
• User process has its own stack
• Executing the trap causes the CPU to switch to the

kernel-mode stack associated with the process
• Since system calls change from user mode

to kernel mode, IA32 saves a pointer to the
previous stack on the new stack

• Next, CPU saves the user process’ execution
state:  cs, eip and eflags
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Review:  Interrupt Mechanics (2)
• Operating system has a stub for every possible interrupt
• Some interrupts push an error code onto the stack; if not, the OS stub will 

push a dummy value for consistency
• Next, the stub pushes the interrupt number

onto the stack
• Finally, the stub records all register state

onto kernel stack

• Now the Interrupt Service Routine (ISR) can
run without disrupting the interrupted code
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System Call Mechanics
• The operating system exposes the user program’s CPU and register state as 

arguments to the ISR
• Typically exposed to ISR as a struct with a field for each register

• System call handler needs to receive arguments
from the user program
• Can easily access these values on the kernel stack

• Syscall handler also returns a status result in eax
• Can modify user program’s eax on the kernel stack
• When the kernel returns to the user program, its context

is restored
• Program sees new value of eax
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System Call Mechanics (2)
• The ID of the system call is used to dispatch to a function that implements the 

system call
• Called a system call service routine

• System call service routines are usually named after their user-mode entry 
points
• e.g. sys_write() implements write()
• e.g. sys_fork() implements fork()
• (Aside:  these service routines are sometimes called within the kernel implementation to 

implement more complex operations)
• A system call table holds an array of function pointers to all system call service 

routines
• The syscall ID is used to index into this table when making the call

8



System Call Mechanics (3)
• Need to check the system call ID to ensure it’s valid…
• If it’s invalid, return ENOSYS “Function not implemented” error

• Can easily check that the ID is below the max syscall ID
• If a specific syscall ID below the max is not supported, simply register a 

service routine that returns ENOSYS
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Example:  Linux System Calls
• Snippet [paraphrased] of Linux system_call() handler:

    ...  # Save registers onto stack

    # Make sure it's a valid syscall ID
    cmpl $(NR_syscalls), %eax
    jb nobadsys

    # Return-value of syscall() will be in eax
    # as usual, so set value of eax stored on
    # kernel stack to ENOSYS to indicate error
    movl $(-ENOSYS), 24(%esp)
    jmp ret_from_sys_call
nobadsys:
    ...



Example:  Linux System Calls (2)
• Linux system_call() handler, continued:

    ...
nobadsys:
    # Dispatch to the function in the system-call
    # table corresponding to the specified ID
    # (On IA32, pointers are 4 bytes, so use
    # ID*4 as the address within the table)
    call *sys_call_table(, %eax, 4)

    # Store return-value from routine into
    # location of eax on the kernel stack
    movl %eax, 24(%esp)
    jmp ret_from_sys_call



Example:  Linux System Calls (3)
• Different syscalls require different numbers of arguments
• e.g. getpid() and fork() require no arguments
• e.g. mmap() requires up to six arguments

• System-call arguments are passed from the user process
in specific registers
• ebx is first argument, ecx is second argument, etc.

• Syscall service routines are written in C, and expect their
arguments on the kernel stack (cdecl calling convention)

• Linux system_call() handler pushes all of the process’
registers onto the kernel stack in a specific order
• Specifically, the reverse order that registers are used to pass arguments

to system calls
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Example:  Linux System Calls (4)
• Arguments to syscall service routines are pushed in reverse order, following 

the cdecl calling convention
• Under cdecl, if a function is passed more arguments than it expects, the extra 

arguments are ignored
• Allows system_call() to dispatch to all the different service

routines, regardless of the number of arguments they take
• e.g. int sys_write(int fd, char *buf, int size)
• Service routine for write(int fd, char *buf, int size)

• When system_call() dispatches to sys_write(),
sys_write() sees only the expected arguments
• Extra arguments are simply ignored by sys_write()
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System Calls:  Security Holes?
• It goes without saying that the system call service routine must carefully check 

all arguments to the system call…

• Are there potential security holes in accepting pointers as arguments to 
system calls?

• Example:  ssize_t read(int fd, void *buf, size_t nbytes)
• Reads bytes from a file descriptor into a buffer

• Caller specifies:
• The file-descriptor to read
• A pointer to the buffer to store the data in
• A number of bytes to read
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System Calls:  Security Holes?!
• Example:  ssize_t read(int fd, void *buf, size_t nbytes)
• Generally the pointers are expected to be in user space…
• What if user-mode program specifies an address in kernel’s address space?
• As long as the user-mode program doesn’t access this address, it won’t cause a general 

protection fault…
• But, the kernel is allowed to write to this address!
• If kernel naïvely accepts address from the user program, it could overwrite critical data

• Example:  target critical kernel data structures
• Program opens file containing the data it wants to insert into kernel
• Program passes that file descriptor and address of kernel struct…
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System Calls:  Security Holes
• Very important to verify all addresses that come from

user-mode programs:
• Addresses must be in userspace!
• If an address is in kernel space, it’s an access violation

• A fast way to verify addresses:
• Make sure the address is below the kernel/user address boundary

(e.g. 0xc0000000 in 32b-Linux/Pintos, called PHYS_BASE in Pintos)
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System Calls and Page Faults
• Addresses below kernel/user boundary could still be invalid…
• e.g. pass a pointer to unallocated memory to a read() system call
• e.g. pass a pointer to read-only memory to a write() system call

• OS will see a page fault or a general protection fault
within the kernel

• Problem:  this isn’t always an error!
• Many OSes don’t allocate virtual memory pages until they are

actually accessed
• Private copy-on-write pages are marked read-only; first attempt

to write causes the page to be copied for the writing process
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System Calls and Page Faults (2)
• Aside:
• In the Pintos system-call lab, virtual memory management isn’t completed yet, so a page 

fault does mean an invalid address J

• The OS may see memory faults within the kernel:
• Sometimes these are valid scenarios
• Sometimes it’s an invalid pointer passed to a syscall L
• Sometimes it is a kernel bug L L

• Assume there is a way to identify the valid scenarios…
• (We will examine that question in a few weeks)

• How do we distinguish between the remaining two cases?
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System Calls and Page Faults (3)
• How to distinguish between:
• Faults caused by invalid addresses passed to system calls
• Faults caused by kernel bugs

• Linux has a very interesting solution to this problem

• How much kernel code actually interacts with user space?
• (Remember, the CPU state of user processes is saved onto the kernel stack, which is in 

kernel space)
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System Calls and Page Faults (4)
• The amount of kernel code that interacts with user space is actually very 

small…

• Linux kernel keeps an exception table, which records the addresses of all 
instructions that touch user space

• In the fault handler, consult the exception table:
• If the faulting instruction is in the exception table, then the user program passed the kernel a 

bad pointer
• Otherwise, it’s a kernel bug L

• Aside:  if it’s a kernel bug, Linux performs a kernel oops
• Print out suitable info for a kernel developer to debug the error, and log it to the system log
• Then terminate the process!
• Keeps kernel bugs from bringing down the entire system…
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Example Kernel Oops
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Pintos System Calls
• Pintos doesn’t follow the Linux syscall mechanism
• Syscall arguments are on the user stack, not in the registers

• This complicates the syscall mechanism, but only slightly
• Pictorially:
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Pintos System Calls (2)
• intr_frame struct exposes process

machine context
• Note that topmost values on stack

appear at bottom of the structure…
• Recall:  C structure members are assigned

increasing offsets from start of struct
• Last struct members have highest addresses

• This struct makes it easy to access the
user process’ stack contents
• e.g. retrieve esp member, cast to uint32_t*,

then access user stack like an array
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struct intr_frame {
// Pushed by intr_entry (intr-stubs.S).
// The interrupted task's saved registers.
uint32_t edi; // Saved EDI
uint32_t esi; // Saved ESI
uint32_t ebp; // Saved EBP
uint32_t esp_dummy; // Not used
uint32_t ebx; // Saved EBX
...

// Pushed by intrNN_stub (intr-stubs.S).
uint32_t vec_no; // Interrupt vector no.
// Sometimes pushed by CPU; otherwise for
// consistency, 0 is pushed (intrNN_stub).
uint32_t error_code;

// Pushed by the CPU.  These are the
// interrupted task's saved registers.
void (*eip) (void); // Next instruction
uint16_t cs, :16;  // Code segment
uint32_t eflags; // Saved CPU flags
void *esp; // Saved stack ptr
uint16_t ss, :16; // Stack segment

};



Pintos System Calls (3)
• Pintos system-call arguments are pushed on the user process stack
• Arguments themselves are pushed in reverse order
• Finally, system-call number is pushed

• Caller’s esp points to the system-call number
• Use syscall number to determine how many

arguments are required
• Finally, read in the arguments themselves
• The kernel is accessing user-space, so it

needs to do this carefully
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Next Time
• Begin discussing virtual memory abstraction
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