SYSTEM CALL IMPLEMENTATION

CS124 — Operating Systems
Spring 2024, Lecture 13

User Processes and System Calls

- Previously stated that user applications interact with kernel via system calls

- Typically invoked via a trap instruction
- An intentional software-generated exception

- The kernel registers a handler for a specific trap

- int $0x80 for Linux system calls
- int $0x2e for Windows system calls
- int $0x30 for Pintos system calls

- Can'’t easily pass arguments to system calls on the stack
- Trap instruction causes CPU to switch operating modes (from user mode to kernel mode)
- Different operating modes have different stacks

User Processes and System Calls (2)

- Typically, arguments to system calls are passed in registers, and the return-
value(s) come back in registers

- One of the arguments is an integer indicating which system call to invoke
- e.g. on Linux and Windows, %$eax is set to operation to perform
- e.g. on UNIX systems, sys/syscall.h specifies these numbers
- Note: UNIX syscall IDs are not uniform across different UNIXes

- Obvious constraint. system-call arguments can’t be wider than the registers

- Several possible approaches:
- Can split larger arguments across multiple registers
- Can store larger arguments in a struct, then pass a pointer to the struct as an argument

User Processes and System Calls (3)

- The operating system frequently exposes system calls via a standard library
- e.g. UNIX syscalls are exposed via the C standard library (1ibc)
- e.g. Windows syscalls exposed via the (largely undocumented) Native APl (ntapi.d11l)

- The library serves as an intermediary between apps and the operating system
- Some functions are direct wrappers for system calls
° e.0.ssize t read(int fd, void *buf, size t nbyte)

- Implementation stores arguments from stack into registers, invokes the system call entry-
point (e.g. int $0x80), and returns result

- Others utilize system call wrappers internally

- e.g.malloc () is mainly implemented in user space, but uses system calls to increase the
process’ heap size

Review: Interrupt Mechanics

- Previously discussed how interrupts and traps are handled on IA32 (see

lecture 8 for details)

- User process has its own stack

- Executing the trap causes the CPU to switch to the
kernel-mode stack associated with the process

- Since system calls change from user mode
to kernel mode, IA32 saves a pointer to the
previous stack on the new stack

- Next, CPU saves the user process’ execution
state: cs, eip and eflags

User Process Stack

current contents
of user process
stack

Kernel Thread Stack

Caller’'s SS
Caller’s ESP
Caller's EFLAGS
Caller’'s CS
Caller’s EIP

trap)

Review: Interrupt Mechanics (2)

- Operating system has a stub for every possible interrupt

- Some interrupts push an error code onto the stack; if not, the OS stub will
push a dummy value for consistency

- Next, the stub pushes the interrupt number
onto the stack

User Process Stack Kernel Thread Stack

Caller’s SS
- Finally, the stub records all register state current contents Caller's ESP
of user process ,

onto kernel stack stack Caller's EFLAGS
Caller’s CS
Caller’s EIP
- Now the Interrupt Service Routine (ISR) can Error Code
run without disrupting the interrupted code Interrupt No.

Register State
of Interrupted

Program

System Call Mechanics

- The operating system exposes the user program’s CPU and register state as
arguments to the ISR

- Typically exposed to ISR as a struct with a field for each register

- System call handler needs to receive arguments
from the user program

User Process Stack Kernel Thread Stack

. Caller’s SS
- Can easily access these values on the kernel stack CL]:rrent contents Caller's ESP
. r
- Syscall handler also returns a status resultin eax | ” "y Caller's EFLAGS

- Can modify user program’s eax on the kernel stack Caller's CS
Caller’s EIP

Error Code

- When the kernel returns to the user program, its context
Is restored

- Program sees new value of eax

Interrupt No.

Register State
of Interrupted
Program

.
System Call Mechanics (2)

- The ID of the system call is used to dispatch to a function that implements the
system call

- Called a system call service routine
- System call service routines are usually named after their user-mode entry
points
- €.9g. sys_write() implements write ()
- €.g. sys_fork () implements fork ()

- (Aside: these service routines are sometimes called within the kernel implementation to
implement more complex operations)

- A system call table holds an array of function pointers to all system call service
routines

- The syscall ID is used to index into this table when making the call

. ___°
System Call Mechanics (3)

- Need to check the system call ID to ensure it's valid...
- If it’s invalid, return ENOSYS “Function not implemented” error

- Can easily check that the ID is below the max syscall ID

- If a specific syscall ID below the max is not supported, simply register a
service routine that returns ENOSYS

Example: Linux System Calls

- Snippet [paraphrased] of Linux system call () handler:

Save registers onto stack

Make sure it's a valid syscall ID
cmpl $(NR syscalls), %eax
jb nobadsys

Return-value of syscall() will be in eax
as usual, so set value of eax stored on
kernel stack to ENOSYS to indicate error
movl $ (-ENOSYS), 24 (%esp)
jmp ret from sys call

nobadsys:

L
Example: Linux System Calls (2)

- Linux system call () handler, continued:

nobadsys:
Dispatch to the function in the system-call
table corresponding to the specified ID
(On IA32, pointers are 4 bytes, so use
ID*4 as the address within the table)
call *sys call table(, %eax, 4)

Store return-value from routine into
location of eax on the kernel stack
movl %eax, 24 (%esp)

jmp ret from sys call

2
Example: Linux System Calls (3)

- Different syscalls require different numbers of arguments
- e.g. getpid () and fork () require no arguments
- e.g. mmap () requires up to six arguments
- System-call arguments are passed from the user process Kernel Thread Stack
in specific registers
- ebx is first argument, ecx is second argument, etc. ebp = arg6

- Syscall service routines are written in C, and expect their
arguments on the kernel stack (cdecl calling convention)

- Linux system call () handler pushes all of the process’ e;xiargf
registers onto the kernel stack in a specific order bl

- Specifically, the reverse order that registers are used to pass arguments
to system calls

edi = argb

esi = arg4

edx = arg3

5
Example: Linux System Calls (4)

- Arguments to syscall service routines are pushed in reverse order, following
the cdecl calling convention

- Under cdecl, if a function is passed more arguments than it expects, the extra

arguments are ignored Kernel Thread Stack
- Allows system call () to dispatch to all the different service
routines, regardless of the number of arguments they take ebp = argé
- e.g. int sys_write(int fd, char *buf, int size) ::::Z’j
- Service routine for write(int fd, char *buf, int size) edx = size
- When system_call() dispatches to sys write(), ecx = buf

ebx = fd

return address

sys_write() sees only the expected arguments
- Extra arguments are simply ignored by sys_write()

sys_write() frame

System Calls: Security Holes?

- It goes without saying that the system call service routine must carefully check
all arguments to the system call...

- Are there potential security holes in accepting pointers as arguments to
system calls?
- Example: ssize t read(int fd, void *buf, size t nbytes)
- Reads bytes from a file descriptor into a buffer
- Caller specifies:
- The file-descriptor to read

- A pointer to the buffer to store the data in
- A number of bytes to read

System Calls: Security Holes™?!

- Example: ssize t read(int fd, void *buf, size t nbytes)
- Generally the pointers are expected to be in user space...

- What if user-mode program specifies an address in kernel's address space?

- As long as the user-mode program doesn’t access this address, it won’t cause a general
protection fault...

- But, the kernel is allowed to write to this address!
- If kernel naively accepts address from the user program, it could overwrite critical data

- Example: target critical kernel data structures
- Program opens file containing the data it wants to insert into kernel
- Program passes that file descriptor and address of kernel struct...

System Calls: Security Holes

Process-specific

- Very important to verify all addresses that come from el s
user-mode programs: Kernel stack
- Addresses must be in userspace! Mappl)ing to
. . . . hysi
- If an address is in kernel space, it's an access violation)

\
Kernel Space

Kernel code
and global data

J\

0xc0000000

User stack

- A fast way to verify addresses: e J

- Make sure the address is below the kernel/user address boundary t

(e.g. 0xc0000000 in 32b-Linux/Pintos, called PHYS BASE in Pintos) o IS Mg L ok

brk T

Run-time heap
(viamalloc)

Uninitialized data (.bss)
Initialized data (.data)
Program text (. text)

0 Forbidden

)
User Space

0x08048000

System Calls and Page Faults

- Addresses below kernel/user boundary could still be invalid... e | -
- e.g. pass a pointer to unallocated memory to a read () system call NEE SES a
- e.g. pass a pointer to read-only memory to a write () system call Mapping to E
i] physical memory N
. OS will see a page fault or a general protection fault ormel code
within the kernel 0xc0000000 | 2Nd globaldata |
Sesp User stack
\
- Problem: this isn’t always an error! t
Memory mapped region
- Many OSes don’t allocate virtual memory pages until they are 0x40000000 | O Shared libraries 2
actually accessed A 3
. Priva.te copy-on-write pages are mgrked read-opl_y; first attempt bk Run-time heap g
to write causes the page to be copied for the writing process (viamalloc)
Uninitialized data (.bss)
Initialized data (.data)
008048000 Program text (. text)
0 Forbidden)

. ©___
System Calls and Page Faults (2)

- Aside:

- In the Pintos system-call lab, virtual memory management isn’t completed yet, so a page
fault does mean an invalid address ©

- The OS may see memory faults within the kernel:
- Sometimes these are valid scenarios
- Sometimes it’s an invalid pointer passed to a syscall ®
- Sometimes it is a kernel bug ® ®
- Assume there is a way to identify the valid scenarios...
- (We will examine that question in a few weeks)

- How do we distinguish between the remaining two cases?

.
System Calls and Page Faults (3)

- How to distinguish between:
- Faults caused by invalid addresses passed to system calls
- Faults caused by kernel bugs

- Linux has a very interesting solution to this problem

- How much kernel code actually interacts with user space?

- (Remember, the CPU state of user processes is saved onto the kernel stack, which is in
kernel space)

System Calls and Page Faults (4)

- The amount of kernel code that interacts with user space is actually very
small...

- Linux kernel keeps an exception table, which records the addresses of all
instructions that touch user space

- In the fault handler, consult the exception table:

- If the faulting instruction is in the exception table, then the user program passed the kernel a
bad pointer

- Otherwise, it's a kernel bug ®

- Aside: if it's a kernel bug, Linux performs a kernel oops

- Print out suitable info for a kernel developer to debug the error, and log it to the system log
- Then terminate the process!
- Keeps kernel bugs from bringing down the entire system...

Example Kernel Oops

< Your System ate a SPARC! Gah!

(. 2%)AVA
U []----w |

| |
sshd (pid 19569): Protection 1d trap (code 27)

YZrvwWESTHLNXBCVMcbcbcbcbOGFRQPDI

PSW: 00000000000001101111110100001111 Not tainted
rof-03 000 10435840 101820e4 1d9cfbalb
rod-07 00000001 OEO7/d0a8 0000EOcY 1d9cfbab
rog-11 0OOOOOEEO OOO/dObO OCOEEOEEL fffffff2
r12-15 0006babd 0EO68cOH4 O0O04dBO0 OOE6a404
r16-19 00068cO4 0006a404 O0006b404 OOOOOOO1

OOEOEOE1 OOLOLEO3 OOO/dPae 1dIcfbae

Pintos System Calls

- Pintos doesn’t follow the Linux syscall mechanism
- Syscall arguments are on the user stack, not in the registers

- This complicates the syscall mechanism, but only slightly

- Picto riaIIy: User Process Stack Kernel Thread Stack

current contents Caller’s SS
of user process Caller's ESP

stack
Caller's EFLAGS
Sys-Call Args Caller’'s CS
Caller’'s EIP

Error Code

Interrupt No. Pointer is passed to
system-call function
(userprog/syscall.c)

Arguments to
System Call

. struct intr_ frame
(threadsl/interrupt.h)

Register State
of Interrupted
Program

Pintos System Calls (2)

- intr frame struct exposes process
machine context

- Note that topmost values on stack
appear at bottom of the structure...

- Recall: C structure members are assigned
increasing offsets from start of struct

- Last struct members have highest addresses

- This struct makes it easy to access the
user process’ stack contents

- e.g. retrieve esp member, cast to uint32 t*,
then access user stack like an array

struct intr frame ({

// Pushed by intr entry (intr-stubs.S).
// The interrupted task's saved registers.

uint32 t edi; // Saved EDI
uint32 t esi; // Saved ESI
uint32 t ebp; // Saved EBP
uint32 t esp dummy; // Not used
uint32 t ebx; // Saved EBX

// Pushed by intrNN stub (intr-stubs.S).
uint32 t vec no; // Interrupt vector no.
// Sometimes pushed by CPU; otherwise for
// consistency, 0 is pushed (intrNN stub).
uint32 t error code;

// Pushed by the CPU. These are the
// interrupted task's saved registers.

void (*eip) (void); // Next instruction
uintlé t cs, :16; // Code segment
uint32 t eflags; // Saved CPU flags
void *esp; // Saved stack ptr

uintlé t ss, :16; // Stack segment

Pintos System Calls (3)

- Pintos system-call arguments are pushed on the user process stack

- Arguments themselves are pushed in reverse order

- Finally, system-call number is pushed

- Caller’s esp points to the system-call number

- Use syscall number to determine how many
arguments are required

- Finally, read in the arguments themselves

- The kernel is accessing user-space, so it
needs to do this carefully

Arguments to
System Call ~

User Process Stack

current contents

of user process
stack

Arg N

Arg 1

Syscall Number

Kernel Thread Stack

Caller’'s SS
Caller’s ESP
Caller's EFLAGS
Caller’'s CS
Caller’s EIP

Error Code

Interrupt No.

Register State
of Interrupted
Program

Next Time

- Begin discussing virtual memory abstraction

