
PROCESS SCHEDULING
CS124 – Operating Systems
Spring 2024, Lecture 11

Process Scheduling
• Operating systems must manage the allocation and sharing of hardware

resources to applications that use them
• Most important resource for multitasking OSes is the CPU
• We want to have multiple concurrently executing processes

• While some processes are waiting for I/O, other processes can use CPU(s) in the system
• Processes fall into various categories based on their state

• “Running” processes are on a CPU
• “Ready” processes don’t have a CPU, but could run if they did (i.e. not blocked on I/O)

• How to allocate CPU time to the processes that can run?
• Other process states couldn’t run even with the CPU; ignore them!

2

Process Scheduling: The Big Picture

3

New Process
Queue Ready Queue

Ready/Suspended
Queue

Blocked/Suspended
Queue

Blocked Queue

Terminated

Long-Term
Scheduler

Medium-Term
Scheduler

Short-Term
Scheduler

Timer Interrupt
or Yield CPU

Perform Long-
Running Task

CPU

Process Scheduling: Details
• Mainly focus on short-term scheduler, since this is what all OSes have
• The kernel schedules kernel threads, not processes

• Scheduling occurs within the kernel, in kernel mode
• The process’ user context has already been saved at this point

• Scheduling and context-switching is always performed at a single point in the
operating system kernel
• e.g. a schedule() function always performs this task

• Kernel threads always see themselves as entering and exiting this
schedule() function…

• In reality, this function is called by one kernel thread, then (usually) returns on
a different kernel thread

4

Process Scheduling: Details (2)
• The schedule() function performs two important tasks:

1. Choose the next kernel thread to run on the CPU
2. Switch from the current kernel thread to the new kernel thread

(if new kernel thread is same as old one, this is mostly a no-op)
• Second part is handled by the dispatcher:

• Changes the CPU context to the new kernel thread
• If new kernel thread has a user process/thread associated with it:

• Sets up the user process’ memory mapping, changes to user mode, and jumps to the appropriate
point in the user process

• Dispatcher must execute as quickly as possible
• This is pure overhead for the context-switch, and unavoidable

5

Switching Kernel Threads
• Switching between kernel threads involves three threads!
• Example: Pintos thread-switch function:
thread * switch_threads(thread *cur, thread *next)
• cur = thread we are switching away from
• next = thread we are switching to
• Function also returns a thread * – why?

• Example: switch from thread A to thread B
• Kernel scheduler calls switch_threads(A, B)
• This function switches from thread A’s CPU context to thread B’s CPU context (i.e. thread B’s

stack, registers, etc.)
• When thread B resumes running, what arguments does it see?

• When thread B invoked switch_threads(), it was switching away from B to some other
thread C: switch_threads(B, C)

• The context of thread A gets lost in the switch!

6

Switching Kernel Threads (2)
• Pintos thread-switch function:
thread * switch_threads(thread *cur, thread *next)
• cur = thread we are switching away from
• next = thread we are switching to
• Function also returns a thread *

• When switch_threads() switches thread contexts, the current (old) context will
be lost (i.e. cur is forgotten)

• Very important to retain the previous thread context:
• If the old thread was terminating, need to release the thread’s memory, remove it from other

structures, etc.
• Before switch_threads() actually switches thread contexts, it ensures that the old

context will be returned to the caller
• e.g. Pintos saves old thread context into %eax to ensure it is returned, even though arguments

will appear to change during context-switch

7

Scheduling Algorithms: Measurements
• Many different scheduling algorithms to choose from…
• Many measures to evaluate scheduling algorithms with
• CPU utilization: how busy are we keeping the CPU?
• Throughput: how many processes are completed in a given unit of time
• Turnaround time: how long to finish a given process?

• This is wall-clock time: includes waiting on I/O, kernel overhead, …
• Waiting time: total time a process spends in ready state

• i.e. the process could run, but it doesn’t have an available CPU
• Response time: how quickly the process begins producing output
• Scheduling algorithms can optimize for different measures

8

Scheduling Characteristics
• Processes tend to be bursty in their behavior:

• Most CPU bursts are short, relatively few are long
• Research usually characterizes the distribution as exponential

• Some schedulers are nonpreemptive or cooperative:
• Only perform scheduling operation when the current process blocks, yields or terminates
• Processes with long CPU bursts aren’t preempted

• Other schedulers are preemptive:
• Processes with long CPU bursts will be interrupted, to give other processes time to execute

9

CPU burst I/O burst I/O burstCPU burst CPU burst

First-Come First-Served Scheduling
• Simplest algorithm is first-come first-served (FCFS)
• Process ready-queue is a simple FIFO

• (Sometimes called FIFO scheduling)
• New processes are added to the end of the FIFO
• Process at the front of the FIFO gets the CPU next
• A process holds the CPU until it blocks, yields, or terminates
• When it yields or is blocked, it goes to the end of the FIFO

• FCFS scheduling is non-preemptive!
• Generally an uninteresting scheduler

• Sometimes appears in batch scheduling (needs a long-term scheduler to achieve a good
process mix; even then, it’s still bad)

• Lack of preemption makes it undesirable in situations where processes may not terminate
(i.e. the real world)

• Terrible for time-sharing systems requiring high responsiveness

10

Round-Robin Scheduling
• Adding time-based preemption to FCFS scheduling produces round-robin

(RR) scheduling
• Processes get a fixed-size time slice or time quantum on CPU

• Again, process ready-queue is a simple FIFO
• Current process runs until it blocks, yields or terminates, or it has used its entire time slice
• When a process is moved off the CPU, it is put at end of run queue
• Next process to receive the CPU is taken from front of the queue

• System responsiveness is directly affected by how large the time slice is
chosen to be
• Larger time slices are good for processes with large CPU bursts, but reduce system

responsiveness
• Interactive processes frequently have small CPU bursts, and won’t get the CPU until

compute-intensive processes are preempted

11

Shortest-Job-First Scheduling
• Shortest-job-first (SJF) scheduling orders processes based on how long their

next CPU burst is expected to be
• More accurate to call it “shortest-next-CPU-burst” scheduling…

• Minimizes the average waiting time of processes
• Example: 4 processes with varying CPU-burst times:

• 2 units, 4 units, 5 units, 7 units
• Gantt Chart of shortest-job-first ordering:

• Longest job first (for comparison):

12

Wait times: 0, 2, 6, 11
Average wait time: 4.75

Wait times: 0, 7, 12, 16
Average wait time: 8.75

52 74
2 6 11

5 27 4
12 167

Shortest-Job-First Scheduling (2)
• Biggest challenge with shortest-job-first scheduling: Predicting the length of

processes’ next CPU burst!
• Usually the next CPU burst length is predicted using historical data
• Common: use exponential average of previous bursts

• tn = actual length of CPU burst n
• τn+1 = predicted burst length of burst n+1 = α	tn	+	(1	–	α)	τn
• τn encapsulates history of previous CPU burst lengths
• α	(0	≤	α	≤	1) weights contributions of recent history and past history

• Expanding:
• τn+1 = α	tn	+	(1	–	α)	τn = α	tn	+	(1	–	α)	(α	tn-1	+	(1	–	α)	τn-1)	=	…
• τn+1 = α	tn	+	(1	–	α)	α	tn-1	+	(1	–	α)2	α	tn-2	+	…	+	(1	–	α)n+1	τ0
• τ0 is initial guess of first CPU burst length

13

Shortest-Job-First Scheduling (3)
• Shortest-job-first scheduling can be preemptive or non-preemptive
• If preemptive, called shortest-remaining-time-first scheduling

• If a new job is added to the ready queue with a shorter time, it preempts the current job on
the processor

• Shortest-job-first scheduling can have starvation issues
• Some ready processes may never receive the CPU

• Scenario:
• Ready queue contains short jobs and long jobs

• If new short jobs are continually added to the queue:
• Will continually receive the CPU before longer running jobs

14

Priority Scheduling
• Shortest-job-first is an example of priority scheduling

• In SJF, the shortest job has the highest priority
• Can also assign processes fixed priorities
• Process priority is usually represented as a number

• Varies whether higher or lower numbers correspond to high priority
• Priority scheduling can be preemptive or non-preemptive

• If non-preemptive, a new higher-priority process added to ready queue won’t take the CPU
from a lower-priority running process

• If preemptive, a new higher-priority process added to ready queue immediately takes the
CPU from a lower-priority running process

• Usually, no time limit is enforced on processes
• Process holds the CPU until it blocks, yields or terminates.
• (Or, if preemptive priority scheduling, a higher priority process is added to the ready queue)

15

Priority Scheduling (2)
• Priority scheduling is also vulnerable to starvation

• If high-priority processes are always able to run, lower-priority ready processes will never
receive the CPU L

• Can solve this problem with aging:
• Slowly increase priority of waiting processes until they finally receive the CPU
• (Aging is sometimes used in other scheduling algorithms as well)

• Priority scheduling can also suffer from priority inversion
• Higher-priority processes are supposed to preempt lower-priority process…
• Sometimes, in the context of resource locking, a lower-priority process can preempt a

higher-priority process

16

Priority Inversion
• A simple scenario:

• Low-priority process L starts running, and locks shared resource R.
• High-priority process H starts running, preempting L. (But L still holds resource R.)
• H needs resource R, and attempts to lock it. H blocks; L resumes.
• Medium-priority process M starts running, preempting L. M doesn’t need R, and it

continues to run as long as it likes.

17

Lock R

H

M

L
Can run indefinitely

Try to lock R and block…

Priority Inversion (2)
• Because L is preempted by M, it can never finish and release R so that H can

resume its execution.
• Because high-priority processes often carry out system-critical tasks,

frequently has very serious consequences

18

Lock R

H

M

L
Can run indefinitely

Try to lock R and block…

Priority Inversion (3)
• A widely known example: Mars Pathfinder (1997)

• High-priority process responsible for resetting a watchdog timer
• High- and low-priority processes shared a lockable resource
• Medium-priority processes prevented high-priority task from running, causing the spacecraft

to reset frequently

19

Lock R

H

M

L
Can run indefinitely

Try to lock R and block…

Priority Inversion: Solutions
• Several solutions to priority inversion issue
• Random boosting (Microsoft Windows)

• The scheduler randomly boosts the priority of waiting processes to “nudge” the system out of
priority inversion

• Priority ceiling protocols
• Every lockable resource is assigned a priority ceiling: the highest priority of any process allowed

to lock it
• When a process acquires the resource, its priority is raised to the resource’s priority ceiling until

it unlocks the resource
• Priority inheritance (aka priority donation) protocols

• If a high-priority process H is blocked waiting for a resource held by a low-priority process L, H
temporarily donates its priority to L

• A process’ priority is the maximum of its own priority, and the priorities of all processes it is
currently blocking

20

Priority Donation
• Priority donation has its own issues
• Frequently, blocked processes can form a chain

• Process 1 locks resource R1.
• Process 2 locks R2, then attempts to lock R1, and blocks.
• Process 3 locks R3, then attempts to lock R2, and blocks.
• Process 4 locks R4, then attempts to lock R3, and blocks.
• Process 5 attempts to lock R4, and blocks.

• Each process must donate its priority to all processes it is blocked on
• Significantly increases the overhead of the priority scheduler
• (This is why the Mars Pathfinder was sent to Mars with priority donation turned off…)

21

Priority Donation (2)
• Priority donation also fails in the context of deadlock

• Process 1 locks R1.
• Process 2 locks R2.
• Process 1 attempts to lock R2, and blocks. Process 1 donates its priority to Process 2.
• Process 2 attempts to lock R1, and blocks. Process 2 donates its priority to … ?

• Now the graph of waiting processes has a cycle in it
• If the kernel naively follows edges in this graph, it will loop forever
• Can make priority donation mechanism detect deadlocks in various ways, but (again)

increases the overhead of donation

22

Multilevel Queue Scheduling
• Processes can often be categorized based on their purpose and behavior, e.g.

• System processes
• Interactive processes
• Interactive editing processes
• Batch processes

• Additionally, divide processes into two main categories: foreground processes
and background processes
• Foreground processes need responsiveness, and generally have small CPU bursts
• Background processes have large CPU bursts, and aren’t interactive

• Multilevel queue scheduling maintains a queue for each category of process
• Queues have a decreasing priority – e.g. system processes are highest priority, batch

processes are lowest priority
• Processes are permanently assigned to a specific queue when they are started, and are not

moved between different queues

23

Multilevel Queue Scheduling (2)
• Process categories and priorities

• System processes (highest)
• Interactive processes (high)
• Interactive editing processes (medium)
• Batch processes (low)

• Each queue has its own fixed priority
• Usually, high-priority queues always preempt low-priority

• As long as there are system processes ready to run, they run first!
• Interactive processes only run when no system processes can run
• etc.
• Batch processes only run if no other processes are ready to run

• Also possible to divide CPU time across subset of queues
• e.g. spend 80% of CPU time running interactive processes, 20% running batch processes

24

Multilevel Queue Scheduling (3)
• Process categories and priorities

• System processes (highest)
• Interactive processes (high)
• Interactive editing processes (medium)
• Batch processes (low)

• Each queue can also have its own scheduling algorithm and parameters
(e.g. time-slice size)
• Batch processes can be run with first-come first-served scheduling, or round-robin with a

very large time-slice (for runaway processes)
• Other processes typically run with round-robin scheduling
• Might also have real-time processes in a high-priority queue, using real-time scheduling

algorithms for that queue

25

Multilevel Feedback Queue Scheduling
• Multilevel queue scheduling isn’t very flexible

• A process’ behavior can easily change from foreground to background, or vice versa
• Examples: MATLAB, Photoshop, media transcoding interface
• Programs have user interfaces for interactive editing, etc.
• Also run large compute-intensive tasks with long CPU bursts

• Multilevel feedback queue scheduling allows processes to move between the
different priority queues

• Goals:
• Favor short jobs (i.e. processes with short CPU bursts)
• Premise: approximate shortest-jobs-first scheduling

• Favor processes that frequently block on I/O
• Premise: these processes may be interactive, and therefore require increased responsiveness

• Separate processes based on their observed runtime behavior

26

Multilevel Feedback Queues (2)
• As before, multiple FIFOs are maintained for processes

• Each FIFO has its own priority
• Processes in higher priority queues preempt lower priority queues
• Frequently, all queues are scheduled using round-robin scheduling, with shorter time-slices

for higher-priority queues
• New processes are added to end of highest priority queue

• Eventually reach the front of the queue and are scheduled
• If a process is preempted by the system, it is sent to the next lower queue

• If process yields or blocks then it goes to end of the same queue
• Lower-priority processes can also be promoted for good behavior J

• i.e. frequently yields or blocks within time-slice of next higher queue

27

Multilevel Feedback Queues (3)
• A lot of flexibility in design of multilevel feedback queues:

• How many queues to manage in the scheduler
• Scheduling algorithm to use for each queue, or groups of queues

• (including configuration details such as time-slice size)
• How to assign a process to an initial queue
• How to decide when to demote a process to the next lower queue
• How to decide when to promote a process to the next higher queue

• Because of this flexibility, multilevel feedback queues are widely used in
modern operating systems

28

Multilevel Feedback Queues (4)
• Windows NT/Vista/7 has 32 queues in the scheduler

• Levels 0-15 are “normal” priorities
• Levels 16-31 are “soft real-time” priorities

• Mac OS X has multiple queues for threads, falling into four priority bands:
• Normal (lowest priority), system high priority, kernel mode only, real-time threads (highest

priority)
• Threads cannot move outside their priority bands

• FreeBSD and NetBSD both maintain >200 queues, divided into different
categories

• Solaris uses 170 queues, divided into various categories
• Linux used a multilevel feedback queue up to 2.4 kernel…

29

Next Time
• Continue coverage of process scheduling:

• Real-time scheduling
• More recent Linux schedulers

30

