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Last Time:  Synchronization
• Last time, discussed a variety of multithreading issues
• Frequently have shared state manipulated by multiple threads
• Usually solve this problem using some kind of mutual-exclusion mechanism, e.g. disabling 

interrupts, mutexes, semaphores, etc.
• Many examples of shared state within the OS kernel
• Scheduler ready-queue, other queues (accessed concurrently on multicore systems)
• Filesystem cache (shared across all processes on the system)
• Virtual memory mapping (used by fault handlers and trap handlers)

• Frequently managed in linked lists (although other more sophisticated 
structures are often used)

• Frequently this state is read much more than it’s written
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Example:  vm_area_struct Lists
• Example:  vm_area_struct list used for process memory

• List nodes hold many values describing
memory regions

• Mostly used to resolve page faults and
protection faults

• Also modified by trap-handler invocations,
e.g. mmap(), sbrk() functions
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Example Problem:  Linked Lists
• How would we implement a linked list that supports concurrent access from 

multiple kernel control paths?
• Consider a simplified list type:
• Each element contains several important fields,

and a pointer to next node in the list

• Example list contents:
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;

head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6
next

a = 4
b = 33

next = 0



Example Problem:  Linked Lists (2)
• Operations on our linked list:

• Iterate over the list nodes, examining each one
• e.g. to find relevant data, or find a node that needs modified

• Insert a node into the linked list
• Modify a node in the linked list
• Remove a node from the linked list

• All of these operations are straightforward to implement
• Can imagine other similar operations, variants of the above
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;



Linked List and Concurrent Access
• Should be obvious that our linked list will be corrupted if manipulated 

concurrently by different threads
• Example:
• One thread is traversing the list, searching for the node with a = 12,

so it can retrieve the current value of b
• Another thread is inserting a new node into the list
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24
next

T2:  p



Linked List and Concurrent Access (2)
• This scenario can fail in many different ways
• Writer-thread T2 must perform several operations:

list_node *new = malloc(sizeof(list_node));
new->a = 51;
new->b = 24;
new->next = p->next;
p->next = new;

• We can try to specify a reasonable order of
operations in our code…

• Really have no guarantees about how
the compiler will order this.

• Or the CPU, for that matter.
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24
next

T2:  p



Linked List and Concurrent Access (3)
• Operations that writer-thread T2 must perform:

list_node *new = malloc(sizeof(list_node));
new->a = 51;
new->b = 24;
new->next = p->next;
p->next = new;

• These operations form a critical section
in our code

• Must enforce exclusive access to the
affected nodes during these operations
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24
next

T2:  p



Fixing Our Linked List
• How do we avoid concurrency bugs in our linked list implementation?
• An easy solution:  use a single

lock to guard the entire list
• Any thread that needs to read or

modify the list must acquire the
lock before accessing head

• Design this solution to work from multiple kernel control paths, e.g.
• On a single-core system, trap handler and interrupt handlers simply disable interrupts while 

accessing the list
• On a multi-core system, use a combination of spin-locks and disabling interrupts to protect 

access to the list
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;

typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
lock_t list_lock;



Fixing Our Linked List (2)
• How do we avoid concurrency bugs in our linked list implementation?
• An easy solution:  use a single

lock to guard the entire list
• Any thread that needs to read or

modify the list must acquire the
lock before accessing head

• Why must readers also acquire the lock before reading??
• Only way for the writer to ensure that readers won’t access the list 

concurrently, while it’s being modified L
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
lock_t list_lock;



Linked List:  A Single Lock
• What’s the obvious issue with this approach?
• Readers shouldn’t ever block other readers
• (we know the list is mostly accessed by readers anyway…)
• It’s okay if writers hold exclusive access to the list while

modifying it
• (it would be better if multiple writers could concurrently

modify independent sections of the list)
• This approach has very high lock contention
• Threads spend a lot of time waiting to acquire the lock, just to access the shared resource
• No concurrent access is allowed to the shared resource
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
lock_t list_lock;



Linked List:  Improving Concurrency
• Ideally, readers should never block other readers
• (for now, accept the behavior that writers block everybody)

• How can we achieve this?

• Can use a read/write lock instead of a mutex
• Multiple readers can acquire shared access to the lock:

readers can use the shared resource concurrently without issues
• Writers can acquire exclusive access to the lock

• Two lock-request operations:
• read_lock(rwlock_t *lock) – used by readers
• write_lock(rwlock_t *lock) – used by writers
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
lock_t list_lock;

typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
rwlock_t list_lock;



Linked List:  Read/Write Lock (2)
• Using a read/write lock greatly increases

concurrency and reduces lock contention

• Still a few annoying issues:
• Readers must still acquire a lock every time they access the shared resource
• All threads incur a certain amount of lock overhead when they acquire the lock

(in this case, CPU cycles)
• This overhead can be hundreds of CPU cycles, even for efficient read/write locks
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
rwlock_t list_lock;



Linked List:  Read/Write Lock (3)
• Using a read/write lock greatly increases

concurrency and reduces lock contention

• Still a few annoying issues:
• Also, writers still block everybody
• Can we find a way to manipulate this linked list that doesn’t require writers to 

acquire exclusive access?
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
rwlock_t list_lock;



Linked List:  Multiple Locks
• One approach for reducing lock contention is

to decrease the granularity of the lock
• i.e. how much data is the lock protecting?

• Idea:  Introduce more locks, each of which
governs a smaller region of data

• For our linked list, could put a read/write lock in each node
• Threads must acquire many more locks to work with the list, which means that the locking 

overhead goes way up L
• But, writers can lock only the parts of the list they are changing, which means we can 

reduce lock contention/increase concurrency
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typedef struct list_node {
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
rwlock_t list_lock;

typedef struct list_node {
  rwlock_t node_lock;
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;

Skip to RCU



Linked List:  Multiple Locks (2)
• We need one more read/write lock, to guard the
head pointer
• Need to coordinate accesses and updates of head so that

a thread doesn’t follow an invalid pointer!
• If a thread needs to change what head points to, it needs to

protect this with a critical section

• Now we have all the locks necessary to guard the list when it’s accessed 
concurrently
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typedef struct list_node {
  rwlock_t node_lock;
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;

typedef struct list_node {
  rwlock_t node_lock;
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
rwlock_t head_lock;

Skip to RCU



Linked List:  Multiple Locks (3)
• With multiple locks in our structure, we must

beware of the potential for deadlock…
• Can easily avoid deadlock by requiring that

all threads lock nodes in the same total order
• Prevent “circular wait” condition

• This is easy – it’s a singly linked list!
Always lock nodes in order from head to tail.

• This makes it a bit harder on writers
• How does a writer know whether to acquire a read lock or a write lock on a given node?
• Need to acquire a read lock first, examine the node, then release and reacquire a write lock 

if the node must be altered.
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typedef struct list_node {
  rwlock_t node_lock;
  int a;
  int b;
  struct list_node *next;
} list_node;

list_node *head;
rwlock_t head_lock;



Linked List:  Multiple Locks, Example
• T1 acquires a read-lock on head so it won’t change.
• Then T1 follows head to the first node, and acquires a read-lock on this node so it won’t 

change.
• (and so forth)

• This process of holding a lock on the current item, then acquiring a lock on the 
next item before releasing the current item’s lock, is called crabbing

• As long as T1 holds a read lock on current
node, and acquires read-lock on next node
before visiting it, it won’t be affected by
other threads
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24
next

T2:  p



Linked List:  Multiple Locks, Example (2)
• T2 behaves in a similar manner:
• T2 acquires a read-lock on head so it won’t change.
• Then T2 follows head to the first node, and acquires a read lock on this node so it won’t 

change.
• When T2 sees that the new node must go after the first node, it can acquire a write-lock on 

the first node
• Ensures its changes won’t become visible to

other threads until lock is released
• After T2 inserts the new node, it can release

its locks to allow other threads to see the changes
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24
next

T2:  p



Linked List:  Holding Earlier Locks
• A key question:  How long should each thread hold on to the locks it 

previously acquired in the list?
• If a thread releases locks on nodes after it leaves them, then other threads 

might change those nodes
• Does the thread need to be aware of values written by other threads, that appear earlier in 

the list?
• What if another thread completely changes the list earlier on?

• If these scenarios are acceptable,
then threads can release locks
as soon as they leave a node
• (Often, it’s acceptable!)
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24

next = 0

T2:  p



Linked List:  Holding Earlier Locks (2)
• A key question:  How long should each thread hold on to the locks it 

previously acquired in the list?
• If such scenarios are unacceptable, threads can simply hold on to all locks 

until they are finished with the list
• Ensures that each thread will see a completely consistent snapshot of the list until the 

thread is finished with its task
• Even simple changes in how locks are

managed can have significant implications…
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24

next = 0

T2:  p



Lock-Based Mutual Exclusion
• Lock-based approaches have a lot of problems
• Have to make design decisions about what granularity of locking to use
• Coarse-granularity locking = lower lock overhead, but writers block everyone
• Fine-granularity locking = much higher lock overhead, but can achieve more concurrency 

with infrequent writers in the mix
• More locks means more potential for deadlock to occur
• Locks make us prone to other issues like priority inversion (more on this in a 

few lectures)
• Can’t use locks in interrupt context anyway, except in specific circumstances
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Mutual Exclusion
• What is the fundamental issue we are trying to prevent?
• Different threads seeing (or creating) inconsistent or invalid state

• Earlier example:  writer-thread T2 inserting a node
list_node *new = malloc(sizeof(list_node));
new->a = 51;
new->b = 24;
new->next = p->next;
p->next = new;

• A big part of the problem is that we can’t
guarantee the order or interleaving of
these operations
• Locks help us to sidestep this issue

by guarding all the operations
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p

a = 51
b = 24
next

T2:  p



Order of Operations
• What if we could impose a more intelligent ordering?
• When T2 inserts a node:
• Step 1:  Prepare the new node, but don’t insert it into the list yet

list_node *new = malloc(sizeof(list_node));
new->a = 51;
new->b = 24;
new->next = p->next;

• Last three operations can occur in any order.
No one cares, because they aren’t visible to anyone.

• T1 can go merrily along;
T2 hasn’t made any visible changes yet.
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p T2:  p

a = 51
b = 24
next

T2:  new



Order of Operations (2)
• What if we could impose a more intelligent ordering?
• When T2 inserts a node:
• Step 2:  Atomically change the list to include the new node
p->next = new;

• This is a single-word write.  If the CPU can perform this atomically, then threads will either see 
the old version of the list, or the new version.

• Result:  Reader threads will never see
an invalid version of the list
• For this to work, we must ensure these

operations happen in the correct order
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6

next = 0

T1:  p T2:  p

a = 51
b = 24
next

T2:  new



Read-Copy-Update
• This mechanism is called Read-Copy-Update (RCU)
• A lock-free mechanism for providing a kind of mutual exclusion

• All changes to shared data structures are made in such a way that concurrent 
readers never see intermediate state
• They either see the old version of the structure, or they see the new version.

• Changes are broken into two phases:
• If necessary, a copy is made of specific parts of the data structure.  Changes take place on 

the copy; readers cannot observe them.
• Once changes are complete, they are made visible to readers in a single atomic operation.

• In RCU, this atomic operation is always changing a pointer from one value to 
another value
• e.g. T2 performs p->next = new, and change becomes visible
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Publish and Subscribe
• It’s helpful to think of changing the p->next pointer in terms of a 

publish/subscribe problem
• T2 operations:
• Step 1:  Prepare the new node

list_node *new = malloc(sizeof(list_node));
new->a = 51;
new->b = 24;
new->next = p->next;

• Step 2:  Atomically change the list to include the new node
p->next = new;

• Before the new node is published for others to access, all initialization must 
be completed

• We can enforce this with a write memory barrier
• Enforce that all writes before the barrier are completed before any writes after the barrier 

are started.  (Note:  also an optimization barrier for the compiler…)
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Publish and Subscribe (2)
• Implement this as a macro:
/* Atomically publish a value v to pointer p.    */
/* smp_wmb() also includes optimization barrier. */
#define rcu_assign_pointer(p, v) ({ \
    smp_wmb(); (p) = (v); \
})
• IA32 and x86-64 ISAs both guarantee that if the pointer-write is properly word-aligned (or 

dword-aligned), it will be atomic.
• (Even on multiprocessor systems!)

• T2 operations become:
list_node *new = malloc(sizeof(list_node));
new->a = 51;
new->b = 24;
new->next = p->next;
/* Publish the new node */
rcu_assign_pointer(p->next, new);
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Publish and Subscribe (3)
• T1 needs to see the “current state” of the p->next pointer (whatever that 

value might be when it reads it)
• Example:  T1 is looking for node with a specific value of a:

list_node *p = head;
int b = -1;
while (p != NULL) {
  if (p->a == value) {
    b = p->b;
    break;
  }
  p = p->next;
}
return b;

• When T1 reads p->next, it is subscribing to most recently published value
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Publish and Subscribe (4)
• Example:  T1 is looking for node with a specific value of a:

list_node *p = head;
int b = -1;
while (p != NULL) {
  if (p->a == value) {
    b = p->b;
    break;
  }
  p = p->next;
}
return b;

• Must ensure that the read of p->next is completed before any accesses to 
p->a or p->b occur
• Could use a read memory barrier, but IA32 already ensures that this occurs automatically
• (Not all CPUs ensure this, e.g. DEC ALPHA CPU)
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Publish and Subscribe (5)
• Again, encapsulate this “subscribe” operation in a macro:
/* Atomically subscribe to a pointer p's value. */
#define rcu_dereference(p) ({ \
    typeof(p) _value = ACCESS_ONCE(p); \
    smp_read_barrier_depends(); \
    (_value);
})

• On IA32, smp_read_barrier_depends() is a no-op
• On DEC ALPHA, it’s an actual read barrier

• ACCESS_ONCE(x) is a macro that ensures p is read directly from memory, not 
a register
• (Usually generates no additional instructions beyond a memory-read operation)

• Subscribing to a pointer is very inexpensive.  Nice!
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Publish and Subscribe (6)
• Updated version of T1 code:

list_node *p = rcu_dereference(head);
int b = -1;
while (p != NULL) {
  if (p->a == value) {
    b = p->b;
    break;
  }
  p = rcu_dereference(p->next);
}
return b;

• So far, this is an extremely inexpensive mechanism
• Writers must sometimes perform extra copying, and use a write memory barrier.
• But, we expect writes to occur infrequently.  And, writers don’t block anyone anymore.  (!!!)
• Usually, readers incur zero overhead from RCU.  (!!!)
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Modifying a List Node
• Another example:  change node with a = 19; set b = 15
• Assume pointer to node being changed is in local variable p
• Assume pointer to previous node is in prev
• (Also, assume rcu_dereference() was used to navigate to p)

• Can’t change the node in place; must make a copy of it
copy = malloc(sizeof(list_node));
copy->a = p->a;
copy->b = 15;
copy->next = p->next;
rcu_assign_pointer(prev->next, copy);
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6
next

p
prev

a = 19
b = 15
next

copy



Modifying a List Node (2)
• Since rcu_assign_pointer() atomically publishes the change, readers 

must fall into one of two categories:
• Readers that saw the old value of prev->next, and therefore end up at the old version of 

the node
• Readers that see the new value of prev->next, and therefore end up at the new version 

of the node
• All readers will see a valid version of the shared list
• And, we achieve this with much less overhead than with locking
• (The writer has to work a bit harder…)
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6
next

a = 19
b = 15
next

p
prev

copy



Modifying a List Node (3)
• Are we finished?

copy = malloc(sizeof(list_node));
copy->a = p->a;
copy->b = 15;
copy->next = p->next;
rcu_assign_pointer(prev->next, copy);

• Thread must deallocate the old node, or else there will be a memory leak
free(p);

• Problems?
• If a reader saw the old version of prev->next,

they may still be using the old node
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head a = 5
b = 31
next

a = 19
b = 2
next

a = 12
b = 6
next

a = 19
b = 15
next

p
prev

copy



Reclaiming Old Data
• The hardest problem in RCU is ensuring that old data is only deleted after all 

readers have finished with it
• How do we tell that all readers have actually finished?

• Define the concept of a read-side critical section:
• A reader enters a read-side critical section when it reads an RCU pointer 

(rcu_dereference())
• A reader leaves the read-side critical section when it is no longer using the RCU pointer

• Require that readers explicitly denote the start and end of read-side critical 
sections in their code:
• rcu_read_lock() starts a read-side critical section
• rcu_read_unlock() ends a read-side critical section
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Read-Side Critical Sections
• Update T1 to declare its read-side critical section:

rcu_read_lock();    /* Enter read-side critical section */
list_node *p = rcu_dereference(head);
int b = -1;
while (p != NULL) {
  if (p->a == value) {
    b = p->b;
    break;
  }
  p = rcu_dereference(p->next);
}
rcu_read_unlock();  /* Leave read-side critical section */
return b;
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Read-Side Critical Sections (2)
• A critical constraint on read-side critical sections:
• Readers cannot block / sleep inside read-side critical sections!
• No yielding the CPU, long running IO operations, or blocking calls

• Should be obvious that T1 follows this constraint:
rcu_read_lock();  /* Start read-side critical section */
list_node *p = rcu_dereference(head);
int b = -1;
while (p != NULL) {
  if (p->a == value) {
    b = p->b;
    break;
  }
  p = rcu_dereference(p->next);
}
rcu_read_unlock();  /* End read-side critical section */
return b;
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Read-Side Critical Sections (3)
• Can use read-side critical sections to define when old data may be reclaimed
• Each reader’s interaction with shared data structure is contained entirely 

within its read-side critical section
• Each reader’s arrow starts with a call to rcu_read_lock(), and ends with 
rcu_read_unlock()
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Read-Side Critical Sections (4)
• Writer publishes a change to the data structure with a call to rcu_assign_pointer()
• Divides readers into two groups – readers that might see the old version, and readers that cannot see 

the old version
• What readers might see the old version of the data?
• Any reader that called rcu_read_lock() before rcu_assign_pointer is called
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rcu_assign_pointer()
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Read-Side Critical Sections (5)
• When can the writer reclaim the old version of the data?
• After all readers that called rcu_read_lock() before rcu_assign_pointer() have also 

called rcu_read_unlock()
• This is the earliest that the writer may reclaim the old data; it is also allowed to wait longer

(this imposes no cost except that resources are still held)
• Time between release and reclamation is called the grace period
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End of Grace Period
• Writer must somehow find out when the grace period is over
• Doesn’t have to be a precise determination; can be approximate, as long as writer can’t 

think it’s over before it’s actually over
• Encapsulate this in the synchronize_rcu() operation
• This call blocks the writer until the grace period is over

• Updating our writer’s code:
copy = malloc(sizeof(list_node));
copy->a = p->a;
copy->b = 15;
copy->next = p->next;
rcu_assign_pointer(prev->next, copy);

/* Wait for readers to get out of our way... */
synchronize_rcu();
free(p);
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End of Grace Period (2)
• Updated diagram with call to synchronize_rcu()

• But how does this actually work?
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End of Grace Period (3)
• Recall:  readers are not allowed to block or sleep when inside a read-side critical section
• What is the maximum number of readers that can actually be inside read-side critical sections 

at any given time?
• Same as the number of CPUs in the system
• If a reader is inside its read-side critical section, it must also occupy a CPU
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End of Grace Period (4)
• Recall:  readers are not allowed to block or sleep when inside a read-side critical section
• Also, require that the operating system cannot preempt a kernel thread that’s currently inside a 

read-side critical section
• Don’t allow OS to context-switch away from a thread in a read-side critical section
• In other words, don’t allow kernel preemption during the read-side critical section
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End of Grace Period (5)
• Recall:  readers are not allowed to block or sleep when inside a read-side critical section
• If a CPU executes a context-switch, then we know that kernel-thread already completed

any read-side critical section it might have been in…
• Therefore, synchronize_rcu() can simply wait until at least one context-switch has 

occurred on every CPU in the system
• Gives us an upper bound on the length of the grace period…  Good enough!  J
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Completing the RCU Implementation
• Now we know enough to complete RCU implementation
• synchronize_rcu() waits until at least one context-switch has occurred on 

each CPU
void synchronize_rcu() {
  int cpu;
  for_each_online_cpu(cpu)
    run_on(cpu);
}
• run_on() causes the kernel thread to run on a specific processor
• Can be implemented by setting kernel thread’s processor-affinity, then yielding the CPU
• Once the kernel thread has switched to every processor, at least one context-switch has 

definitely occurred on every CPU (duh!)
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Completing the RCU Implementation (2)
• On a single-processor system, synchronize_rcu() is a no-op (!!!)
• synchronize_rcu() might block; therefore it cannot be called from within a read-side 

critical section
• Any read-side critical section started before synchronize_rcu() was called, must have 

already ended at this point
• Therefore, since synchronize_rcu() is running on the CPU, the grace period is already 

over, and the old data may be reclaimed
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Completing the RCU Implementation (3)
• read_lock() and read_unlock() are very simple:
• Since synchronize_cpu() uses context-switches to tell when grace period is over, these 

functions don’t actually have to do any bookkeeping (!!!)
• On a multicore system, or an OS with kernel preemption:
• Must enforce constraint that readers cannot be switched away from while inside their read-

side critical section
void read_lock() {
  preempt_disable(); /* Disable preemption  */
}
void read_unlock() {
  preempt_enable();  /* Reenable preemption */
}

• (preempt_disable() and preempt_enable() simply increment or decrement 
preempt_count; see Lecture 8)
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Completing the RCU Implementation (4)
• On a single-processor system with OS that doesn’t allow kernel preemption:
• (Recall:  this means all context-switches will be scheduled context-switches)

• In this case, read_lock() and read_unlock() don’t have to do anything
• Already have a guarantee that nothing can cause a context-switch away from the kernel 

thread inside its read-side critical section

• The “implementation” also becomes a no-op:
#define read_lock()
#define read_unlock()
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Results:  The Good
• RCU is a very sophisticated mechanism for supporting concurrent access to 

shared data structures
• Conceptually straightforward to understand how to implement readers and writers
• Understanding how it works is significantly more involved…

• Doesn’t involve any locks:
• Little to no lock overhead, no potential for deadlocks, no priority-inversion issues with 

priority scheduling
• Extremely lightweight
• On most platforms, many RCU operations either reduce to a single instruction, or a no-op
• Only requires a very small number of clocks; far fewer than acquiring a lock
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Entire RCU Implementation
/** RCU READER SUPPORT FUNCTIONS **/

/* Enter read-side critical section */
void read_lock(void) {
  preempt_disable();
}

/* Leave read-side critical section */
void read_unlock(void) {
  preempt_enable();
}

/* Subscribe to pointer p's value */
/* smp_wmb() includes opt.barrier */
#define rcu_dereference(p) ({ \
  typeof(p) _v = ACCESS_ONCE(p); \
  smp_read_barrier_depends(); \
  (_value); })

/** RCU WRITER SUPPORT FUNCTIONS **/

/* Publish a value v to pointer p */
/* smp_wmb() includes opt.barrier */
#define rcu_assign_pointer(p, v) \
 ({ smp_wmb(); (p) = (v); })

/* Wait for grace period to end */
void synchronize_rcu(void) {
  int cpu;
  for_each_online_cpu(cpu)
    run_on(cpu);
}
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Results:  The Bad and the Ugly
• RCU is only useful in very specific circumstances:

• Must have many more readers than writers
• Consistency must not be a strong requirement
• Under RCU, readers may see a mix of old and new versions of data, or even only old data 

that is about to be reclaimed

• If either of these conditions isn’t met, may be much better to rely on more 
standard lock-based approaches

• Surprisingly, many parts of Linux satisfy the above circumstances, and RCU is 
becoming widely utilized
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Abstract

Read-copy update (RCU) is a scalable high-performance
synchronization mechanism implemented in the Linux
kernel. RCU’s novel properties include support for con-
current reading and writing, and highly optimized inter-
CPU synchronization. Since RCU’s introduction into the
Linux kernel over a decade ago its usage has continued to
expand. Today, most kernel subsystems use RCU. This
paper discusses the requirements that drove the devel-
opment of RCU, the design and API of the Linux RCU
implementation, and how kernel developers apply RCU.

1 Introduction

The first Linux kernel to include multiprocessor support
is just over 15 years old. This kernel provided support
for concurrently running applications, but serialized all
execution in the kernel using a single lock. Concurrently
executing applications that frequently invoked the kernel
performed poorly.

Today the single kernel lock is gone, replaced by highly
concurrent kernel subsystems. Kernel intensive applica-
tions that would have performed poorly on dual-processor
machines 15 years ago, now scale and perform well on
multicore machines with many processors [2].

Kernel developers have used a variety of techniques to
improve concurrency, including fine-grained locks, lock-
free data structures, per-CPU data structures, and read-
copy-update (RCU), the topic of this paper. Uses of the
RCU API have increased from none in 2002 to over 6500
in 2013 (see Figure 1). Most major Linux kernel subsys-
tems use RCU as a synchronization mechanism. Linus
Torvalds characterized a recent RCU-based patch to the
virtual file system “as seriously good stuff” because de-
velopers were able to use RCU to remove bottlenecks
affecting common workloads [22]. RCU is not unique to
Linux (see [6, 12, 17] for other examples), but Linux’s
wide variety of RCU usage patterns is, as far as we know,
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Figure 1: The number of uses of the RCU API in Linux
kernel code from 2002 to 2013.

unique among the commonly used kernels. Understand-
ing RCU is now a prerequisite for understanding the Linux
implementation and its performance.

The success of RCU is, in part, due to its high perfor-
mance in the presence of concurrent readers and updaters.
The RCU API facilitates this with two relatively simple
primitives: readers access data structures within RCU
read-side critical sections, while updaters use RCU syn-
chronization to wait for all pre-existing RCU read-side
critical sections to complete. When combined, these prim-
itives allow threads to concurrently read data structures,
even while other threads are updating them.

This paper describes the performance requirements that
led to the development of RCU, gives an overview of the
RCU API and implementation, and examines how ker-
nel developers have used RCU to optimize kernel perfor-
mance. The primary goal is to provide an understanding
of the RCU API and how to apply it.

The remainder of the paper is organized as follows. Sec-
tion 2 explains the important requirements for production-
quality RCU implementations. Section 3 gives an

1
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RCU vs. Read/Write Lock Overhead

55

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(n

an
os

ec
on

ds
/o

pe
ra

tio
n)

CPUs

read-write lock
RCU

Figure 8: The overhead of entering and completing an
RCU critical section, and acquiring and releasing a read-
write lock.

the table, manipulates the process, then calls rcu_read_
unlock. To remove a process from the table, a thread
hashes the PID, acquires a per-bucket spin lock, adds the
process to the bucket, and releases the lock. Figure 9
presents pseudocode for the Linux PID table.

A key difference between RCU and read-write locking
is that RCU supports concurrent reading and writing of
the same data while read-write locking enforces mutual
exclusion. As a result, concurrent operations on an RCU
protected data structure can yield results that a read-write
lock would prevent. In the example above, suppose two
threads simultaneously add processes A and B to different
buckets in the table. A concurrently executing reading
thread searching for process A then process B, might
find process A, but not process B. Another concurrently
executing reader searching for process B then A, might
find process B, but not process A. This outcome is valid,
but could not occur if the PID table used read-write locks.

Developers considering using RCU must reason about
requirements of their application to decide if the addi-
tional orderings allowed by RCU, but disallowed by read-
write locks, are correct. In addition to the PID table,
other important kernel subsystems, such as the directory
cache, networking routing tables, the SELinux access vec-
tor cache, and the System V IPC implementation, use
RCU as an alternative to read-write locks. A tentative
conclusion to draw from RCU’s widespread use in Linux
is that many kernel subsystems are either able to tolerate
additional orderings allowed by RCU or use the tech-
niques described in the next section to avoid problematic
orderings.

pid_table_entry_t pid_table[];

process_t *pid_lookup(int pid)
{
process_t *p

rcu_read_lock();
p = pid_table[pid_hash(pid)].process;
if (p)
atomic_inc(&p->ref);

rcu_read_unlock();
return p;

}

void pid_free(process *p)
{
if (atomic_dec(&p->ref))
free(p);

}

void pid_remove(int pid)
{
process_t **p;

spin_lock(&pid_table[pid_hash(pid)].lock);
p = &pid_table[pid_hash(pid)].process;
rcu_assign_pointer(p, NULL);
spin_unlock(&pid_table[pid_hash(pid)].lock);

if (*p)
call_rcu(pid_free, *p);

}

Figure 9: Pseudocode for the Linux PID table imple-
mented using RCU as an alternative to read-write locks.
After calling pid_lookup, a thread calls pid_free to
release it’s reference to the process.

5 Algorithmic Transformations

Since RCU does not force mutual exclusion between read-
ers and updaters, mechanical substitution of RCU for
reader-writer locking can change the application’s seman-
tics. Whether this change violates correctness depends on
the specific correctness properties required.

Experience in the Linux kernel has uncovered a few
common scenarios in which the changes in semantics are
problematic, but are handled by the techniques described
below. The following subsections discuss three commonly
used techniques, explaining why they are needed, how
they are applied, and where they are used.

5.1 Impose Level of Indirection

Some uses of reader-writer locking depend on the prop-
erty that all of a given write-side critical section’s updates
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RCU Implementation Notes
• There are much more advanced implementations of RCU
• RCU discussed today is known as “Classic RCU”
• Many refinements to the implementation as well, offering additional features, and improving 

performance and efficiency
• Our implementation is a “toy implementation,” but it still works
• (Also doesn’t support multiple writers accessing the same pointer; need to use locks to 

prevent this, so it gets much slower…)
• SRCU (Sleepable RCU) allows readers to sleep inside their read-side critical 

sections
• Also allows preemption of kernel threads inside read-side critical sections

• Preemptible RCU also supports readers suspending within their read-side 
critical sections
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