CONCURRENT ACCESS TO SHARED
DATA STRUCTURES

CS124 — Operating Systems
Spring 2024, Lecture 10

Last Time: Synchronization

- Last time, discussed a variety of multithreading issues
- Frequently have shared state manipulated by multiple threads

- Usually solve this problem using some kind of mutual-exclusion mechanism, e.g. disabling
interrupts, mutexes, semaphores, etc.

- Many examples of shared state within the OS kernel
- Scheduler ready-queue, other queues (accessed concurrently on multicore systems)
- Filesystem cache (shared across all processes on the system)
- Virtual memory mapping (used by fault handlers and trap handlers)

- Frequently managed in linked lists (although other more sophisticated
structures are often used)

- Frequently this state is read much more than it's written

Example: vm area struct Lists

- Example: vm_area_struct list used for process memory

task_struct mm_struct vm_area_struct Process Virtual Memory
vm_end
) > Ppgd I_) vm_start
mmap vm_ prot
vm_flags
Shared Libraries
vm_next
I—_> vm_end
- List nodes hold many values describing) S
. vm_prot Data (.data, .bss)
memory I’eglonS vm_flags Run-time heap
- Mostly used to resolve page faults and |: V"‘—”e:t Program text (. taxt)
. vm en
protection faults o start —
. . . Y, t
- Also modified by trap-handler invocations, T flacs

e.g. mmap (), sbrk () functions vm_next

Example Problem: Linked Lists

- How would we implement a linked list that supports concurrent access from
multiple kernel control paths?

- Consider a simplified list type:

typedef struct list node ({

int a;
- Each element contains several important fields, int b;
and a pointer to next node in the list struct list node *next;

} 1list node;

list;pode *head;

- Example list contents:

head a=5 a=19 a=12 a=4

N
Example Problem: Linked Lists (2)

- Operations on our linked list: typedef struct list node {

int a;

- Ilterate over the list nodes, examining each one int b;

_ _ - struct list node *next;
- e.g. to find relevant data, or find a node that needs modified |} 1ist node;

- Insert a node into the linked list
- Modify a node in the linked list
- Remove a node from the linked list

list;pode *head;

- All of these operations are straightforward to implement
- Can imagine other similar operations, variants of the above

Linked List and Concurrent Access

- Should be obvious that our linked list will be corrupted if manipulated
concurrently by different threads

- Example:

- One thread is traversing the list, searching for the node with a = 12,
so it can retrieve the current value of b

- Another thread is inserting a new node into the list

a=51
b=24
next
head a=>5 a=19 a=12
b =31 b=2 b=6
next next next=0

Linked List and Concurrent Access (2)

- This scenario can fail in many different ways
- Writer-thread T, must perform several operations:

list node *new = malloc(sizeof(list node)) ;
new->a = 51;

new->b = 24;

new->next = p->next;

pP->next = new;

- We can try to specify a reasonable order of —

operations in our code... next
- Really have no guarantees about how

the compiler will order this. = e — e
- Or the CPU, for that matter. i a2 =

Linked List and Concurrent Access (3)

- Operations that writer-thread T, must perform:

list node *new = malloc(sizeof(list node)) ;
new->a = 51;

new->b = 24;

new->next = p->next;

pP->next = new;

- These operations form a critical section

In our code a=51
b=24
- Must enforce exclusive access to the next
affected nodes during these operations
head a=5 a=19 a=12
b =231 b=2 b=6
next next next=0

N
Fixing Our Linked List

- How do we avoid concurrency bugs in our linked list implementation?

- An easy solution: use a single typedef struct list node {
lock to guard the entire list iit 2
- Any thread that needs to read or struct’__ list node *next:
modify the list must acquire the } list node;

lock before accessing head

list_node *head;
lock_t 1ist_1ock;

- Design this solution to work from multiple kernel control paths, e.g.

- On a single-core system, trap handler and interrupt handlers simply disable interrupts while
accessing the list

- On a multi-core system, use a combination of spin-locks and disabling interrupts to protect
access to the list

. N
Fixing Our Linked List (2)

- How do we avoid concurrency bugs in our linked list implementation?

- An easy solution: use a single typedef struct list node {
lock to guard the entire list %n‘: 2
in ’
- Any thread that needs to read or struct list node *next;

modify the list must acquire the } list node;
lock before accessing head B

list_node *head;
lock_t 1ist_1ock;

- Why must readers also acquire the lock before reading??

- Only way for the writer to ensure that readers won't access the list
concurrently, while it's being modified ®

S
Linked List: A Single Lock

- What’s the obvious issue with this approach? typedef struct list node |
- Readers shouldn'’t ever block other readers iﬁt o
- (we know the list is mostly accessed by readers anyway...) struct list node *next:
- It's okay if writers hold exclusive access to the list while } list node;
modifying it _
- (it would be better if multiple writers could concurrently izzi—ioﬁszhi::k

modify independent sections of the list)

- This approach has very high lock contention
- Threads spend a lot of time waiting to acquire the lock, just to access the shared resource
- No concurrent access is allowed to the shared resource

Linked List: Improving Concurrency

- Ideally, readers should never block other readers [, cgef struct 1ist node {

- (for now, accept the behavior that writers block everybody) int a;
int b;
struct list node *next;
- How can we achieve this? } list node;

list;pode *head;
rwlock_t 1ist_lock;

- Can use a read/write lock instead of a mutex

- Multiple readers can acquire shared access to the lock:
readers can use the shared resource concurrently without issues

- Writers can acquire exclusive access to the lock

- Two lock-request operations:
- read lock(rwlock t *lock) - used by readers
- write lock (rwlock t *lock) - used by writers

. N
Linked List: Read/Write Lock (2)

- Using a read/write lock greatly increases typedef struct list node {
concurrency and reduces lock contention int a;
int b;

struct 1ist_pode *next;
} 1list node;

list;pode *head;
rwlock_t 1ist_;ock;

- Still a few annoying issues:

- Readers must still acquire a lock every time they access the shared resource

- All threads incur a certain amount of lock overhead when they acquire the lock
(in this case, CPU cycles)

- This overhead can be hundreds of CPU cycles, even for efficient read/write locks

. “
Linked List: Read/Write Lock (3)

- Using a read/write lock greatly increases typedef struct list node {
concurrency and reduces lock contention int a;
int b;

struct 1ist_pode *next;
} 1list node;

list;pode *head;
rwlock_t 1ist_;ock;

- Still a few annoying issues:
- Also, writers still block everybody

- Can we find a way to manipulate this linked list that doesn’t require writers to
acquire exclusive access?

=
Linked List: Multiple Locks

- One approach for reducing lock contention is typedef struct list node |
to decrease the granularity of the lock rwlock t node lock;

: : : int a;
- i.e. how much data is the lock protecting? int b

struct list node *next;
} 1list node;

- |dea: Introduce more locks, each of which
governs a smaller region of data

- For our linked list, could put a read/write lock in each node

- Threads must acquire many more locks to work with the list, which means that the locking
overhead goes way up ®

- But, writers can lock only the parts of the list they are changing, which means we can
reduce lock contention/increase concurrency

list;pode *head;

Skip to RCU

. R
Linked List: Multiple Locks (2)

- We need one more read/write lock, to guard the typedef struct list node {
head pointer rwlock t node lock;

- Need to coordinate accesses and updates of head so that int a;

’ : _ , | int b;
a thread doesn’t follow an invalid pointer! struct list node *next;

- If a thread needs to change what head points to, it needs to | list node;
protect this with a critical section

list_node *head;
rwlock_t head_lock ;

- Now we have all the locks necessary to guard the list when it's accessed
concurrently

Skip to RCU

Linked List: Multiple Locks (3)

- With multiple locks in our structure, we must typedef struct list node |
beware of the potential for deadlock... rwlock t node lock;
. . . int a;
- Can easily avoid deadlock by requiring that int b;
all threads lock nodes in the same total order struct list node *next;
- Prevent “circular wait” condition } list_node;
- This is easy — it's a singly linked list! list node *head;
Always lock nodes in order from head to tail. rwlock_t head lock;

- This makes it a bit harder on writers

- How does a writer know whether to acquire a read lock or a write lock on a given node?

- Need to acquire a read lock first, examine the node, then release and reacquire a write lock
if the node must be altered.

.
Linked List: Multiple Locks, Example

- T4 acquires a read-lock on head so it won't change.

- Then T, follows head to the first node, and acquires a read-lock on this node so it won't
change.

- (and so forth)

- This process of holding a lock on the current item, then acquiring a lock on the
next item before releasing the current item’s lock, is called crabbing

- As long as T, holds a read lock on current =

node, and acquires read-lock on next node b = 24
before visiting it, it won't be affected by next
other threads
head a=>5 a=19 a=12
b =31 b=2 b=6
next next next = 0

. N
Linked List: Multiple Locks, Example (2)

- T, behaves in a similar manner:

- T, acquires a read-lock on head so it won’t change.

- Then T, follows head to the first node, and acquires a read lock on this node so it won’t
change.

- When T, sees that the new node must go after the first node, it can acquire a write-lock on
the first node

- Ensures its changes won’t become visible to
other threads until lock is released

- After T, inserts the new node, it can release
its locks to allow other threads to see the changes

head

I N
Linked List: Holding Earlier Locks

- A key question: How long should each thread hold on to the locks it
previously acquired in the list?

- |If a thread releases locks on nodes after it leaves them, then other threads
might change those nodes

- Does the thread need to be aware of values written by other threads, that appear earlier in
the list?

- What if another thread completely changes the list earlier on?

. a=51
- If these scenarios are acceptable, b = 24
then threads can release locks next)
as soon as they leave a node
o, head a=35 a=19 a=12
- (Often, it's acceptable!) b= 31 b=2 b=6
next next next =0

Linked List: Holding Earlier Locks (2)

- A key question: How long should each thread hold on to the locks it
previously acquired in the list?

- If such scenarios are unacceptable, threads can simply hold on to all locks
until they are finished with the list

- Ensures that each thread will see a completely consistent snapshot of the list until the
thread is finished with its task

- Even simple changes in how locks are v
managed can have significant implications...

b=24
next=0
head a=>5 a=19 a=12
b=31 b=2 b=6
next next next=0

Lock-Based Mutual Exclusion

- Lock-based approaches have a lot of problems

- Have to make design decisions about what granularity of locking to use

- Coarse-granularity locking = lower lock overhead, but writers block everyone

- Fine-granularity locking = much higher lock overhead, but can achieve more concurrency
with infrequent writers in the mix

- More locks means more potential for deadlock to occur

- Locks make us prone to other issues like priority inversion (more on this in a
few lectures)

- Can'’t use locks in interrupt context anyway, except in specific circumstances

Mutual Exclusion

- What is the fundamental issue we are trying to prevent?
- Different threads seeing (or creating) inconsistent or invalid state

- Earlier example: writer-thread T, inserting a node

list node *new = malloc(sizeof(list node)) ;
new->a = 51;

new->b = 24;

new->next = p->next;

pP->next = new;

a=>51
- A big part of the problem is that we can't b = 24
guarantee the order or interleaving of next
these operations
i .. head a=>5 a=19 a=12
- Locks help us to sidestep this issue b =31 b=2 b=6
by guarding all the operations next next next = 0

Order of Operations

- What if we could impose a more intelligent ordering?

- When T, inserts a node:
- Step 1: Prepare the new node, but don'’t insert it into the list yet

list node *new = malloc(sizeof(list node)) ;
new->a = 51;

new->b = 24;

new->next = p->next;

- Last three operations can occur in any order.
No one cares, because they aren't visible to anyone.

- T, can go merrily along;
T, hasn’'t made any visible changes yet.

head

5
Order of Operations (2)

- What if we could impose a more intelligent ordering?

- When T, inserts a node:

- Step 2: Atomically change the list to include the new node
pP->next = new;

- This is a single-word write. If the CPU can perform this atomically, then threads will either see
the old version of the list, or the new version.

- Result: Reader threads will never see

an invalid version of the list T, new ?):gl
- For this to work, we must ensure these next
operations happen in the correct order
head a=5 a=19 a=12
b =31 b=2 b=6
next next next=0

B
Read-Copy-Update

- This mechanism is called Read-Copy-Update (RCU)

- A lock-free mechanism for providing a kind of mutual exclusion

- All changes to shared data structures are made in such a way that concurrent
readers never see intermediate state

- They either see the old version of the structure, or they see the new version.
- Changes are broken into two phases:

- If necessary, a copy is made of specific parts of the data structure. Changes take place on
the copy; readers cannot observe them.

- Once changes are complete, they are made visible to readers in a single atomic operation.

- In RCU, this atomic operation is always changing a pointer from one value to
another value

- e.g. T, performs p->next = new, and change becomes visible

Publish and Subscribe

- It's helpful to think of changing the p->next pointer in terms of a
publish/subscribe problem

- T, operations:
- Step 1: Prepare the new node

list node *new = malloc(sizeof(list node)) ;
new->a = 51;

new->b = 24;

new->next = p->next;

- Step 2: Atomically change the list to include the new node
pP->next = new;
- Before the new node is published for others to access, all initialization must
be completed

- We can enforce this with a write memory barrier

- Enforce that all writes before the barrier are completed before any writes after the barrier
are started. (Note: also an optimization barrier for the compiler...)

- x®n
Publish and Subscribe (2)

- Implement this as a macro:

/* Atomically publish a value v to pointer p. */
/* smp wmb() also includes optimization barrier. */
#define rcu assign pointer(p, v) ({ \
smp_wmb () ; (P) = (v); \
1)
- 1A32 and x86-64 ISAs both guarantee that if the pointer-write is properly word-aligned (or
dword-aligned), it will be atomic.

- (Even on multiprocessor systems!)
- T, operations become:

list node *new = malloc(sizeof(list node)) ;
new->a = 51;

new->b = 24;

new->next = p->next;

/* Publish the new node */

rcu _assign pointer (p->next, new);

. »®
Publish and Subscribe (3)

- T4 needs to see the “current state” of the p->next pointer (whatever that
value might be when it reads it)

- Example: T, is looking for node with a specific value of a:

list node *p = head;

int b = -1;
while (p !'= NULL) {
if (p—->a == wvalue) {
b = p->b;
break;

}
P = p—->next;
}

return b;

- When T, reads p->next, it is subscribing to most recently published value

e
Publish and Subscribe (4)

- Example: T, is looking for node with a specific value of a:
list node *p = head;

int b = -1;
while (p !'= NULL) {
if (p—->a == wvalue) {
b = p->b
break

return b;

- Must ensure that the read of p->next is completed before any accesses to
p—->a Oor p—>b occur

- Could use a read memory barrier, but IA32 already ensures that this occurs automatically
- (Not all CPUs ensure this, e.g. DEC ALPHA CPU)

. B
Publish and Subscribe (5)

- Again, encapsulate this “subscribe” operation in a macro:

/* Atomically subscribe to a pointer p's value. */
#define rcu dereference(p) ({ \

typeof (p) value = ACCESS ONCE (p); \

smp read barrier depends(); \

(_value) ;

1)
- On |A32, smp read barrier depends () is a no-op
- On DEC ALPHA, it's an actual read barrier
- ACCESS_ONCE (x) is a macro that ensures p is read directly from memory, not
a register
- (Usually generates no additional instructions beyond a memory-read operation)

- Subscribing to a pointer is very inexpensive. Nice!

2
Publish and Subscribe (6)

- Updated version of T, code:

list node *p = rcu dereference (head) ;

int b = -1;
while (p !'= NULL) {
if (p—->a == wvalue) {
b = p->b;
break;

}
p = rcu_dereference (p->next) ;

}

return b;

- So far, this is an extremely inexpensive mechanism
- Writers must sometimes perform extra copying, and use a write memory barrier.
- But, we expect writes to occur infrequently. And, writers don’t block anyone anymore. (')
- Usually, readers incur zero overhead from RCU. (!!l)

. S
Modifying a List Node

- Another example: change node with a = 19; setb =15
- Assume pointer to node being changed is in local variable p
- Assume pointer to previous node is in prev
- (Also, assume rcu_dereference () was used to navigate to p)

- Can’t change the node in place; must make a copy of it

copy = malloc(sizeof(list node)) ;
copy->a = p->a;

copy->b 15;

copy->next = p->next;

rcu_assign pointer (prev->next, copy) ; copy a=19
b=15
prev next
p
head a=5 a=19 a=12
b =31 b=2 b=6

next next next

. S
Modifying a List Node (2)

- Since rcu_assign_pointer () atomically publishes the change, readers

must fall into one of two categories:

- Readers that saw the old value of prev->next, and therefore end up at the old version of
the node

- Readers that see the new value of prev->next, and therefore end up at the new version
of the node

- All readers will see a valid version of the shared list
- And, we achieve this with much less overhead than with locking

- (The writer has to work a bit harder...)
copy a=19
b=15
prev next
P
head a=5 a=19 a=12
b = 31 b=2 b=6

next next next

. R
Modifying a List Node (3)

- Are we finished?

copy = malloc(sizeof(list node)) ;
copy->a = p->a;

copy->b = 15;

copy->next = p->next;
rcu_assign pointer (prev->next, copy) ;

- Thread must deallocate the old node, or else there will be a memory leak

free(p);
- Problems? copy a=19
. b=15
- If a reader saw the old version of prev->next, prev next
they may still be using the old node P
head a=5 =1 a=12
b = 31 b b=6

next next next

. S
Reclaiming Old Data

- The hardest problem in RCU is ensuring that old data is only deleted after all
readers have finished with it

- How do we tell that all readers have actually finished?

- Define the concept of a read-side critical section:

- A reader enters a read-side critical section when it reads an RCU pointer
(rcu_dereference())

- A reader leaves the read-side critical section when it is no longer using the RCU pointer
- Require that readers explicitly denote the start and end of read-side critical
sections in their code:
- rcu_read lock () starts a read-side critical section
- rcu_read unlock () ends a read-side critical section

Read-Side Critical Sections

- Update T, to declare its read-side critical section:

rcu read lock(); /* Enter read-side critical section */
list node *p = rcu dereference (head) ;
int b = -1;
while (p !'= NULL) {
if (p—->a == wvalue) {
b = p->b;
break;

}
P = rcu dereference (p->next) ;

}

rcu read unlock(); /* Leave read-side critical section */
return b;

- ®
Read-Side Critical Sections (2)

- A critical constraint on read-side critical sections:
- Readers cannot block / sleep inside read-side critical sections!
- No yielding the CPU, long running 1O operations, or blocking calls

- Should be obvious that T, follows this constraint:

rcu read lock(); /* Start read-side critical section */
list node *p = rcu dereference (head) ;
int b = -1;
while (p !'= NULL) {
if (p—->a == wvalue) {
b = p->b;
break;

}
p = rcu_dereference (p->next) ;

}

rcu read unlock(); /* End read-side critical section */
return b;

¥
Read-Side Critical Sections (3)

- Can use read-side critical sections to define when old data may be reclaimed

- Each reader’s interaction with shared data structure is contained entirely
within its read-side critical section

- Each reader’s arrow starts with a call to rcu _read lock (), and ends with
rcu read unlock()

> time

.
Read-Side Critical Sections (4)

- Writer publishes a change to the data structure with a call to rcu _assign pointer ()

- Divides readers into two groups — readers that might see the old version, and readers that cannot see
the old version

- What readers might see the old version of the data?
- Any reader that called rcu _read lock () before rcu assign pointer is called

rcu_assign_pointer()
1
1

| Roacor 1 M Reavers
.

> time

I | B
Read-Side Critical Sections (5)

- When can the writer reclaim the old version of the data?

- After all readers that called rcu_read lock () before rcu assign pointer () have also
called rcu read unlock()

- This is the earliest that the writer may reclaim the old data; it is also allowed to wait longer
(this imposes no cost except that resources are still held)

- Time between release and reclamation is called the grace period

rcu_assign_pointer()
1
1

|
[Roacer 1 S Roaders
[Rz 3
)
. .

Writer: - Grace Period -

> time

2
End of Grace Period

- Writer must somehow find out when the grace period is over

- Doesn’t have to be a precise determination; can be approximate, as long as writer can'’t
think it's over before it's actually over

- Encapsulate this in the synchronize rcu () operation
- This call blocks the writer until the grace period is over

- Updating our writer’s code:

copy = malloc(sizeof(list node)) ;
copy->a = p->a; -

copy->b = 15;

copy->next = p->next;
rcu_assign pointer (prev->next, copy) ;

/* Wait for readers to get out of our way... */
synchronize rcu() ;
free(p);

.
End of Grace Period (2)

- Updated diagram with call to synchronize rcu()

- But how does this actually work?

rcu_assign_pointer()
1
1

.

Reacor 1 S Reacers 2

[Reaserz 3

CReacers I
. .

. Grace Period
Writer: - synchronize rcu()

> time

%
End of Grace Period (3)

- Recall: readers are not allowed to block or sleep when inside a read-side critical section
- What is the maximum number of readers that can actually be inside read-side critical sections
at any given time?
- Same as the number of CPUs in the system
- If a reader is inside its read-side critical section, it must also occupy a CPU

rcu_assign_pointer()

| |
|
Croscer 1 QM Reacers 3
|
T e

I
:
I I
. Grace Period
Writer: - synchronize rcu() -

| | .
! > time

.
End of Grace Period (4)

- Recall: readers are not allowed to block or sleep when inside a read-side critical section

- Also, require that the operating system cannot preempt a kernel thread that’s currently inside a
read-side critical section

- Don’t allow OS to context-switch away from a thread in a read-side critical section
- In other words, don’t allow kernel preemption during the read-side critical section

rcu_assign_pointer()
1
1

|
[Roacer 1 S Roaders
[Rz 3
)
. .

. Grace Period

> time

. R
End of Grace Period (5)

- Recall: readers are not allowed to block or sleep when inside a read-side critical section

- If a CPU executes a context-switch, then we know that kernel-thread already completed
any read-side critical section it might have been in...

- Therefore, synchronize rcu () can simply wait until at least one context-switch has
occurred on every CPU in the system
- Gives us an upper bound on the length of the grace period... Good enough! ©

rcu_assign_pointer()
1
1

.

[Roacer 1 S Roaders

[Rz 3

)
.

. Grace Period

> time

Completing the RCU Implementation

- Now we know enough to complete RCU implementation

- synchronize rcu () waits until at least one context-switch has occurred on
each CPU

void synchronize rcu() {
int cpu;
for each online cpu(cpu)
run _on(cpu) ;

}
- run_on () causes the kernel thread to run on a specific processor

- Can be implemented by setting kernel thread’s processor-affinity, then yielding the CPU

- Once the kernel thread has switched to every processor, at least one context-switch has
definitely occurred on every CPU (duh!)

s
Completing the RCU Implementation (2)

- On a single-processor system, synchronize rcu() is a no-op (!!!)
- synchronize rcu () might block; therefore it cannot be called from within a read-side

critical section
- Any read-side critical section started before synchronize rcu() was called, must have

already ended at this point
- Therefore, since synchronize rcu () is running on the CPU, the grace period is already

over, and the old data may be reclaimed

I,
Completing the RCU Implementation (3)

- read lock () and read unlock () are very simple:

- Since synchronize cpu () uses context-switches to tell when grace period is over, these
functions don’t actually have to do any bookkeeping (!!!)

- On a multicore system, or an OS with kernel preemption:
- Must enforce constraint that readers cannot be switched away from while inside their read-
side critical section
void read lock() {
preempt disable(); /* Disable preemption */
}

void read unlock() {
preempt enable(); /* Reenable preemption */

}

* (preempt disable () and preempt enable () simply increment or decrement
preempt count; see Lecture 8)

e
Completing the RCU Implementation (4)

- On a single-processor system with OS that doesn’t allow kernel preemption:
- (Recall: this means all context-switches will be scheduled context-switches)
- In this case, read lock () and read unlock () don’t have to do anything

- Already have a guarantee that nothing can cause a context-switch away from the kernel
thread inside its read-side critical section

- The “implementation” also becomes a no-op:

#define read lock()
#define read unlock()

.
Results: The Good

- RCU is a very sophisticated mechanism for supporting concurrent access to
shared data structures
- Conceptually straightforward to understand how to implement readers and writers
- Understanding how it works is significantly more involved...
- Doesn’t involve any locks:
- Little to no lock overhead, no potential for deadlocks, no priority-inversion issues with
priority scheduling
- Extremely lightweight
- On most platforms, many RCU operations either reduce to a single instruction, or a no-op
- Only requires a very small number of clocks; far fewer than acquiring a lock

Entire RCU Implementation

/** RCU READER SUPPORT FUNCTIONS **/

/* Enter read-side critical section */
void read lock(void) {
preempt disable() ;

/* Leave read-side critical section */
void read unlock(void) {
preempt enable() ;

/* Subscribe to pointer p's value */

/* smp wmb () includes opt.barrier */

#define rcu dereference(p) ({ \
typeof (p) _v = ACCESS ONCE(p); \
smp read barrier depends(); \
(_value); })

/** RCU WRITER SUPPORT FUNCTIONS **/

/* Publish a value v to pointer p */

/* smp wmb () includes opt.barrier */

#define rcu assign pointer(p, v) \
({ smp_wmb(); (p) = (v); })

/* Wait for grace period to end */
void synchronize rcu(void) ({
int cpu;
for each online cpu(cpu)
run_on(cpu) ;

%
Results: The Bad and the Ugly

- RCU is only useful in very specific circumstances:

- Must have many more readers than writers

- Consistency must not be a strong requirement

- Under RCU, readers may see a mix of old and new versions of data, or even only old data
that is about to be reclaimed

- If either of these conditions isn’t met, may be much better to rely on more
standard lock-based approaches

- Surprisingly, many parts of Linux satisfy the above circumstances, and RCU is
becoming widely utilized

RCU Use in Linux Kernel over Time
7000 —

6000 —
5000 |~
4000 —
3000 —

RCU API calls

2000
1000 —

| | | |
0
2004 2006 2008 2010 2012

Year

RCU vs. Read/Write Lock Overhead

)
o
S
S
o O

5000
4000
3000
2000
1000

Overhead (nanoseconds/operation

read-write lock =——+—
RCU =-0--

12 14 16

RCU Implementation Notes

- There are much more advanced implementations of RCU
- RCU discussed today is known as “Classic RCU”

- Many refinements to the implementation as well, offering additional features, and improving
performance and efficiency

- Our implementation is a “toy implementation,” but it still works
- (Also doesn’t support multiple writers accessing the same pointer; need to use locks to
prevent this, so it gets much slower...)
- SRCU (Sleepable RCU) allows readers to sleep inside their read-side critical
sections
- Also allows preemption of kernel threads inside read-side critical sections

- Preemptible RCU also supports readers suspending within their read-side
critical sections

References

- For everything you could ever want to know about RCU:

- Paul McKenney did his PhD research on RCU, and has links to an extensive array of
articles, papers and projects on the subject

- http://lwww2.rdrop.com/users/paulmck/RCU/

- Most helpful/accessible resources:
- What is RCU, Really? (3-part series of articles)
- http://www.rdrop.com/users/paulmck/RCU/whatisRCU.html
- What Is RCU? (PDF of lecture slides)
- http://www.rdrop.com/~paulmck/RCU/RCU.Cambridge.2013.11.01a.pdf

- User-Level Implementations of Read-Copy Update
- http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf (actual article)
- http://www.rdrop.com/users/paulmck/RCU/urcu-supp-accepted.2011.08.30a.pdf (supplemental materials)

References (2)

- Andrei Alexandrescu has also written a few good articles:

- Lock-Free Data Structures (big overlap with many RCU concepts)
- https://www.drdobbs.com/lock-free-data-structures/184401865

- Lock-Free Data Structures with Hazard Pointers
- https://www.drdobbs.com/lock-free-data-structures-with-hazard-po/184401890

- C++ Concurrency in Action, 2" ed. by Anthony Williams
- Another great discussion of lock-free data structures, API design for concurrency, etc.

