
MULTITHREADING AND
SYNCHRONIZATION
CS124 – Operating Systems
Spring 2024, Lecture 9

Critical Sections
• Race conditions can be avoided by preventing multiple control paths from

accessing shared state concurrently
• Threads, processes, etc.

• A critical section is a piece of code that must not be executed concurrently by
multiple control paths

• Mutual exclusion: carefully control entry into the critical section to allow only
one thread of execution at a time

• Many different tools to enforce mutual exclusion in critical sections
(semaphores, mutexes, read-write locks, etc.)
• Generally, these locks block threads (passive waiting) until they can enter the critical section

• OS kernels frequently require additional tools that are compatible with use in
interrupt context (i.e. nonblocking!)

2

Software Solutions
• A number of software solutions devised to implement mutual exclusion
• Example: Peterson’s Algorithm:
• Two processes P0 and P1, repeatedly entering a critical section
• Implementation:
 while (true) { // i = 0 for P0, i = 1 for P1; j = 1 - i
 flag[i] = true; // State intention to enter critical section.
 turn = j; // Let other process go first, if they want!
 while (flag[j] && turn == j); // Wait to enter critical section.
 … // Critical section!
 flag[i] = false; // Leaving critical section.
 … // Non-critical section.
 }

3

Software Solutions (2)
• Peterson’s Algorithm:
• Two processes P0 and P1, repeatedly entering a critical section
• Implementation:
 while (true) { // i = 0 for P0, i = 1 for P1; j = 1 - i
 flag[i] = true; // State intention to enter critical section.
 turn = j; // Let other process go first, if they want!
 while (flag[j] && turn == j); // Wait to enter critical section.
 … // Critical section!
 flag[i] = false; // Leaving critical section.
 … // Non-critical section.
 }
• A process Pi can only exit the while-loop if one of these is true:
• flag[j] is false (Pj is outside the critical section)
• turn == i (it’s Pi’s turn to enter the critical section)

4

Software Solutions (3)
• Several other software solutions to mutual exclusion:
• Dekker’s algorithm (first known correct solution)
• Lamport’s bakery algorithm
• Syzmanski’s algorithm

• All solutions are basically the same in how they work
• Peterson’s algorithm is very representative

• Problem 1: processes must busy-wait in these solutions
• This can be changed to passive waiting without much difficulty

• Problem 2: software solutions fail in the context of out-of-order execution
• Compilers and advanced processors frequently reorder the execution of instructions to

maximize pipelining/etc.

5

Hardware Solutions
• Modern systems provide a wide range of hardware solutions to mutual

exclusion problem

• Plus, even if we want to just use the software solutions, still required to rely on
specific hardware capabilities!

• Example: barriers
• Previous software solutions don’t work in context of out-of-order execution…
• So, prevent out-of-order execution when it matters!
• (Note: These are not the same as barriers in multithreading)

6

Optimization Barriers
• Optimization barriers prevent instructions before the barrier from being

mixed with instructions after the barrier
• Affects the compiler’s output, not what the processor does

• Example: Linux/Pintos barrier() macro
#define barrier() asm volatile ("" : : : "memory")
• Tells the compiler that the operation changes all memory locations
• Compiler cannot rely on memory values that were cached in registers before the

optimization barrier
• Can be used to ensure that one operation is actually completed before the

next operation is started
• e.g. acquiring a lock to access shared state must be completed before we can even begin

interacting with the shared state
• Problem: optimization barriers do not prevent the CPU from reordering

instructions at execution time…

7

Memory Barriers
• Memory barriers prevent instruction-reordering at the CPU level
• All instructions before the memory barrier must be completed, before any instructions after

the memory barrier are started
• Usually, macros to impose memory barriers also impose optimization barriers;

otherwise the memory barrier is useless
• Several kinds of memory barriers, depending on the need
• Read memory barriers only operate on memory-read instructions
• Write memory barriers only operate on memory-write instructions
• If unspecified, barrier affects both read and write instructions

• Also, some cases only require barriers in multiprocessor systems, not on
uniprocessor systems
• e.g. Linux has smp_mb() / smp_rmb() / smp_wmb() memory-barrier macros, which are

no-ops on single-processor systems

8

Memory Barriers (2)
• Processors often provide multiple ways to impose memory barriers
• Example: IA32 memory-fence instructions
• lfence (“load-fence”) imposes a read memory-barrier
• sfence (“store-fence”) imposes a write memory-barrier
• mfence (“memory-fence”) imposes a general memory-barrier

• Several other IA32 instructions also implicitly act as fences, e.g. iret,
instructions prefixed with lock, etc.

• IA32 ensures that all operations before the fence are globally visible, even in
multiprocessor systems
• i.e. the system maintains cache coherency when fences are used
• Not all architectures guarantee this…

9

Disabling Hardware Interrupts
• Another simple solution to preventing concurrent access is disabling

hardware interrupts
• Frequently used to prevent interrupt handlers from manipulating shared state
• Interrupt handlers cannot passively block, so they generally can’t acquire semaphores,

mutexes, etc.
• To prevent access by an interrupt handler, just turn interrupts off

• On IA32, local interrupts are enabled and disabled via sti / cli instructions
(Set/Clear Interrupt Flag)

• Note: on multiprocessor systems, this only affects the processor that executes
the instruction
• Other processors will continue to receive and handle interrupts

10

Spin Locks
• It is possible to disable interrupt handling on all processors…
• Not recommended: greatly reduces system concurrency

• A much better approach is to use spin locks
• Locking procedure:
• If the lock is immediately available, it is acquired
• If the lock is not immediately available, it is actively polled in a tight loop (called “spinning”

on the lock) until it becomes available
• Spin locks only make sense on multiprocessor systems
• On single-core systems they just waste CPU time, or wait forever…

• Two scenarios prompt spin-lock use:
• Cannot context-switch away from control path (interrupt context), or
• Lock is expected to be held for a short time, and want to avoid overhead of a context-switch

11

Spin Locks and Interrupt Handlers
• Interrupt handlers can use spin locks on multiprocessor systems to guard

shared state from concurrent access
• Acquire the spin lock, access shared state, release the spin lock

• Example: a timer interrupt being triggered on each CPU
• Each CPU executes the timer interrupt handler separately…
• Handler needs to access shared state (e.g. process ready-queue, waiting queues, etc.)
• Need to enforce a critical section on manipulation of shared state

• Timer interrupt handler can guard shared state with a spin lock
• Interrupts are supposed to complete quickly…
• Even if multiple CPUs have timer interrupts occur at same time, a given handler invocation

won’t wait long for handlers on other CPUs to finish

12

Spin Locks and Interrupt Handlers (2)
• Must be extremely careful using spin locks when control paths can be nested!
• Scenario: multiprocessor system, nested kernel control paths

• Example: using a spin-lock to guard state that’s shared between a trap
handler and an interrupt handler
• Trap handler acquires the spin lock
• Trap handler begins accessing shared state
• Interrupt fires! Handler attempts to acquire the same spin lock

• The system becomes deadlocked:
• Trap handler holds a lock that the interrupt handler needs to proceed
• Interrupt handler holds CPU, which the trap handler needs to proceed
• Nobody makes any progress L

• For these situations, must also disable local interrupts before acquiring the
spin lock, to avoid deadlocks

13

Spin Lock Guidelines
• Spin locks are only useful on multiprocessor systems
• On single-processor systems, simply disable interrupt processing

• Spin locks should be held only for a short time
• If a critical section will only be entered by control paths running on different

CPUs, simple spin locks will suffice
• e.g. shared state is only accessed from one interrupt handler, and the handler runs on all

CPUs in the system
• If more than one control path on the same CPU can enter a critical section,

must disable interrupts before locking
• e.g. shared state accessed from trap handlers + interrupt handlers

• Linux spinlock primitives:
• spin_lock_irq() and spin_unlock_irq() disable/reenable interrupts
• spin_lock() and spin_unlock() simply acquire/release the lock

14

Locks and Deadlocks
• Locking mechanisms for synchronization introduce the possibility of multiple

processes entering into deadlock
• A set of processes is deadlocked if each process in the set is waiting for an event that only

another process in the set can cause.
• Requirements for deadlock:
• Mutual exclusion: resources must be held in non-shareable mode
• Hold and wait: a process must be holding one resource, and waiting to acquire another

resource that is currently unavailable
• No preemption: a resource cannot be preempted; the process must voluntarily release the

resource
• Circular wait: the set of processes {P1, P2, …, Pn} can be ordered such that P1 is waiting

for a resource held by P2, P2 is waiting for a resource held by P3, …, Pn-1 is waiting for a
resource held by Pn, and Pn is waiting for a resource held by P1

15

Dealing with Deadlock
• Several ways to deal with deadlock
• Deadlock prevention: engineer the system such that deadlock never occurs
• Usually focuses on breaking either the “no preemption” or the “circular wait” requirement of

deadlock
• No preemption: if a process cannot acquire a resource, it relinquishes its

locks on all other resources
• (rarely practical in practice)

• Circular wait: impose a total ordering over all lockable resources that all
processes must follow
• As long as resources are only locked in the total ordering, deadlock can never occur
• If a process acquires a later resource in the ordering, then wants an earlier resource in the

ordering, must release all its locks and start over
• Usually not imposed by the OS; must be imposed by the programmer

16

Dealing with Deadlock (2)
• Deadlock avoidance: the system selectively fails resource-requests in order

to prevent deadlocks
• System detects when allowing a request to block would cause a deadlock, and reports an

immediate failure on the request
• Several algorithms to do this, e.g. Banker’s algorithm
• Also wound/wait and wait/die algorithms:
• Given an older process PO and a younger process PY
• Wound/wait:
• If PO needs a resource that PY holds, PY dies
• If PY needs a resource that PO holds, PY waits

• Wait/die:
• If PO needs a resource that PY holds, PO waits
• If PY needs a resource that PO holds, PY dies

17

Dealing with Deadlock (3)
• Deadlock detection and resolution: simply allow deadlock!
• When a set of processes enters into deadlock, the system identifies that deadlock occurred,

and terminates a deadlocked process
• (not used in operating systems; used heavily in database systems)

18

Semaphores
• Semaphores are a common synchronization mechanism
• Devised by Edsger Dijkstra

• Allows two or more processes to coordinate their actions
• Typically, processes block until acquiring the semaphore
• Can’t wait on semaphores in interrupt context

• Each semaphore has this state:
• An integer variable value that cannot be negative
• A list of processes/threads waiting to acquire the semaphore

• Two operations: wait() and signal()
• Also called down() and up()
• Dijkstra’s names:
• P (for “prolaag,” short for “probeer te verlagen” or “try to decrease”)
• V (for “verhogen” or “increase”)

19

Semaphores (2)
• Example wait() impl:

while sem.value == 0:
 add this thread to sem.waiting list
 passively block the thread
sem.value := sem.value – 1

• Example signal() impl:
sem.value := sem.value + 1
if sem.waiting list is not empty:
 t = pop thread from sem.waiting
 unblock t

• These operations must be
enclosed in critical sections!
• e.g. Pintos turns off interrupts

inside these operations
• Blocked threads can be
managed in various ways
• e.g. always put blocked threads at

end of waiting, unblock from front
• e.g. choose a random thread to

unblock
• (Often, making things fair is more

expensive)

20

Counting Semaphores
• Semaphore value represents how many times wait() can be called without blocking
• Use it to represent e.g. how much of a given resource is available

• Called counting semaphores when used in this way
• Maximum value of semaphore is greater than 1
• Doesn’t ensure mutual exclusion!!!

• Example: a bounded queue for communicating processes
• From the well-known producer-consumer problem

• One semaphore to represent how much data is in the queue
• Used by readers; passively blocks readers when no data available
• Writers signal every time more data is added

• One semaphore to represent how much space is in the queue
• Used by writers; passively blocks writers when no space available
• Readers signal every time data is removed

21

Binary Semaphores
• Bounded-buffer example has two semaphores
• One for readers, one for writers
• Each semaphore uses critical sections for internal updates…
• Semaphores and bounded-buffer contents must also be manipulated atomically…

• Use a third semaphore to enforce mutual exclusion
• At most one process may hold this semaphore at a time
• Processes call wait() before entering the critical section
• Processes call signal() when leaving the critical section

• Called binary semaphores when used this way
• Maximum value of semaphore is 1
• Used to enforce mutual exclusion

22

Mutexes
• Mutexes are simplified versions of binary semaphores
• Short for “mutual exclusion lock”

• Main difference between mutexes and binary semaphores is concept of a
process “owning” a mutex when it’s locked
• e.g. one process can’t lock a mutex and another process unlocks it

• As with semaphores, mutexes are frequently formulated to block processes
until the mutex is acquired
• Processes passively wait for mutex; can’t be used in interrupt context
• (Spin locks are mutexes that actively wait instead of passively waiting)

• Usually implemented with atomic test-and-set instructions
• e.g. on IA32, xchg or bts instructions can be used to create a very efficient mutex

23

Other Synchronization Details
• Have only scratched the surface of synchronization
• Other thread synchronization primitives:
• Condition variables, monitors, barriers, …

• Classic synchronization problems:
• The producer-consumer problem (aka the bounded buffer problem)
• The readers-writers problem (read-write locks)
• Dining philosophers

• Much more detail on deadlock detection and resolution
• Other multithreading difficulties:
• Livelock, starvation, fairness, …

• Unfortunately, beyond scope of the class to cover it all L

24

Thinking Like a Kernel Programmer
• Kernel programming is pretty different from application programming
• Not just because it’s closer to the hardware, and harder to debug…

• Very strong focus on efficiency
• Want to minimize both memory and computing overheads
• Ideally without sacrificing ease of maintenance

• Typically, system code simply has fewer resources to use
• Often, no general-purpose heap allocator in the kernel
• Not a very large memory pool to utilize, anyway

• Also, performance issues in the kernel affect everybody
• Interrupts need to complete as fast as possible
• Process/thread scheduler needs to run quickly

25

Data Structures
• Example problem: manage a linked list of items
• Typical application-programming approach:
• Each linked-list node is separately allocated; nodes linked together
• Often, list holds pointers to other separately-allocated structures

• In the kernel, there is often no general-purpose allocator
• Kernels allocate a very specific and limited set of data structures
• Can’t afford to lose space required to manage heap structures, etc.

26

head …
next next = 0

……
next

a
b
c

a
b
c

a
b
c

Data Structures (2)
• In the kernel, collection support is often folded into the data structures being

managed

• Approach is called an intrusive linked list implementation
• List pointers point directly to the “next1” member of the structure, not the start

of the structure, in the linked list
• Necessary for several reasons
• e.g. many different kinds of data structures might be organized into linked lists

• Requires a simple computation to get to the start of the structure from the
next1 pointer
• e.g. (struct_t *) ((uint8_t *) ptr - offsetof(struct_t, next1))

27

list1

a
b
c

next1

a
b
c

next1

a
b
c

next1=0

Data Structures (3)
• Lists also point directly to the “next” pointer, rather than the start of the

structure, to allow objects to participate in multiple lists

• Fortunately, this can be wrapped in helpful macros to simplify type
declarations, list traversal, etc.

28

list1

a
b
c

next1

a
b
c

next1

a
b
c

next1=0
next2 next2=0 next2

list2

Memory Allocations
• Is it actually necessary to dynamically allocate memory?
• Pains are taken to avoid having to do so!

• Our previous example:

• Corresponds to Pintos thread queues
• Anchors of lists are statically-allocated global variables
• List elements are thread structs, which are positioned at the lowest address of the kernel

thread’s stack space
• No dynamic memory allocation is required at all
• (besides the page-allocation for the kernel thread’s stack, of course)

29

list1

a
b
c

next1

a
b
c

next1

a
b
c

next1=0
next2 next2=0 next2

list2

Memory Allocations (2)
• Another example: need to manage a linked list of nodes
• Linked list has a maximum size
• Most of the time, linked list will either be full, or mostly full

• Instead of dynamically allocating each list node, statically allocate a whole
array of nodes
• Array size is maximum linked list size

• Avoids heap-management overhead (both space + time)
• May also require a list of nodes available for use

30

free

next
…

next
…

next
…

next
… … next = 0

…

head

…

Interrupt Handlers
• Interrupt handlers should run as quickly as possible
• Maintains overall system responsiveness

• Often have a choice of whether to do work in interrupt context, vs. doing the
work in process context

• Generally, you want to make only one process wait, instead of making the
entire system wait

• Pintos “thread sleep” functionality has good examples of this approach

31

Interrupt Handlers (2)
• Example: state for allowing threads to sleep
• Threads could store the “clock tick” when they went to sleep, plus the amount

of time to sleep…
• From these values, interrupt handler can compute whether it’s time for a thread to wake up

or not
• Or, threads can simply store the “clock tick” when they should wake up
• Interrupt handler doesn’t have to compute anything – it just looks to see if it’s time to wake

up a given thread

• Second approach does computations in process context, not interrupt context
• Only slows down the process that wants to sleep, not all timer interrupts

• Also requires less space in thread structs, which is good!

32

Interrupt Handlers (3)
• Example: storing sleeping threads
• Sleeping threads are all stored in one list
• The queue of threads blocked on the timer

• Can store threads in no particular order…
• Or, store threads in increasing order of wake-up time
• First approach is fast for the sleeping thread
• Just stick the thread’s struct-pointer onto back of the sleep-queue
• Interrupt handler must examine all threads in the sleep-queue

• Second approach is fast for the interrupt handler
• Sleeping thread must insert its struct-pointer into the proper position within the sleep queue
• Interrupt handler knows when it can stop examining threads – when it reaches the first

thread that doesn’t need to wake up

33

Interrupt Handlers (4)
• Example: storing sleeping threads
• Generally, want to choose the second approach
• Only the sleeping thread is delayed by inserting in the proper place
• The timer interrupt can run as fast as possible

• Aside: for priority-scheduling implementation, not such a great idea to order
threads based on priority
• Thread priorities can change at any time, based on other threads’ lock/unlock operations
• Becomes prohibitively expensive to maintain threads in priority order all the time

34

Exploiting System Constraints
• Finally, kernel code frequently exploits system constraints to use as little

memory as possible
• Example: for scheduling purposes, threads are only ever in one queue
• Which queue depends on their state
• Either in the “ready” queue, or in some “blocked” queue, depending on what the thread is

blocked on
• In these cases, can simply reuse fields for these various mutually-exclusive

scenarios
• e.g. only have one linked-list field for representing the thread’s “current queue”

35

Summary: Kernel Programming
• Some of these approaches yield big savings, but most yield small savings
• e.g. performing computations in process-context vs. interrupt handler

• Operating systems are large, complex pieces of software
• These small savings throughout the OS accumulate in a big way

• Key kernel-programming question: “How can I do things more efficiently?”
• Can I avoid dynamic memory allocation?
• Can I move computations out of interrupt handlers and into process context?
• Are there constraints on system behavior that I can exploit?
• Can I reuse fields or data structures for multiple purposes?

• Often there are elegant solutions that also result in significantly improved
system performance

36

Next Time
• A novel approach to the synchronization problem…

37

