
THE PROCESS ABSTRACTION
CS124 – Operating Systems
Spring 2024, Lecture 6

The Process Abstraction
• Most modern OSes include the notion of a process
• Term is short for a “sequential process”
• Frequently described as “an instance of a program in execution”
• The primary means by which multiprogramming / multitasking is offered in modern

operating systems
• A process generally consists of:
• The program’s instructions (aka. the “program text”)
• CPU state for the process (program counter, registers, flags, …)
• Memory state for the process
• Other resources being used by the process

• A primary task of the OS is to manage processes
• Maintain the illusion of multiple processes executing concurrently by giving each process a

portion of time on the CPU
• Handle other stages of the process lifecycle

2

The Process Lifecycle
• Process lifecycle can be represented as a state diagram
• Processes must be created before they can run (duh)
• Example origins:
• Created by the operating system at startup (e.g. Linux: systemd)
• Created when a user invokes a program via command line or GUI
• Created when a process spawns another process

3

new

The Process Lifecycle (2)
• Generally, there is a set of processes that can make progress (i.e. not waiting

for I/O to complete, etc.)
• Only one process may be running on each CPU at a time
• When a process is in “running” state, it holds the CPU!
• Other processes that could run, but don’t currently have the CPU, are in the

“ready” state

4

new running

ready

The Process Lifecycle (3)
• New processes don’t necessarily get the CPU right away
• They initially go into the collection of “ready” processes

• The OS only allows the currently running process to hold the CPU for a
specific amount of time…

• When time-slice expires, running process is preempted, and the OS chooses
another process to get the CPU

5

new running

ready
queued

scheduled

time-slice
expired

The Process Lifecycle (4)
• Processes often perform long-running tasks
• e.g. read from hard disk, network, or some other external device
• e.g. process waits for another process (e.g. a signal or termination)
• The process becomes blocked until the resource is available

• Instead of holding everyone up, kernel removes process from CPU, and
chooses another ready process to run

6

new running

ready
queued

scheduled

time-slice
expired

blocked

long-running
operation

The Process Lifecycle (5)
• When the long-running task is completed, the blocked process can resume

execution
• Process is moved back into the ready state
• Will eventually be chosen by the OS to run on the CPU again

7

new running

ready blocked
queued

scheduled

time-slice
expired

operation complete

long-running
operation

The Process Lifecycle (6)
• Processes eventually terminate
• May live for seconds, hours, months, …

• Several tasks must be completed at process termination
• Any “at-exit” operations must be performed
• Reclaim resources the process is still holding
• Other processes may need to observe terminating process’ status

8

new running

ready blocked
queued

scheduled

time-slice
expired

operation complete

long-running
operation

terminated
exit / abort / …

The Process Lifecycle (7)
• Processes can terminate for several different reasons
• Voluntary termination by the process itself (e.g. it calls exit() or returns from main(),

either with success or error status
• Involuntary termination due to an unrecoverable fault in the process (e.g. segmentation fault

due to dereferencing a NULL pointer)
• Involuntary termination due to a signal from another process (e.g. another process issues a
SIGINT (^C), SIGTERM or SIGKILL)

9

new running

ready blocked

terminated

queued

scheduled

time-slice
expired

operation complete

long-running
operation

exit / abort / …

The Process Lifecycle (8)
• This state diagram is sufficient for most OS needs…
• Frequently, other states are also introduced to provide additional capabilities
• Common feature: ability to suspend / resume processes
• A suspended process will not be scheduled until it is resumed
• A user can suspend a process with e.g. Ctrl-Z at command shell
• A process can send SIGSTOP to another process to suspend it

10

new running

ready blocked

terminated

queued

scheduled

time-slice
expired

operation complete

long-running
operation

exit / abort / …

ready_
suspended

stopresume

The Process Lifecycle (9)
• The process being suspended might also have been blocked on a long-

running operation…
• Introduce another state to manage such processes

• Final process lifecycle:

11

new running

ready blocked

terminated

queued

scheduled

time-slice
expired

operation complete

long-running
operation

exit / abort / …

ready_
suspended

stopresume

blocked_
suspended

stopresume

operation complete

Implementation Questions
• How are a process’ resources managed and reclaimed?
• How are blocked processes managed by the OS?
• How do we switch what process is currently running?
• i.e. how do we perform a context switch?

• How does the OS choose what process should run next?
• i.e. how does process scheduling work?

12

new running

ready blocked

terminated

queued

scheduled

time-slice
expired

operation complete

long-running
operation

exit / abort / …

ready_
suspended

stopresume

blocked_
suspended

stopresume

operation complete

Process Control Block
• Process-specific details are managed in a data structure often called the

process control block (PCB)
• Also called a task control block, a task struct (Linux), etc.

• A representative example:

13

Identification
State Vector

Status Info

Hierarchy

Other

IDType

StateType

Int

StatusType

Int

…

ID

CPU State

Processor

Memory

Resources

Status

Status Data

Parent

Children

Priority

Running, Ready, Blocked

Page
Table Flags …
Unit Flags …

To process’ current queue

Parent process

List of children

Process Identification
• The kernel manages a mapping of Process IDs to Process Control Blocks
• Identification information uniquely identifies the process

• Several options for mapping PIDs to PCBs
• Linux uses a hashtable, with bins containing linked-lists of PCBs
• Rationale:
• More space-efficient than a table where PIDs are indexes
• Expect that actual process-count will typically be much smaller than the system limits

IdentificationIDTypeID

14

Process Hierarchy
• The UNIX process model also includes process hierarchy

• Every process has a parent
• Not possible for a child process to disown its parent
• (init becomes the parent process of orphaned children)

• Every process has zero or more children it has started, as well as a process-
group it is a member of

• Not all operating systems provide a process hierarchy
• Windows effectively treats all processes as peers
• Processes can be grouped, and a process can spawn children
• No real relationship between parent and children is imposed by Windows process model

HierarchyParent

Children

Parent process

List of children

15

Process State Vector
• State vector specifies all process context information

• CPU state:
• Process capabilities and protection info
• When suspended, includes program counter + register contents
• Depends on processor architecture

• Processor:
• Set to CPU number when running; otherwise undefined

• Memory:
• Contents of process’ code, data, stack, etc.
• (Heavily leverages virtual memory system)

• Resources:
• All allocated resources (files, network sockets, etc.)
• Resource class + unit descriptions

16

State VectorStateType

Int
CPU State

Processor

Memory

Resources

Page
Table Flags …
Unit Flags …

Process Status Information
• Process control block also includes scheduling details

• Running:
• Process is currently running on a CPU

• Ready:
• Process is ready to run, but waiting for a CPU

• Blocked:
• Process cannot proceed until it receives a resource or a message

• Also includes other states, e.g. Suspended, etc.
• Status data can be used for:
• Specifying pending resource-requests for this process
• Specifying other processes in the same state and priority

Status InfoStatusTypeStatus

Status Data

Running, Ready, Blocked

To process’ current queue

17

Process Context-Switch
• When the OS switches from running a given process, the process’ context

must be saved into the process’ PCB
• CPU state: registers, program counter, stack pointer, status flags
• (Other process state is usually already recorded in the PCB)

• Similarly, when the OS switches to another process, the new process’ context
must be restored from the PCB

• (Will cover more details when we get to scheduling…)

18

Process A
Execution

Process B
Execution

hardware interrupt
or software trap

OS saves CPU
state into PCBA

OS restores CPU
state from PCBB

Kernel
Tasks

CPU execution time

Process Context-Switch (2)
• Context-switches clearly require a certain amount of time
• Entering into the kernel:
• CPU handles the interrupt (save program counter/stack, stack-switch)
• Handler saves CPU state of current process into the process’ PCB

• Kernel often has to invoke the scheduler in order to choose what process to
execute next
• Some syscalls don’t cause a context-switch, but most tend to…

19

Process A
Execution

Process B
Execution

hardware interrupt
or software trap

OS saves CPU
state into PCBA

OS restores CPU
state from PCBB

Kernel
Tasks

CPU execution time

Process Context-Switch (3)
• Leaving the kernel:
• Kernel must restore CPU state from new process’ PCB

• Kernel must also switch to new process’ memory state
• Each process has its own page-table hierarchy in its own PCB
• Must switch the virtual memory system to using the new process’ memory mapping
• (e.g. on IA32, load %cr3 register with new process’ page table)

20

Process A
Execution

Process B
Execution

hardware interrupt
or software trap

OS saves CPU
state into PCBA

OS restores CPU
state from PCBB

Kernel
Tasks

CPU execution time

Process Context-Switch (4)
• When kernel changes the memory mapping, it must also clear the MMU’s

Translation Lookaside Buffers
• They cache page-table entries for the MMU…
• …but we just changed the mapping, so those are now invalid.

21

Process A
Execution

Process B
Execution

hardware interrupt
or software trap

OS saves CPU
state into PCBA

OS restores CPU
state from PCBB

Kernel
Tasks

CPU execution time

Process Context-Switch (5)
• During a context-switch, the OS isn’t doing useful work
• By “useful work,” we mean “running the user’s applications”

• Want to minimize amount of time a context-switch takes
• e.g. make the scheduler fast, save/load CPU state fast, etc.
• (Still, context-switches will take some amount of time…)

• Also want to minimize the frequency of context-switches
• If system performs many context-switches, it will be spending less time doing useful work

22

Process A
Execution

Process B
Execution

hardware interrupt
or software trap

OS saves CPU
state into PCBA

OS restores CPU
state from PCBB

Kernel
Tasks

CPU execution time

Ready and Blocked Processes
• The OS must manage multiple collections of processes
• Frequently implemented as queues: [doubly] linked lists, where elements hold pointers to

the relevant Process Control Blocks

• Example: the run-queue or ready queue holds all processes that are able to
execute, but don’t have a CPU

• The implementation is often much more complex than a simple linked list…
• Don’t want the kernel to have to consider every single ready process when deciding who

should run next
• Frequently, schedulers manage sophisticated data structures to drive scheduling decisions

• Even with complex process-management data structures, collection of ready
processes is still called the “run-queue”

23

Ready and Blocked Processes (2)
• Processes frequently block on long-running operations
• e.g. read data from a file on disk/CD-ROM/flash drive/etc.
• e.g. read data from a network socket
• e.g. wait for another process to terminate
• Need to remove such processes from the ready queue and put them into a collection of

blocked processes
• Blocked processes usually become unblocked in interrupt handlers
• e.g. the disk controller signals that a read is complete
• Interrupt handler needs to be short, simple and fast to keep from holding up other parts of

the system
• Again, OSes don’t maintain just one collection of all the blocked processes

24

Ready and Blocked Processes (3)
• Operating systems maintain a wait queue for each device that processes can

become blocked on
• When a process requests data from a device, kernel initiates the task, then moves the

process into the wait-queue for that device
• Later, when the device fires an interrupt, the handler can easily access the processes

actually waiting on that device
• Can also implement wait queues for processes waiting for signals, waiting for

child-process termination, etc.

• A simple mechanism for conditional-wait operations
• i.e. when a process cannot progress until a condition becomes true

25

Process Scheduling: Overview
• Example “queuing diagram” of ready queue, wait queues

26

Ready Queue

Process-Event
Queue

Terminated

/dev/hda Queue

/dev/hdb Queue

Timer Queue

Wait Queues

Access /dev/hda

Access /dev/hdb

sleep(), etc.

pause(), wait(), etc.

Timer Interrupt
or Yield CPU

Perform Long-
Running Task

New Processes CPU

Process Scheduling: Overview (2)
• Process scheduling is a large and complex topic
• Will spend more time on it in the future; for now, general approach

• Scheduling can be applied at several different levels
• Long-term scheduling (a.k.a. job scheduling):
• Often used in batch-processing systems that receive far more jobs than they can actually

execute at one time
• Jobs are spooled onto external storage for eventual execution by the batch system
• “SPOOL” = Simultaneous Peripheral Operations On-Line

• Long-term scheduler must choose which jobs to bring into memory for execution, and when
• Long-term scheduler tries to maximize the utilization of the batch-processing

system’s hardware

27

Process Scheduling: Overview (2)
• If all processes in batch-processing system are I/O bound:
• Processes will usually be waiting for devices to respond…
• Scheduler’s run-queue will be empty. CPU will be underutilized.

• If all processes are CPU bound:
• The peripheral devices will be underutilized.

• Long-term scheduler tries to achieve a good process mix of I/O-bound and
CPU-bound processes
• CPU-bound processes can effectively use the CPU while I/O-bound processes are waiting

for devices to respond
• Long-term schedulers run infrequently
• (e.g. on the order of minutes between invocations)
• Primarily needs to run when processes terminate, so that the OS can determine what job(s)

to begin executing next

28

Process Scheduling: Overview (3)
• Most general-purpose operating systems don’t include a long-term scheduler
• The user controls how many processes are running, not the OS
• If OS performance is substandard, the user runs fewer processes

• All multitasking operating systems include a short-term scheduler to control
which process gets the CPU next

• Some systems include medium-term schedulers to tune the process mix on
an ongoing basis

• Medium-term schedulers can temporarily suspend and swap out processes
when needed
• e.g. if a process’ resource requirements are negatively impacting the overall system

performance

29

Process Scheduling: Overview (4)

30

New Process
Queue Ready Queue

Ready/Suspended
Queue

Blocked/Suspended
Queue

Blocked Queue(s)

Terminated

Long-Term
Scheduler

Medium-Term
Scheduler

Short-Term
Scheduler

Timer Interrupt
or Yield CPU

Perform Long-
Running Task

CPU

Next Time
• The thread abstraction

31

