
BOOTSTRAP, IA32, AND BIOS/UEFI
CS124 – Operating Systems
Spring 2024, Lecture 5

Bootstrapping
• All computers have the same basic issue:
• They require a program to tell them what to do…
• …but when you turn them on, they have no program!
• How do you get them to start running programs?

• Computers must implement a bootstrap process to load the OS
• A series of one or more boot-loaders
• Each stage is responsible for loading the next stage of the computer’s programming

• Originated from the term “pulling oneself up by one’s bootstraps”
• Was used in the context of computing in the early 1950s
• (The phrase was extant well before that time)

2

Bootstrapping (2)
• Modern computers use read-only memory (ROM) containing the initial code to

load the operating system
• Pre-ROM computers had to implement various techniques
• Read a small number of instructions from some external source, then begin executing them!

• Examples:
• Computers with punched-card readers were designed to read one card, then begin

executing that card’s instructions
• Some computers included a bank of switches to specify the first instruction(s) for the

computer to execute
• Other computers used diode matrixes; presence of a diode = 1, absence of a diode = 0

• Result: boot-loaders were very primitive

3

Bootstrapping (3)
• The advent of read-only memory (ROM) revolutionized boot-loading
• Manufacturers included sophisticated programs on the computer motherboard to manage

the operating system boot process
• Software even includes basic drivers for disks, video, minimal operating systems, etc.

• The combination of persistent memory and the program stored in it is called
firmware

• Systems now use electrically-erasable versions of ROM (EPROM, EEPROM),
allowing for firmware upgrades

4

IA32 Bootstrap
• IA32 processors are engineered to start executing instructions at 0xFFFFFFF0

immediately after a reset
• Computer manufacturers place a read-only memory (ROM) in this address

range to start the boot process
• ROM is typically much larger than 16 bytes
• Modern computers include very sophisticated firmware now

• IA32 CPUs also start off in ring 0 (kernel mode)
• Gives the bootloader full access to all system facilities, in order to set up the hardware to

run the operating system
• Currently there are two categories of PC boot-loaders:
• PC BIOS – Basic Input/Output System
• EFI/UEFI – [Unified] Extensible Firmware Interface

5

PC BIOS
• Original firmware for x86 computers
• Provides two critical features, and a third useful one:
• A firmware bootloader to start the bootstrap process
• A library of basic input/output functions for interacting with the computer hardware
• i.e. device drivers exposed via a standard interface

• Often includes a simple user interface for hardware configuration
• BIOS functionality emerged as a de-facto standard
• Certain microcomputers (IBM PC) and operating systems (MS DOS) became very popular
• Other manufacturers began to clone the hardware…
• They had to match existing firmware functions for software to work!

6

PC BIOS Bootloading
• BIOS bootloader follows a very simple process:
• If a hardware reset was performed, run some diagnostics on the hardware
• e.g. memory check
• Called a Power-On Self Test, a.k.a. POST

• Identify and configure computer peripherals for basic use
• Iterate through bootable devices in some order, trying to load and start the

next stage of the bootstrap process
• The first sector of each bootable device is loaded into memory
• If sector ends with signature 0x55, 0xAA, it is used as bootloader

7

PC BIOS Bootloading (2)
• BIOS loads the boot sector at memory address 0x7C00, then jumps to that

address
• The boot sector that BIOS loads is only 512 bytes (!!!)
• Historically, this was the size of x86 disk sectors
• 0x200 bytes, so bootloader is at addresses 0x7C00 – 0x7DFF
• Minus the 55AA signature, boot sector has 510 bytes to do its thing

• BIOS passes a few limited details to the bootloader
• e.g. %dl register contains the numeric ID of the boot disk; allows the bootloader to retrieve

more data from the boot disk
• Bootloaders are usually written in assembly language
• Only way to cram the required functionality into the limited space

8

Bootloading and MBRs
• Picture grows more complex from disk partitioning
• First sector of a hard disk is a master boot record (MBR)
• Specifies up to four partitions of the hard disk, each with its own format and use
• e.g. each partition could be used for a different OS
• An OS might also need multiple partitions, e.g. Linux filesystem partition vs. Linux swap

partition
• Issue: MBR doesn’t correspond to a specific operating system; the disk may

contain multiple OSes
• A partition with an OS often has its own bootloader in the first sector of that

partition
• MBR must kick off the next bootloader in the process

9

Bootloading and MBRs (2)
• Partition details in the master boot record also take up some space…
• 4 partition-table entries × 16 bytes per entry = 64 bytes

• Older style MBR format:
• 512 bytes – 2 byte signature – 64 byte partition table = 446 bytes for bootloading

• Newer MBRs include more details, reducing the MBR loader size to 434-436
bytes, broken into two parts

• Advanced bootloaders like LILO and GRUB clearly can’t fit in this small space
• The bootloader itself is broken into multiple stages
• Stage 1 is 512 bytes, responsible for loading stage 2 into memory
• Stage 2 is much larger, e.g. 100s of KBs

10

Bootloading and MBRs (3)
• MBR loaders use a mechanism called chain loading
• Emulate the BIOS mechanism, so partition loader doesn’t need to know it wasn’t loaded by

the BIOS

• MBR loads the next bootloader into address 0x7C00, then jumps to that
address and begins running it
• Also retains other register values from BIOS, e.g. %dl contains same value that BIOS

passed to the MBR loader
• Of course, the MBR loader was already at 0x7C00…
• MBR loader copies itself to another location, then jumps to the copy of itself, before it loads

the partition boot sector
• Chain loaders often copy themselves to address 0x0600

11

BIOS Library Functions
• At this early stage, bootloaders rely on BIOS functions to interact with the

computer hardware
• Bootloaders have same issue that user applications have: They don’t know

the addresses of BIOS operations
• All BIOS functions are invoked via software interrupts
• Example: int $0x10 is used for video services
• Specify operation to perform in %ah
• Other parameters are stored in other registers
• Invoke int $0x10 to perform the operation

• Example: Print a ‘*’ character in teletype mode:
movb $0x0e, %ah # Use BIOS teletype function
movb '*', %al
int $0x10 # Invoke BIOS video service

12

IA32 Memory Addressing
• A complication of OS loading is that BIOS operations require the use of x86

real-addressing mode
• An ancient memory-addressing mode used by original 8086/8088

• IA32 architecture has several memory-addressing modes
• Some provide advanced ways for modern operating systems to manage memory
• Others are required for backward compatibility

• The ultimate goal of the OS is to get into protected-mode memory addressing
• Supports memory protections, virtual memory management, etc.
• At that point, BIOS calls will no longer work!

13

Protected Mode and BIOS
• Once the system is in protected mode, we can no longer use BIOS functions

to interact with the hardware
• Problem: BIOS uses (and requires) IA32 real-addressing mode
• Problem: BIOS uses 16-bit Interrupt Vector Table entries

• From this point forward, the operating system must use its own device
drivers to interact with computer hardware
• Software components that know how to interact with a specific kind of device, but that also

present a simple, generic interface
• OS device drivers often reinitialize the hardware to suit the needs/preferences

of the operating system

14

IA32 BIOS Bootstrap Process – Summary
• At power on, IA32 processor starts executing instructions at the address

0xFFFFFFF0
• A ROM memory is positioned at this hardware address to jump to BIOS bootstrap code

• BIOS bootstrap code performs a power-on self test if it was a hardware reset
(skips if software reset)

• Next, BIOS attempts to load the first 512-byte sector of each bootable device
in the system at address 0x7C00
• On success, BIOS jumps to address 0x7C00 for next stage of boot

• If it’s an MBR bootloader, it must chain-load the boot sector for the operating
system to start

• Finally, the OS bootloader must load the OS kernel into memory and jump to
the kernel bootstrap code

15

Plug and Play
• Another major issue from BIOS bootstrap: BIOS only exposes very basic

device functionality and access
• “Lowest Common Denominator” type functionality

• To identify other devices in the computer, the OS kernel had to probe various
IO ports and see what responded
• e.g. sound cards, graphics cards, networking cards, etc.

• Sometimes multiple devices would use the same ports…
• Sometimes probing for one kind of device could cause another kind of device

to hang the system…
• Over time, several standards were published to make PC systems more

“plug-and-play” capable
• Allow the OS to identify and configure hardware devices safely and automatically, via

standard mechanisms

16

Plug and Play (2)
• To support a “plug-and-play” auto-discovery mechanism, the hardware bus

protocol must be updated:
• Devices must include a vendor-specified device ID and type value
• Must specify a standard mechanism for querying this information off of all bus devices
• When system buses are initialized, system can enumerate devices connected to the bus

and handle each device’s basic initialization
• Example plug-and-play buses:
• PCI family of buses (PCI, PCI Express, Mini PCI, etc.)
• USB, FireWire
• PC Card/PCMCIA (for removable laptop peripherals)

17

Plug and Play (3)
• With hardware that facilitates device discovery, systems began providing more

detailed information to the OS
• Frequently exposed as tables of data set up by the BIOS during bootstrap

• Example: Intel MultiProcessor Specification (1997)
• Identifies processor manufacturer, model number, etc.
• Identifies all system buses, processors, processor APIC IDs, etc.
• Table is set up by the BIOS at startup time
• A multiprocessor operating system can locate this table and use it to run processes on all

available processors

18

ACPI Standard
• One of the more notable standards is the ACPI standard
• Advanced Configuration and Power Interface
• Defines a platform-independent interface for hardware discovery, configuration, power

management and monitoring
• Replaces several previous standards

• ACPI primarily consists of a large number of tables that contain platform
configuration details

• All tables are accessible through a structure called the Root System
Description Pointer

• Tables include details for all major aspects of the system
• Tables are initialized by bootstrap firmware
• e.g. multicore/multiprocessor and APIC details
• e.g. memory characteristics and memory topology

19

Unified Extensible Firmware Interface
• Data tables are helpful…
• BIOS is still very limiting for modern OSes to deal with
• Can’t even use it after switching to protected mode

• A new standard has emerged: Unified Extensible Firmware Interface (UEFI)
• Completely replaces the old BIOS interface with a new, modular, extensible firmware

• Prompted by Intel Itanium processor
• 64-bit processor, couldn’t run x86 BIOS!
• Still needed to support an operating system

• UEFI is a firmware interface standard
• Sits on top of lower-level firmware,

not directly on computer hardware

20

Hardware

Firmware

UEFI

Bootloader and OS

Unified Extensible Firmware Interface (2)
• UEFI is a modular system, allowing components to be installed and removed
• Can install UEFI bootloaders for OSes on the computer
• Knows how to use UEFI services to load and run the OS

• Can install UEFI applications that allow system hardware, boot configuration,
etc. to be managed
• Runs in the “preboot environment” (before the OS is started)
• e.g. UEFI systems usually have a command shell for basic tasks
• UEFI bootloaders (a.k.a. OS loaders) are one kind of application

• UEFI drivers provide standardized abstractions for hardware, including buses
and devices
• Used by UEFI applications and OS loaders to perform their tasks

21

Unified Extensible Firmware Interface (3)
• UEFI also exposes its functionality via tables in memory
• Unlike ACPI and other earlier standards, UEFI includes function-pointers to

operations for programs to use
• Example: “Hello World” UEFI application

#include <efi.h>
#include <efilib.h>

EFI_STATUS efi_main(EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE *SystemTable {
 SIMPLE_TEXT_OUTPUT_INTERFACE *console_out;
 InitializeLib(ImageHandle, SystemTable);
 console_out = SystemTable->ConOut;
 uefi_call_wrapper(console_out->OutputString, 2, console_out,
 (CHAR16 *) L"Hello World\n\r");
 return EFI_SUCCESS;
}

22

Unified Extensible Firmware Interface (4)
• Another picture of UEFI:

• UEFI provides some of its functionality in firmware…
• UEFI modules are often stored on a special disk partition
• The EFI System Partition is the first partition of a disk in the system
• Often a simple format that can be supported in firmware, e.g. FAT32

23

Platform
Hardware

EFI Boot Services

EFI OS Loader

Operating System

EFI System
Partition

Other
Required
Standards
e.g. ACPI

UEFI and Disk Partitioning
• UEFI addresses another issue: disk partitioning
• Problem: Master Boot Records specify partitions using 32-bit values
• (32-bit start, 32-bit size, 512-byte sectors)
• Limits partitions to 2TiB in size!

• Solution: GUID Partition Tables (GPT)
• GUID = Globally Unique ID, a 128-bit identifier with a high likelihood of being unique

• Partition descriptors use 64-bit values – 9.4 zettabyte (8×1021, or 8 zebibytes =
8×512×264 byte) partitions!

• Disks, partition types and partitions all identified by GUIDs
• Partition-type GUIDs are standardized
• (MBR uses a 1-byte value to indicate partition type)

24

GUID Partition Tables
• Also allows up to 128 partitions per hard disk
• GUID partition table occupies 33 sectors at the start of the disk

• A “legacy MBR” occupies first sector (LBA 0)
• Includes a single partition that covers the entire disk
• Partition type is set to a value unused by all major OSes
• Reason: if a legacy MBR tool is used on the disk, it won’t be as likely to mangle the GUID

partition table on the disk
• Disks with GUID Partition Tables maintain two GPTs
• Identical copies, kept at the start and end of the disk
• Reduces likelihood that corruption will render the disk unusable

• Most modern OSes can use GUID partition tables now
• Not all of them can boot off of a GPT disk without firmware support

25

GUID Partition Tables and UEFI
• UEFI specification includes the GUID partition table spec
• UEFI requires GUID partition tables

• When an OS is installed on a UEFI system, the OS loader is installed into EFI
System Partition (using EFI services)
• Allows the UEFI preboot system to provide multiboot services

• UEFI is large and complex
• There are definitely bugs in UEFI implementations
• Not every company follows the UEFI standard precisely
• Bootloaders definitely still have to jump through hoops with UEFI

26

For More Information…
• UEFI Standards – https://uefi.org
• TianoCore – https://www.tianocore.org
• Open-source implementation of UEFI standard
• Derived from Intel’s implementation of EFI for several platforms
• Includes EDK II (EFI Development Kit) for writing UEFI components

• Windows and Linux both support UEFI
• GRUB and many other bootloaders understand UEFI

• Can install UEFI bootloaders on macOS (if you dare!)
• rEFIt – http://refit.sourceforge.net (no longer actively maintained)
• rEFInd – http://www.rodsbooks.com/refind/ (fork of rEFIt)

• VirtualBox and QEMU can both emulate UEFI hardware

27

Next Time
• Start exploring the process abstraction

28

