
BOOTSTRAP, IA32, AND BIOS/UEFI
CS124 – Operating Systems
Spring 2024, Lecture 5



Bootstrapping
• All computers have the same basic issue:
• They require a program to tell them what to do…
• …but when you turn them on, they have no program!
• How do you get them to start running programs?

• Computers must implement a bootstrap process to load the OS
• A series of one or more boot-loaders
• Each stage is responsible for loading the next stage of the computer’s programming

• Originated from the term “pulling oneself up by one’s bootstraps”
• Was used in the context of computing in the early 1950s
• (The phrase was extant well before that time)
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Bootstrapping (2)
• Modern computers use read-only memory (ROM) containing the initial code to 

load the operating system
• Pre-ROM computers had to implement various techniques
• Read a small number of instructions from some external source, then begin executing them!

• Examples:
• Computers with punched-card readers were designed to read one card, then begin 

executing that card’s instructions
• Some computers included a bank of switches to specify the first instruction(s) for the 

computer to execute
• Other computers used diode matrixes; presence of a diode = 1, absence of a diode = 0

• Result:  boot-loaders were very primitive
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Bootstrapping (3)
• The advent of read-only memory (ROM) revolutionized boot-loading
• Manufacturers included sophisticated programs on the computer motherboard to manage 

the operating system boot process
• Software even includes basic drivers for disks, video, minimal operating systems, etc.

• The combination of persistent memory and the program stored in it is called 
firmware

• Systems now use electrically-erasable versions of ROM (EPROM, EEPROM), 
allowing for firmware upgrades
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IA32 Bootstrap
• IA32 processors are engineered to start executing instructions at 0xFFFFFFF0 

immediately after a reset
• Computer manufacturers place a read-only memory (ROM) in this address 

range to start the boot process
• ROM is typically much larger than 16 bytes
• Modern computers include very sophisticated firmware now

• IA32 CPUs also start off in ring 0 (kernel mode)
• Gives the bootloader full access to all system facilities, in order to set up the hardware to 

run the operating system
• Currently there are two categories of PC boot-loaders:
• PC BIOS – Basic Input/Output System
• EFI/UEFI – [Unified] Extensible Firmware Interface
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PC BIOS
• Original firmware for x86 computers
• Provides two critical features, and a third useful one:
• A firmware bootloader to start the bootstrap process
• A library of basic input/output functions for interacting with the computer hardware
• i.e. device drivers exposed via a standard interface

• Often includes a simple user interface for hardware configuration
• BIOS functionality emerged as a de-facto standard
• Certain microcomputers (IBM PC) and operating systems (MS DOS) became very popular
• Other manufacturers began to clone the hardware…
• They had to match existing firmware functions for software to work!
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PC BIOS Bootloading
• BIOS bootloader follows a very simple process:
• If a hardware reset was performed, run some diagnostics on the hardware
• e.g. memory check
• Called a Power-On Self Test, a.k.a. POST

• Identify and configure computer peripherals for basic use
• Iterate through bootable devices in some order, trying to load and start the 

next stage of the bootstrap process
• The first sector of each bootable device is loaded into memory
• If sector ends with signature 0x55, 0xAA, it is used as bootloader
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PC BIOS Bootloading (2)
• BIOS loads the boot sector at memory address 0x7C00, then jumps to that 

address
• The boot sector that BIOS loads is only 512 bytes (!!!)
• Historically, this was the size of x86 disk sectors
• 0x200 bytes, so bootloader is at addresses 0x7C00 – 0x7DFF
• Minus the 55AA signature, boot sector has 510 bytes to do its thing

• BIOS passes a few limited details to the bootloader
• e.g. %dl register contains the numeric ID of the boot disk; allows the bootloader to retrieve 

more data from the boot disk
• Bootloaders are usually written in assembly language
• Only way to cram the required functionality into the limited space
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Bootloading and MBRs
• Picture grows more complex from disk partitioning
• First sector of a hard disk is a master boot record (MBR)
• Specifies up to four partitions of the hard disk, each with its own format and use
• e.g. each partition could be used for a different OS
• An OS might also need multiple partitions, e.g. Linux filesystem partition vs. Linux swap 

partition
• Issue:  MBR doesn’t correspond to a specific operating system; the disk may 

contain multiple OSes
• A partition with an OS often has its own bootloader in the first sector of that 

partition
• MBR must kick off the next bootloader in the process
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Bootloading and MBRs (2)
• Partition details in the master boot record also take up some space…
• 4 partition-table entries × 16 bytes per entry = 64 bytes

• Older style MBR format:
• 512 bytes – 2 byte signature – 64 byte partition table = 446 bytes for bootloading

• Newer MBRs include more details, reducing the MBR loader size to 434-436 
bytes, broken into two parts

• Advanced bootloaders like LILO and GRUB clearly can’t fit in this small space
• The bootloader itself is broken into multiple stages
• Stage 1 is 512 bytes, responsible for loading stage 2 into memory
• Stage 2 is much larger, e.g. 100s of KBs

10



Bootloading and MBRs (3)
• MBR loaders use a mechanism called chain loading
• Emulate the BIOS mechanism, so partition loader doesn’t need to know it wasn’t loaded by 

the BIOS

• MBR loads the next bootloader into address 0x7C00, then jumps to that 
address and begins running it
• Also retains other register values from BIOS, e.g. %dl contains same value that BIOS 

passed to the MBR loader
• Of course, the MBR loader was already at 0x7C00…
• MBR loader copies itself to another location, then jumps to the copy of itself, before it loads 

the partition boot sector
• Chain loaders often copy themselves to address 0x0600
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BIOS Library Functions
• At this early stage, bootloaders rely on BIOS functions to interact with the 

computer hardware
• Bootloaders have same issue that user applications have:  They don’t know 

the addresses of BIOS operations
• All BIOS functions are invoked via software interrupts
• Example:  int $0x10 is used for video services
• Specify operation to perform in %ah
• Other parameters are stored in other registers
• Invoke int $0x10 to perform the operation

• Example:  Print a ‘*’ character in teletype mode:
movb    $0x0e, %ah   # Use BIOS teletype function
movb    '*', %al
int     $0x10        # Invoke BIOS video service
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IA32 Memory Addressing
• A complication of OS loading is that BIOS operations require the use of x86 

real-addressing mode
• An ancient memory-addressing mode used by original 8086/8088

• IA32 architecture has several memory-addressing modes
• Some provide advanced ways for modern operating systems to manage memory
• Others are required for backward compatibility

• The ultimate goal of the OS is to get into protected-mode memory addressing
• Supports memory protections, virtual memory management, etc.
• At that point, BIOS calls will no longer work!
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Protected Mode and BIOS
• Once the system is in protected mode, we can no longer use BIOS functions 

to interact with the hardware
• Problem:  BIOS uses (and requires) IA32 real-addressing mode
• Problem:  BIOS uses 16-bit Interrupt Vector Table entries

• From this point forward, the operating system must use its own device 
drivers to interact with computer hardware
• Software components that know how to interact with a specific kind of device, but that also 

present a simple, generic interface
• OS device drivers often reinitialize the hardware to suit the needs/preferences 

of the operating system
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IA32 BIOS Bootstrap Process – Summary
• At power on, IA32 processor starts executing instructions at the address 

0xFFFFFFF0
• A ROM memory is positioned at this hardware address to jump to BIOS bootstrap code

• BIOS bootstrap code performs a power-on self test if it was a hardware reset 
(skips if software reset)

• Next, BIOS attempts to load the first 512-byte sector of each bootable device 
in the system at address 0x7C00
• On success, BIOS jumps to address 0x7C00 for next stage of boot

• If it’s an MBR bootloader, it must chain-load the boot sector for the operating 
system to start

• Finally, the OS bootloader must load the OS kernel into memory and jump to 
the kernel bootstrap code
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Plug and Play
• Another major issue from BIOS bootstrap:  BIOS only exposes very basic 

device functionality and access
• “Lowest Common Denominator” type functionality

• To identify other devices in the computer, the OS kernel had to probe various 
IO ports and see what responded
• e.g. sound cards, graphics cards, networking cards, etc.

• Sometimes multiple devices would use the same ports…
• Sometimes probing for one kind of device could cause another kind of device 

to hang the system…
• Over time, several standards were published to make PC systems more 

“plug-and-play” capable
• Allow the OS to identify and configure hardware devices safely and automatically, via 

standard mechanisms
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Plug and Play (2)
• To support a “plug-and-play” auto-discovery mechanism, the hardware bus 

protocol must be updated:
• Devices must include a vendor-specified device ID and type value
• Must specify a standard mechanism for querying this information off of all bus devices
• When system buses are initialized, system can enumerate devices connected to the bus 

and handle each device’s basic initialization
• Example plug-and-play buses:
• PCI family of buses (PCI, PCI Express, Mini PCI, etc.)
• USB, FireWire
• PC Card/PCMCIA (for removable laptop peripherals)
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Plug and Play (3)
• With hardware that facilitates device discovery, systems began providing more 

detailed information to the OS
• Frequently exposed as tables of data set up by the BIOS during bootstrap

• Example:  Intel MultiProcessor Specification (1997)
• Identifies processor manufacturer, model number, etc.
• Identifies all system buses, processors, processor APIC IDs, etc.
• Table is set up by the BIOS at startup time
• A multiprocessor operating system can locate this table and use it to run processes on all 

available processors
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ACPI Standard
• One of the more notable standards is the ACPI standard
• Advanced Configuration and Power Interface
• Defines a platform-independent interface for hardware discovery, configuration, power 

management and monitoring
• Replaces several previous standards

• ACPI primarily consists of a large number of tables that contain platform 
configuration details

• All tables are accessible through a structure called the Root System 
Description Pointer

• Tables include details for all major aspects of the system
• Tables are initialized by bootstrap firmware
• e.g. multicore/multiprocessor and APIC details
• e.g. memory characteristics and memory topology
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Unified Extensible Firmware Interface
• Data tables are helpful…
• BIOS is still very limiting for modern OSes to deal with
• Can’t even use it after switching to protected mode

• A new standard has emerged: Unified Extensible Firmware Interface (UEFI)
• Completely replaces the old BIOS interface with a new, modular, extensible firmware

• Prompted by Intel Itanium processor
• 64-bit processor, couldn’t run x86 BIOS!
• Still needed to support an operating system

• UEFI is a firmware interface standard
• Sits on top of lower-level firmware,

not directly on computer hardware
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Unified Extensible Firmware Interface (2)
• UEFI is a modular system, allowing components to be installed and removed
• Can install UEFI bootloaders for OSes on the computer
• Knows how to use UEFI services to load and run the OS

• Can install UEFI applications that allow system hardware, boot configuration, 
etc. to be managed
• Runs in the “preboot environment” (before the OS is started)
• e.g. UEFI systems usually have a command shell for basic tasks
• UEFI bootloaders (a.k.a. OS loaders) are one kind of application

• UEFI drivers provide standardized abstractions for hardware, including buses 
and devices
• Used by UEFI applications and OS loaders to perform their tasks

21



Unified Extensible Firmware Interface (3)
• UEFI also exposes its functionality via tables in memory
• Unlike ACPI and other earlier standards, UEFI includes function-pointers to 

operations for programs to use
• Example:  “Hello World” UEFI application

#include <efi.h>
#include <efilib.h>

EFI_STATUS efi_main(EFI_HANDLE ImageHandle,
                    EFI_SYSTEM_TABLE *SystemTable {
    SIMPLE_TEXT_OUTPUT_INTERFACE *console_out;
    InitializeLib(ImageHandle, SystemTable);
    console_out = SystemTable->ConOut;
    uefi_call_wrapper(console_out->OutputString, 2, console_out,
                      (CHAR16 *) L"Hello World\n\r");
   return EFI_SUCCESS;
}
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Unified Extensible Firmware Interface (4)
• Another picture of UEFI:

• UEFI provides some of its functionality in firmware…
• UEFI modules are often stored on a special disk partition
• The EFI System Partition is the first partition of a disk in the system
• Often a simple format that can be supported in firmware, e.g. FAT32
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UEFI and Disk Partitioning
• UEFI addresses another issue:  disk partitioning
• Problem:  Master Boot Records specify partitions using 32-bit values
• (32-bit start, 32-bit size, 512-byte sectors)
• Limits partitions to 2TiB in size!

• Solution:  GUID Partition Tables (GPT)
• GUID = Globally Unique ID, a 128-bit identifier with a high likelihood of being unique

• Partition descriptors use 64-bit values – 9.4 zettabyte (8×1021, or 8 zebibytes = 
8×512×264 byte) partitions!

• Disks, partition types and partitions all identified by GUIDs
• Partition-type GUIDs are standardized
• (MBR uses a 1-byte value to indicate partition type)
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GUID Partition Tables
• Also allows up to 128 partitions per hard disk
• GUID partition table occupies 33 sectors at the start of the disk

• A “legacy MBR” occupies first sector (LBA 0)
• Includes a single partition that covers the entire disk
• Partition type is set to a value unused by all major OSes
• Reason:  if a legacy MBR tool is used on the disk, it won’t be as likely to mangle the GUID 

partition table on the disk
• Disks with GUID Partition Tables maintain two GPTs
• Identical copies, kept at the start and end of the disk
• Reduces likelihood that corruption will render the disk unusable

• Most modern OSes can use GUID partition tables now
• Not all of them can boot off of a GPT disk without firmware support
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GUID Partition Tables and UEFI
• UEFI specification includes the GUID partition table spec
• UEFI requires GUID partition tables

• When an OS is installed on a UEFI system, the OS loader is installed into EFI 
System Partition (using EFI services)
• Allows the UEFI preboot system to provide multiboot services

• UEFI is large and complex
• There are definitely bugs in UEFI implementations
• Not every company follows the UEFI standard precisely
• Bootloaders definitely still have to jump through hoops with UEFI
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For More Information…
• UEFI Standards – https://uefi.org
• TianoCore – https://www.tianocore.org
• Open-source implementation of UEFI standard
• Derived from Intel’s implementation of EFI for several platforms
• Includes EDK II (EFI Development Kit) for writing UEFI components

• Windows and Linux both support UEFI
• GRUB and many other bootloaders understand UEFI

• Can install UEFI bootloaders on macOS (if you dare!)
• rEFIt – http://refit.sourceforge.net (no longer actively maintained)
• rEFInd – http://www.rodsbooks.com/refind/ (fork of rEFIt)

• VirtualBox and QEMU can both emulate UEFI hardware
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Next Time
• Start exploring the process abstraction
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