BOOTSTRAP, 1A32, AND BIOS/UEFI

CS124 — Operating Systems
Spring 2024, Lecture 5

.
Bootstrapping

- All computers have the same basic issue:

- They require a program to tell them what to do...

- ...but when you turn them on, they have no program!

- How do you get them to start running programs?
- Computers must implement a bootstrap process to load the OS

- A series of one or more boot-loaders

- Each stage is responsible for loading the next stage of the computer’s programming
- Originated from the term “pulling oneself up by one’s bootstraps”

- Was used in the context of computing in the early 1950s

- (The phrase was extant well before that time)

I N
Bootstrapping (2)

- Modern computers use read-only memory (ROM) containing the initial code to
load the operating system

- Pre-ROM computers had to implement various techniques
- Read a small number of instructions from some external source, then begin executing them!

- Examples:

- Computers with punched-card readers were designed to read one card, then begin
executing that card’s instructions

- Some computers included a bank of switches to specify the first instruction(s) for the
computer to execute

- Other computers used diode matrixes; presence of a diode = 1, absence of a diode =0
- Result: boot-loaders were very primitive

. S
Bootstrapping (3)

- The advent of read-only memory (ROM) revolutionized boot-loading

- Manufacturers included sophisticated programs on the computer motherboard to manage
the operating system boot process

- Software even includes basic drivers for disks, video, minimal operating systems, etc.

- The combination of persistent memory and the program stored in it is called
firmware

- Systems now use electrically-erasable versions of ROM (EPROM, EEPROM),
allowing for firmware upgrades

5
|A32 Bootstrap

- IA32 processors are engineered to start executing instructions at OxFFFFFFFO
immediately after a reset

- Computer manufacturers place a read-only memory (ROM) in this address
range to start the boot process
- ROM is typically much larger than 16 bytes
- Modern computers include very sophisticated firmware now

- IA32 CPUs also start off in ring 0 (kernel mode)

- Gives the bootloader full access to all system facilities, in order to set up the hardware to
run the operating system

- Currently there are two categories of PC boot-loaders:

- PC BIOS - Basic Input/Output System
- EFIJUEFI — [Unified] Extensible Firmware Interface

U
PC BIOS

- Original firmware for x86 computers

- Provides two critical features, and a third useful one:

- A firmware bootloader to start the bootstrap process

- Alibrary of basic input/output functions for interacting with the computer hardware
- i.e. device drivers exposed via a standard interface

- Often includes a simple user interface for hardware configuration

- BIOS functionality emerged as a de-facto standard
- Certain microcomputers (IBM PC) and operating systems (MS DOS) became very popular
- Other manufacturers began to clone the hardware...
- They had to match existing firmware functions for software to work!

PC BIOS Bootloading

- BIOS bootloader follows a very simple process:

- If a hardware reset was performed, run some diagnostics on the hardware

- €.g. memory check
- Called a Power-On Self Test, a.k.a. POST

- Identify and configure computer peripherals for basic use

- Ilterate through bootable devices in some order, trying to load and start the
next stage of the bootstrap process

- The first sector of each bootable device is loaded into memory
- If sector ends with signature 0x55, OxAA, it is used as bootloader

.
PC BIOS Bootloading (2)

- BIOS loads the boot sector at memory address 0x7C00, then jumps to that
address

- The boot sector that BIOS loads is only 512 bytes (!!!)

- Historically, this was the size of x86 disk sectors
- 0x200 bytes, so bootloader is at addresses 0x7C00 — Ox7DFF
- Minus the 55AA signature, boot sector has 510 bytes to do its thing

- BIOS passes a few limited details to the bootloader

- e.g. $d1 register contains the numeric ID of the boot disk; allows the bootloader to retrieve
more data from the boot disk

- Bootloaders are usually written in assembly language
- Only way to cram the required functionality into the limited space

I N
Bootloading and MBRs

- Picture grows more complex from disk partitioning

- First sector of a hard disk is a master boot record (MBR)
- Specifies up to four partitions of the hard disk, each with its own format and use
- e.g. each partition could be used for a different OS

- An OS might also need multiple partitions, e.g. Linux filesystem partition vs. Linux swap
partition

- Issue: MBR doesn’t correspond to a specific operating system; the disk may
contain multiple OSes

- A partition with an OS often has its own bootloader in the first sector of that
partition

- MBR must kick off the next bootloader in the process

. N
Bootloading and MBRs (2)

- Partition details in the master boot record also take up some space...
- 4 partition-table entries x 16 bytes per entry = 64 bytes

- Older style MBR format:
- 512 bytes — 2 byte signature — 64 byte partition table = 446 bytes for bootloading

- Newer MBRs include more details, reducing the MBR loader size to 434-436
bytes, broken into two parts

- Advanced bootloaders like LILO and GRUB clearly can't fit in this small space

- The bootloader itself is broken into multiple stages
- Stage 1 is 512 bytes, responsible for loading stage 2 into memory
- Stage 2 is much larger, e.g. 100s of KBs

.. B
Bootloading and MBRs (3)

- MBR loaders use a mechanism called chain loading
- Emulate the BIOS mechanism, so partition loader doesn’t need to know it wasn’t loaded by
the BIOS
- MBR loads the next bootloader into address 0x7CO00, then jumps to that
address and begins running it

- Also retains other register values from BIOS, e.g. $d1 contains same value that BIOS
passed to the MBR loader

- Of course, the MBR loader was already at 0x7CO00...

- MBR loader copies itself to another location, then jumps to the copy of itself, before it loads
the partition boot sector

- Chain loaders often copy themselves to address 0x0600

N . S
BIOS Library Functions

- At this early stage, bootloaders rely on BIOS functions to interact with the
computer hardware

- Bootloaders have same issue that user applications have: They don’t know
the addresses of BIOS operations

- All BIOS functions are invoked via software interrupts

- Example: int $0x10 is used for video services
- Specify operation to perform in $ah
- Other parameters are stored in other registers
- Invoke int $0x10 to perform the operation

- Example: Print a ™ character in teletype mode:

movb $0x0e, %ah # Use BIOS teletype function
movb 'x' Zal

int $0x10 # Invoke BIOS video service

IA32 Memory Addressing

- A complication of OS loading is that BIOS operations require the use of x86
real-addressing mode

- An ancient memory-addressing mode used by original 8086/8088

- IA32 architecture has several memory-addressing modes
- Some provide advanced ways for modern operating systems to manage memory
- Others are required for backward compatibility

- The ultimate goal of the OS is to get into protected-mode memory addressing
- Supports memory protections, virtual memory management, etc.
- At that point, BIOS calls will no longer work!

.
Protected Mode and BIOS

- Once the system is in protected mode, we can no longer use BIOS functions

to interact with the hardware
- Problem: BIOS uses (and requires) IA32 real-addressing mode
- Problem: BIOS uses 16-bit Interrupt Vector Table entries

- From this point forward, the operating system must use its own device

drivers to interact with computer hardware
- Software components that know how to interact with a specific kind of device, but that also
present a simple, generic interface

- OS device drivers often reinitialize the hardware to suit the needs/preferences
of the operating system

.
IA32 BIOS Bootstrap Process — Summary

- At power on, |IA32 processor starts executing instructions at the address
OxFFFFFFFO

- A ROM memory is positioned at this hardware address to jump to BIOS bootstrap code

- BIOS bootstrap code performs a power-on self test if it was a hardware reset
(skips if software reset)

- Next, BIOS attempts to load the first 512-byte sector of each bootable device
in the system at address 0x7CO00

- On success, BIOS jumps to address 0x7CO00 for next stage of boot

- If it's an MBR bootloader, it must chain-load the boot sector for the operating
system to start

- Finally, the OS bootloader must load the OS kernel into memory and jump to
the kernel bootstrap code

. R
Plug and Play

- Another major issue from BIOS bootstrap: BIOS only exposes very basic
device functionality and access

- “Lowest Common Denominator” type functionality
- To identify other devices in the computer, the OS kernel had to probe various
|O ports and see what responded
- e.g. sound cards, graphics cards, networking cards, etc.

- Sometimes multiple devices would use the same ports...

- Sometimes probing for one kind of device could cause another kind of device
to hang the system...

- Over time, several standards were published to make PC systems more
“‘plug-and-play” capable

- Allow the OS to identify and configure hardware devices safely and automatically, via
standard mechanisms

Plug and Play (2)

- To support a “plug-and-play” auto-discovery mechanism, the hardware bus
protocol must be updated:
- Devices must include a vendor-specified device ID and type value
- Must specify a standard mechanism for querying this information off of all bus devices
- When system buses are initialized, system can enumerate devices connected to the bus
and handle each device’s basic initialization
- Example plug-and-play buses:
- PCI family of buses (PCI, PCI Express, Mini PCI, etc.)
- USB, FireWire
- PC Card/PCMCIA (for removable laptop peripherals)

Plug and Play (3)

- With hardware that facilitates device discovery, systems began providing more
detailed information to the OS
- Frequently exposed as tables of data set up by the BIOS during bootstrap

- Example: Intel MultiProcessor Specification (1997)
- ldentifies processor manufacturer, model number, etc.
- ldentifies all system buses, processors, processor APIC IDs, etc.
- Table is set up by the BIOS at startup time
- A multiprocessor operating system can locate this table and use it to run processes on all
available processors

. N
ACPI Standard

- One of the more notable standards is the ACPI standard
- Advanced Configuration and Power Interface

- Defines a platform-independent interface for hardware discovery, configuration, power
management and monitoring

- Replaces several previous standards

- ACPI primarily consists of a large number of tables that contain platform
configuration details

- All tables are accessible through a structure called the Root System
Description Pointer

- Tables include details for all major aspects of the system

- Tables are initialized by bootstrap firmware
- e.g. multicore/multiprocessor and APIC details
- e.g. memory characteristics and memory topology

Unified Extensible Firmware Interface

- Data tables are helpful...
- BIOS is still very limiting for modern OSes to deal with

- Can’t even use it after switching to protected mode

- A new standard has emerged: Unified Extensible Firmware Interface (UEFI)
- Completely replaces the old BIOS interface with a new, modular, extensible firmware

- Prompted by Intel Itanium processor
- 64-bit processor, couldn’t run x86 BIOS!
- Still needed to support an operating system UEFI

- UEFI is a firmware interface standard

- Sits on top of lower-level firmware,
not directly on computer hardware

Bootloader and OS

Firmware

Hardware

2
Unified Extensible Firmware Interface (2)

- UEFI is a modular system, allowing components to be installed and removed

- Can install UEFI bootloaders for OSes on the computer
- Knows how to use UEFI services to load and run the OS
- Can install UEFI applications that allow system hardware, boot configuration,
etc. to be managed
- Runs in the “preboot environment” (before the OS is started)
- e.g. UEFI systems usually have a command shell for basic tasks
- UEFI bootloaders (a.k.a. OS loaders) are one kind of application
- UEFI drivers provide standardized abstractions for hardware, including buses
and devices
- Used by UEFI applications and OS loaders to perform their tasks

Unified Extensible Firmware Interface (3)

- UEFI also exposes its functionality via tables in memory

- Unlike ACPI and other earlier standards, UEFI includes function-pointers to
operations for programs to use

- Example: “Hello World” UEFI application
#include <efi.h>
#include <efilib.h>

EFI STATUS efi main(EFI_HANDLE ImageHandle,
EFI_SYSTEM TABLE *SystemTable {
SIMPLE TEXT OUTPUT INTERFACE *cons ole_out ;
InitializeLib (ImageHandle, SystemTable) ;
console out = SystemTable->ConOut;
uefi call wrapper (console out->OutputString, 2, console_ out,
(CHAR16 *) L"Hello World\n\r");
return EFI_ SUCCESS;

Unified Extensible Firmware Interface (4)

- Another picture of UEFI:
Operating System

EFI OS Loader

EFI| Boot Services

Other

Required
Standards Platform g SYSIE

e.g. ACPI Hardware Partition

- UEFI provides some of its functionality in firmware...
- UEFI modules are often stored on a special disk partition
- The EFI System Partition is the first partition of a disk in the system

- Often a simple format that can be supported in firmware, e.g. FAT32

. S
UEFI and Disk Partitioning

- UEFI addresses another issue: disk partitioning

- Problem: Master Boot Records specify partitions using 32-bit values
- (32-bit start, 32-bit size, 512-byte sectors)
- Limits partitions to 2TiB in size!
- Solution: GUID Partition Tables (GPT)
- GUID = Globally Unique ID, a 128-bit identifier with a high likelihood of being unique

- Partition descriptors use 64-bit values — 9.4 zettabyte (8x1021, or 8 zebibytes =
8x512x264 byte) partitions!

- Disks, partition types and partitions all identified by GUIDs
- Partition-type GUIDs are standardized

- (MBR uses a 1-byte value to indicate partition type)

B
GUID Partition Tables

- Also allows up to 128 partitions per hard disk
- GUID partition table occupies 33 sectors at the start of the disk

- A “legacy MBR” occupies first sector (LBA 0)
- Includes a single partition that covers the entire disk
- Partition type is set to a value unused by all major OSes

- Reason: if a legacy MBR tool is used on the disk, it won’t be as likely to mangle the GUID
partition table on the disk

- Disks with GUID Partition Tables maintain two GPTs
- ldentical copies, kept at the start and end of the disk
- Reduces likelihood that corruption will render the disk unusable

- Most modern OSes can use GUID partition tables now
- Not all of them can boot off of a GPT disk without firmware support

.
GUID Partition Tables and UEFI

- UEFI specification includes the GUID partition table spec
- UEFI requires GUID partition tables
- When an OS is installed on a UEFI system, the OS loader is installed into EFI

System Partition (using EFI services)
- Allows the UEFI preboot system to provide multiboot services

- UEFI is large and complex
- There are definitely bugs in UEFI implementations
- Not every company follows the UEFI standard precisely
- Bootloaders definitely still have to jump through hoops with UEFI

For More Information...

- UEFI Standards — https://uefi.org

- TianoCore — https://www.tianocore.org

- Open-source implementation of UEFI standard
- Derived from Intel's implementation of EFI for several platforms

- Includes EDK Il (EFI Development Kit) for writing UEFI components

- Windows and Linux both support UEFI
- GRUB and many other bootloaders understand UEFI

- Can install UEFI bootloaders on macOS (if you dare!)
- rEFIt — http://refit.sourceforge.net (no longer actively maintained)
- rEFInd — http://www.rodsbooks.com/refind/ (fork of rEFIt)

- VirtualBox and QEMU can both emulate UEFI hardware

Next Time

- Start exploring the process abstraction

