
OS DESIGN PATTERNS II
CS124 – Operating Systems
Spring 2024, Lecture 4

Last Time
• Began discussing general OS design patterns
• Simple structure (MS-DOS)
• Layered structure (The THE OS)
• Monolithic kernels (initial versions of UNIX)
• Modular kernels (Linux)

• Also mentioned separation of policy and mechanism as a key design goal
• Can already see that not all design patterns achieve this successfully…

2

Microkernels
• What OS facilities actually require kernel-mode access?
• Only ones that must use privileged CPU capabilities
• e.g. managing the virtual memory system or interrupt controller
• e.g. receiving interrupts from the computer hardware

• Another OS structural approach: microkernels
• Restrict the kernel to contain only a minimal set of capabilities
• Most operating system services are provided as user-mode processes

• What facilities should be included in the kernel?
• Jochen Liedtke’s “minimality principle”:

“A concept is tolerated inside the microkernel only if moving it outside the kernel, i.e.,
permitting competing implementations, would prevent the implementation of the system’s
required functionality.”

3

Microkernels (2)
• Minimal set of capabilities provided in microkernels:
• Process abstraction: context switches, CPU scheduling, interrupt handling, etc.
• Memory abstraction: process address-space isolation, kernel/user memory separation
• Inter-process communication facilities: required to allow user-mode processes to work

together to implement system facilities
• These facilities must be provided by the OS kernel
• Not really possible to support “multiple competing implementations”

without making the OS unusable…

• Microkernels tend to be extremely small (e.g. < 10K LOC)

4

Microkernels (3)
• All other facilities are provided as user-mode programs
• Device drivers, filesystems, virtual memory pagers, etc.

• Microkernels take “separation of policy and mechanism” approach to its
furthest extent
• Generally, any component that implements a system policy should be implemented as a

user-mode process
• (Want to allow multiple competing implementations, following Liedtke’s minimality principle.)

• Note: drivers often require privileged I/O port access
• Microkernel can provide facilities for granting processes access to required I/O ports

• Note: process scheduling is often implemented in-kernel
• A great candidate for multiple competing implementations, but want to avoid requiring

context-switches to and from the scheduler...

5

Microkernels (4)
• Example: use a text editor to create and save a file
• Text editor is a user-mode process (duh)
• Filesystem implementation and HDD

driver are also user-mode processes
• When text editor wants to create a file, it sends

an IPC message to the filesystem service
• Filesystem service interacts with HDD driver via IPC to create the file on the

physical disk
• When file has been created (or in event of failure), filesystem service sends an

IPC message back to editor

6

Microkernel

Text
Editor

File
System

HDD
Driver

Microkernels: Implementation Notes
• As indicated by previous example, microkernels allow processes to

communicate via message passing
• An asynchronous, one-way mechanism:

process A sends a message to process B
• Process B can query the kernel to receive

the message
• Can be implemented with kernel-level

queues for each process
• When process A sends the message, it can be copied into the kernel queue for process B
• When process B receives the message, it is copied from kernel queue into process B’s

address space
• Can provide other abstractions as well, e.g. permissions to send messages to

a given process

7

Microkernel

Text
Editor

File
System

HDD
Driver

Microkernels: Benefits
• Benefit: very reliable!
• A very small amount of kernel code to get correct

• If a system service crashes:
• It’s a user-mode process; it won’t affect overall system stability. Just restart that process.

• Caveat: reliability does not mean that state is never lost…
• When a service crashes, it may leave inconsistent state, or it may lose state
• e.g. a filesystem can still become corrupted
• e.g. a connection from a remote client can be dropped

• Solution: make services more resilient
• e.g. journaling, transacted operations, recovery, etc.
• This is not included in the microkernel, though

8

Microkernels: Benefits (2)
• Another benefit of microkernels:
• Supporting multiprocessor or multiple-computer systems becomes very easy
• Just need to extend microkernel’s IPC mechanism to support messages between

processors (or between computers)
• Interestingly, can even implement non-local IPC facility with user-mode

services
• Microkernel provides primitive IPC service between local processes
• User-mode program provides higher-level IPC mechanism between local and/or remote

processes across a network
• This capability initially made microkernels very interesting
• Companies were struggling to take earlier-generation single-CPU monolithic kernels and

port them to multiprocessor systems

9

Microkernels: Drawbacks
• Microkernels have a major drawback: Performance! L
• Message-passing is asynchronous…
• Text editor must trap to microkernel

to send IPC message to filesystem
• Microkernel verifies IPC arguments, then

stores message in filesystem queue
• Filesystem must trap to microkernel

to receive messages
• Most interactions between services are synchronous
• Process A makes a request to process B, and cannot progress until process B responds

back to process A
• A simple request-response interaction requires four system calls!

• This IPC mechanism tends to add lots of overhead L
• Kernel verification of IPC call, overhead of changing hardware protection level, managing

memory in kernel queues, etc.

10

Microkernel

Text
Editor

File
System

HDD
Driver

Microkernels: CMU Mach
• Mach is a very widely known microkernel OS
• Carnegie Mellon University project from 1985 through 1994

• Implemented on top of BSD UNIX:
• Mach started out as a set of IPC extensions to the BSD kernel
• Allowed the OS to be used and tested during development
• After IPC mechanism was completed, key components of BSD OS were migrated to using

the new IPC mechanism one by one
• Finally, OS facilities were migrated out of the kernel into user space
• Mach 3.0 was first version that was truly a microkernel OS

• Mach initially gained extensive interest, due to its ability to run on
multiprocessor and multi-server systems easily

• Unfortunately, its performance was horrible L

11

Mach Inter-Process Communication
• In CMU Mach, messages are sent to ports: bounded queues of messages

managed within the kernel
• Processes can create ports to receive messages
• Processes can specify permissions on ports
• e.g. who can send them messages, how many messages can be sent

• Messages are composed of structured data:
• Header specifying destination port, response port, message length
• Additional data containing arrays of values, pointers to more data

• The mach_msg() system call sends and receives messages
• May block if the port queue is currently full
• Can be used to send, receive, or send-then-receive

12

Microkernel

Text
Editor

File
System

HDD
Driver

Mach Inter-Process Communication (2)
• Once a message has been sent:
• The sender must be allowed to modify the original message data without affecting the

message-in-transit
• Mach tries to avoid copying message data too many times…

• Mach 2.5:
• Kernel maps message’s virtual pages into kernel-space, marks them copy-on-write
• If sender writes to message data after send, page is duplicated so that changes are local to

the sender
• When the message is received, kernel maps the message’s virtual pages into receiver’s

address space
• Mach 3.0 simplified this by duplicating sender’s message data into the kernel
• On receipt, kernel copy is mapped into receiver’s address space

13

Microkernels: CMU Mach
• Mach 3.0 revealed another drawback of microkernels:
• Different subsystems don’t always have all the details they need to make good choices

• Example: user-mode memory pager
• When kernel needs a new page, it asks the pager to choose a victim page to evict
• Premise: having the pager in user-space allows users to choose a pager that is appropriate

for the system’s usage
• Problem: the pager doesn’t understand how other parts of the operating

system behave
• In low-memory situations, the Mach pager did horribly

• In a monolithic architecture, developers can tweak pager behavior based on
knowledge of how rest of OS works…
• Under Mach, the pager doesn’t even know what all is part of the OS

14

Microkernels: L4
• Mach 4 tried to address many Mach 3 performance issues
• Performance was still very disappointing
• Projects tended to resolve performance issues by migrating services back into the kernel

• Jochen Liedtke began to study limitations of microkernels using inter-process
communication

• Liedtke realized that the inter-process communication mechanism was doing a
lot of unnecessary work…
• Implemented L3 and L4 microkernels with completely new IPC mechanisms
• Achieved an order-of-magnitude performance improvement (!!!)

15

Microkernels: L4 (2)
• L4 uses fewer system calls per IPC interaction
• Since most IPC interactions are synchronous, why not provide a single “send and then

receive” system call?
• Reduces typical 4-syscall interaction down to just 2 system calls

• L4 eliminates a copy during message-based IPC
• When Process A invokes kernel to pass a message to Process B, the kernel temporarily

maps Process B’s target memory into Process A’s address-space
• When the kernel copies the message from the sender, it automatically ends up in Process

B’s address space
• L4 handles short and long IPC messages differently
• Many IPC messages are very short (e.g. status/error responses)
• Pass the message data via registers instead of using memory

16

Microkernels: L4 (3)
• L4 performs a direct process switch whenever possible
• Example:
• Process A performs “send then receive” to Process B, which is currently blocked on

receiving a message
• Process A must wait for Process B to reply. Now A is blocked…
• But, Process B can definitely proceed
• Why invoke the scheduler if we already have a process to run?

• Produces a significant performance improvement, especially with many
synchronous IPC interactions

• Also affects the OS’ scheduling behavior in subtle ways
• e.g. when used in a real-time operating system, can negatively impact real-time guarantees

17

Microkernels: L4 (4)
• Liedtke’s work greatly revived interest in microkernels
• Problem: some of L4’s IPC techniques reduce reliability benefits that

microkernels are supposed to have
• But, there are many contexts where this is actually OK

• L4 variants are now used extensively in various ways
• Mobile devices
• Hypervisors for managing virtual machines

• Open-source development continues
• https://os.inf.tu-dresden.de/L4/
• https://www.l4ka.org/

18

https://os.inf.tu-dresden.de/L4/
https://www.l4ka.org/

Hybrid Kernels
• Microkernels have performance issues.
• Important OS services live in user space:
• Interactions between multiple services require context-switches
• IPC through the kernel requires switching between kernel mode and user mode

• Hybrid kernels retain the same conceptual structure of microkernels, but
move some services into the kernel
• High degree of modularity, even for services within the kernel
• Some services continue to be provided by user-mode processes, allowing for easy

extension of the operating system
• Of course, they also lose some reliability benefits of microkernels

• macOS (prev. Mac OS X) XNU kernel is a hybrid kernel
• Based on Mach 3.0, with BSD facilities migrated into the kernel

19

Hybrid Kernels (2)
• Windows NT is a hybrid kernel
• Initially, was heavily influenced by the Mach project
• Unfortunately, performance wasn’t satisfactory, so many services were migrated back into

the kernel
• NT still runs a number of services as user-mode programs

• ChorusOS and a few other microkernel OSes allowed services to be run in
user mode or in kernel mode
• A service can be run in user mode during development and testing
• Once it is stable, it can be co-located into the kernel to improve its performance
• Most microkernels that support co-location do this at compile time
• ChorusOS could do this at compile-time or run-time

20

Hardware Abstractions
• Both monolithic kernels and microkernels impose an abstraction over the

computer hardware
• Only real difference is where the code that provides the abstraction actually runs

• Example: the filesystem and disk files
• Applications generally don’t care about how files are stored
• Only interact with files via file-descriptors and various system calls (open, read, write,
lseek, …)

• Exokernels explore a completely different approach:
• “What if the OS didn’t force us into a specific abstraction for interacting with hardware?”

Exokernels
• Concept was devised in MIT’s Parallel and Distributed Operating Systems

(PDOS) group in 1994-1995
• Premise:
• Applications know better than operating systems what the goals of their resource-

management decisions are
• Therefore, give applications direct control over hardware

• Operating system provides minimal facilities necessary to securely multiplex
hardware resources
• It’s up to applications to use the hardware however they see fit

• An exokernel might implement its OS facilities as a monolithic kernel or a
microkernel
• Being an “exokernel” simply means no abstractions are imposed
• (Exokernels tend to be very small though.)

Exokernels (2)
• One or more “Library OSes” or libOSes run on top of the exokernel
• Provides additional abstractions on top of the computer hardware
• Frequently designed with a specific application’s needs in mind

• Applications run on top of a specific libOS
• For some apps, there is a tight coupling between the application and libOS to achieve

dramatically improved resource management

Exokernels (3)
• MIT created an experimental exokernel called XOS
• Implemented the ExOS libOS on top of XOS
• Provides standard UNIX APIs for programs to use.
• Able to run programs like emacs and gcc without any changes.
• Applications can also ignore parts of the ExOS set of abstractions

• Created a prototype webserver called Cheetah
• Custom filesystem management: files for a particular webpage are grouped together in the

same region of the disk
• Custom TCP/IP implementation:
• Uses HTTP protocol state to reduce # of TCP control packets sent to clients
• Performs TCP retransmits directly from file cache to reduce copying of data

• Result: performed 3-10x faster than comparable webservers on equivalent
hardware

24

Exokernels (4)
• A very interesting approach to kernel structure, but still a very open area of

research
• MIT Parallel / Distributed Operating Systems research on exokernels:
• https://pdos.csail.mit.edu/archive/exo/
• A few other exokernels have also been attempted

• Nemesis – an OS focused on multimedia processing
• Kernel is an exokernel
• Virtually all abstractions are implemented in the user-mode application
• https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/nemesis/

https://pdos.csail.mit.edu/archive/exo/
https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/nemesis/

OS Design Patterns: Summary
• These design patterns generally capture the spectrum of OS design
• Simple structure
• Layered structure
• Monolithic kernels, modular kernels
• Microkernels, hybrid kernels
• Exokernels

• Several other variants of these design patterns as well
• Typically are blendings of the above patterns

• Note: didn’t mention hypervisors
• Hypervisors aren’t really operating systems per se
• Facilitate running multiple OSes on a single machine

26

