
HARDWARE DETAILS
OS DESIGN PATTERNS
CS124 – Operating Systems
Spring 2024, Lecture 3

Operating System Components
• Operating systems commonly provide these

components:
• Last time:
• Applications can’t access operating system state or

code directly
• OS code and state are stored in kernel space
• Must be in kernel mode to access this data

• Application code and state is in user space

• How does the application interact with the OS?

User(s)

Applications
User Applications

System Applications

Operating System
System Calls

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication Protection
Security

Error
DetectionAccounting

2

Operating Modes and Traps
• Typical solution: application issues a trap instruction
• A trap is an intentional software-generated exception or interrupt
• (as opposed to a fault; e.g. a divide-by-zero or general protection fault)

• During OS initialization, the kernel sets up a handler to be invoked by the
processor when the trap occurs
• When the trap occurs, the processor changes the current protection level (e.g. switch from

user mode to kernel mode)
• Benefits:
• Applications can invoke OS routines without having to know what address they live at

• (and the location of OS routines can change when the OS is upgraded)
• OS can verify applications’ requests and prevent misbehavior

• e.g. check arguments to system calls, verify process permissions, etc.

3

IA32: Operating Modes and Traps
• On IA32, programs use the int instruction to cause a software interrupt

(a.k.a. software trap)
• e.g. int $0x80 is used to make Linux system calls

• On IA32, different operating modes have different stacks
• Ensures the kernel won’t be affected by misbehaving programs

• Arguments to the interrupt handler are passed in registers
• Results also come back in registers

• Example:
movl $20, %eax # Get PID of current process
int $0x80 # Invoke system call!
Now %eax holds the PID of the current process

• Of course, operating systems provide wrappers for this
int pid = getpid(); /* Does the syscall for us */

4

IA32: Interrupt Descriptor Table
• IA32 uses an Interrupt Descriptor Table (IDT) to specify handlers for interrupts
• IA32 supports 256 interrupts, so the IDT contains 256 entries

• In protected mode, each interrupt descriptor is 8 bytes
• Specifies the address of the handler (6 bytes), plus flags (2 bytes)
• (Privilege level that the handler runs at is specified elsewhere in the IA32 architecture; will

revisit this topic in the future)
• When a program issues an int n instruction:
• Processor retrieves entry n in the Interrupt Descriptor Table
• If the caller has at least the required privilege level (specified in the IDT entry), the

processor transfers control to the handler
• (if privilege level changes, the stack will be switched as well)

• The handler runs at the privilege level it requires (e.g. kernel mode)

5

IA32: Interrupt Descriptor Table (2)
• When interrupt handler is finished, it issues an iret
• Performs the same sequence of steps in reverse, ending up

back at the caller’s location and privilege level
• (if the privilege level changes, the stack will be switched again)

• Location of Interrupt Descriptor Table can be set with the lidt IA32
instruction
• Can only be executed in kernel mode (level 0)
• Operating system can configure the IDT to point to its entry-point(s)

• If you’re wondering:
• IA32 processors start out in kernel mode when reset
• Allows OS to perform initial processor configuration (interrupt handlers, virtual memory, etc.)

before switching to user mode
• Will discuss bootstrap sequence in much more detail next week

6

Exceptional Control Flow
• Exceptional control flow is very important for many other OS facilities
• Already saw traps
• Intentional, software-generated exceptions
• Frequently used to invoke operating system services
• Returns to next instruction

• Interrupts are caused by hardware devices connected to the processor
• Signals that a device has completed a task, etc.
• The current operation is interrupted, and control switches to the OS
• OS handles interrupt, then go back to what was being done before
• Returns to next instruction

7

Exceptional Flow Control (2)
• Faults are (usually unintentional) exceptions generated by attempting to

execute a specific instruction
• Signals a potentially recoverable error

• e.g. a page fault generated by the MMU
• e.g. a divide-by-zero fault generated by the ALU

• Returns to the current instruction, if the OS can recover from fault!
• Aborts are nonrecoverable hardware errors
• Often used to indicate severe hardware errors

• e.g. memory parity errors, system bus errors, cache errors, etc.
• Doesn’t return to interrupted operation

8

IA32 Aborts
• IA32 machine-check exception is an abort
• Signaled when hardware detects a fatal error

• IA32 also has a double-fault abort
• Scenario:
• User program is running merrily along… then an interrupt occurs!
• CPU looks in Interrupt Descriptor Table (configured by OS) to dispatch to interrupt handler
• When CPU attempts to invoke the handler, a fault occurs!

• e.g. a general protection fault, because the handler address was wrong
• Double-fault indicates that a fault occurred during another fault

• Another scenario that causes a double-fault:
• User program causes a page fault…
• When CPU tries to invoke page-fault handler, it causes another page-fault to occur. Rats.

9

IA32 Aborts (2)
• Double-faults are signs of operating system bugs
• It should be impossible for a user-mode program to cause one

• Of course, IA32 allows operating systems to register a double-fault handler in
the IDT (interrupt 8)

• If a fault occurs while attempting to invoke the double-fault handler,
a triple-fault occurs

• At this point, the CPU gives up.
• Enters a shutdown state that can only be cleared by a hardware reset, or (in some cases)

by certain kinds of interrupts
• You may see double- or triple-faults during the term J
• Triple-faults in Pintos can manifest by the machine rebooting over and over again in the

emulator

10

Multitasking and Hardware Timer
• Certain kinds of multitasking rely on hardware interrupts
• Early multitasking operating systems provided cooperative multitasking
• Each process voluntarily relinquishes the CPU, e.g. when it blocks for an IO operation to

complete, when it yields, or terminates
• (This would implicitly occur when certain system calls were made)

• Problem:
• Operating system is susceptible to badly designed programs that never relinquish the CPU

(e.g. buggy or malicious program)

• A number of OSes only provided cooperative multitasking:
• Windows before Win95
• MacOS before MacOS X
• Many older operating systems (but generally not UNIX variants!)

11

Multitasking and Hardware Timer (2)
• Solution: incorporate a hardware timer into the computer
• OS configures the timer to trigger after a specific amount of time
• When time runs out, the hardware timer fires an interrupt
• OS handles the interrupt by performing a context-switch to another process, then starting

the timer again
• Operating systems that can interrupt the currently running process provide

preemptive multitasking
• Obviously, all hardware timer configuration must require kernel-mode access
• Otherwise, a process could easily take all the time it wants

• Virtually all widely used OSes now have preemption
• (All UNIX variants have basically always had preemption)

12

IA32 APIC
• IA32 has a component for handling hardware interrupts: the Advanced

Programmable Interrupt Controller (APIC)
• Software interrupts are handled within the processor core itself

• The APIC handles many different source of interrupts
• The APIC is itself broken down into several different components

• The Local APIC handles:
• Interrupts from locally connected I/O

devices (single-core processors only)
• Timer-generated interrupts
• Thermal sensor interrupts
• Performance-monitoring interrupts
• Interrupts caused by APIC errors

• All of these interrupt sources have various config options

13

Processor
Core

Local APIC Local I/O
Interrupts

IA32 APIC (2)
• The I/O APIC handles interrupts from additional external devices
• Allows specific devices to be mapped to specific interrupt numbers
• Allows interrupts from different devices to be prioritized

• (e.g. if two devices signal an interrupt at the same time, which interrupt should be handled first?)

• The I/O APIC is typically part of the motherboard chipset, not the CPU

14

APIC Bus

I/O APIC External I/O
Interrupts

Processor
Core

Local APIC Local I/O
Interrupts

IA32 APIC (3)
• On a multiprocessor/multicore system:
• Local APIC no longer has local I/O interrupts
• All I/O interrupts come from the I/O APIC via the APIC bus

• I/O APIC can route external interrupts to specific processors, based on OS
configuration

• Processors can also send
inter-processor interrupts
(IPIs) to each other
• Every Local APIC has its own ID
• Can issue an IPI to a specific CPU
• Can issue an IPI to self
• Can issue an IPI to everyone
• Can issue an IPI to “everyone but self”

15

Processor
Core

Local APIC

APIC Bus

I/O APIC External I/O
Interrupts

Processor
Core

Local APIC

Long-Running I/O Operations
• Hardware interrupt handling is also very important with long-running I/O

operations (and most of them are)
• Example: hard disk I/O
• e.g. reading a block from a magnetic disk can take 3-15ms
• e.g. reading a block from an SSD can take several μs

• When a process performs a long-running I/O operation:
• Process is unable to proceed until the I/O operation completes…
• OS sets up the I/O operation, then switches to another process

that can run
• When I/O operation is finished, the hardware fires an interrupt

to notify the OS

16

(suspended)

Program A Program B

(suspended)

(suspended)

Kernel: Disk controller fires interrupt!
Switch back to Program A

read()

Kernel: Set up disk transfer
Context-switch to Program B

Summary: Hardware Requirements
• Modern operating systems rely heavily on these hardware facilities to provide

their functionality:
• At least dual-mode execution: kernel mode and user mode
• Virtual memory management, including memory protection to enforce barrier between

kernel space and user space
• Ability to trap (or otherwise transfer control) into kernel-mode code
• Support for both software interrupts (e.g. traps, faults) and hardware interrupts

(e.g. I/O devices)
• A hardware timer facility to allow OS to regain control of the CPU

• We will discuss all of these hardware capabilities in more detail in the future

17

OS Structural Patterns
• A guiding principle in OS design: separation of policy and mechanism
• Policy specifies what needs to be done
• e.g. Which virtual memory page should the OS evict?
• e.g. What process should the OS run next?

• Mechanism specifies how to do it
• e.g. how to save dirty pages, how to update the CPU’s page table to reflect the page-

out/page-in operations, other bookkeeping
• e.g. how to save the current process’ context, how to restore the new process’ context

• Mechanisms are unlikely to change substantially over time
• (In the context of a given OS and set of hardware)

• Policies are very likely to change
• May even be part of an operating system’s configuration options!

18

OS Structural Patterns (2)
• Operating systems can follow various structural patterns
• Simple structure:
• OS code is not cleanly divided into modules
• Every part of the OS can access every other part of the OS
• (Often, everything can also access the computer hardware)

• Usually happens when OS starts out as a simple, limited system and then
grows well beyond its original scope

• Problems:
• Highly susceptible to both operating system and application bugs
• Often very easy for malicious programs to compromise the OS
• Tends to be very difficult to extend the OS’ functionality

19

Simple Structure: MS-DOS
• Written for 8086/8088 processors, which had no protected mode execution
• Everything could access everything else in the system (and often did)
• Applications and resident programs

could control hardware
• e.g. computer games with specialized graphics modes
• e.g. extended-memory libraries

• Malicious programs could directly
manipulate the OS
• e.g. stealth viruses would intercept DOS
int 21 trap to make themselves invisible

20

ROM BIOS drivers

Computer Hardware (ports)

MS-DOS device drivers

Resident system programs

Application programs

OS Structural Patterns: UNIX
• Initial versions of UNIX were slightly more

structured than MS-DOS
• OS is divided into kernel and system

applications
• Initially, the kernel itself was largely

unstructured
• Also, a large amount of OS functionality

was built into the kernel itself
• Called a monolithic kernel
• Amount of code that runs in kernel mode is very large
• More chance for bugs to have a severe impact

21

User(s)

Applications
User Applications

System Applications

Operating System Kernel
System Calls

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication Protection
Security

Error
DetectionAccounting

OS Structural Patterns: UNIX (2)
• As with MS-DOS, kernel subsystems could

access any other subsystem
• Kernel runs in protected mode, so applications can’t

compromise the system easily…
• However, still susceptible to severe bugs, OS crashes
• Hard to maintain and extend

• Big benefit: it’s fast!
• Easy for kernel operations to directly access whatever

state or functions they need
• Many modern OSes include monolithic aspects in

their implementations

22

User(s)

Applications
User Applications

System Applications

Operating System Kernel
System Calls

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication Protection
Security

Error
DetectionAccounting

Layered Structure
• Want to avoid the issues of monolithic operating systems
• Introduce more structure into the design, in one way or another

• An early approach: layered structure
• Each layer encapsulates its own state, and exposes a set of operations to

higher layers
• Higher layers rely solely on the operations exposed by lower layers
• They don’t care about implementation details of lower layers, only the abstractions that the

lower layers expose
• Layers can be tested in isolation of each other, starting with the lowest layers
• Once lower layers are validated, testing can begin on higher layers

23

Layered Structure: The THE OS
• First example: the THE multiprogramming system
• Designed by a team lead by Edsger Dijkstra, at the Technische Hogeschool Eindhoven

(THE) in 1965-1968
• A batch processing system that supported multitasking

• Divided the operating system into 6 layers
• Layer i basically interacts only with layer i – 1
• Mostly true for lower layers, but higher layers might interact with multiple lower layers

• Layers implemented in bottom-up order; start with layer 0
• Each layer was heavily tested. Consequences:
• To test layer i, at least some of layer i + 1 had to be implemented
• To test each layer exhaustively, implementers spent a lot of time planning and reviewing

their tests to ensure they were complete
• (they were using a batch-processing mainframe after all)

24

Layered Structure: The THE OS (2)
• Each layer provided an abstraction for the higher layers to rely upon,

simplifying the implementation
• Layer 0: multiprogramming facilities
• CPU scheduler, including support for interrupt handling, tasks blocked on semaphores,

context switches
• Layer 1: virtual memory system, pager
• Layer 2: communication between OS and console
• Layer 3: device I/O, including buffering
• Layer 4: user programs
• The THE OS only had 5 processes, for compiling, running, and printing output from user

programs
• Layer 5: the operator (Dijkstra: “not implemented by us”)

25

Layered Structure: The THE OS (3)
• Resulted in a very reliable OS with a low rate of bugs
• Each layer was basically reliable when next layer was being tested
• Bugs tended to be very easy to identify and fix, just by inspection
• This was good – they didn’t have debugging facilities for the machine they were

programming
• Designing/implementing an OS this way takes a long time
• A lot of time spent up-front designing interfaces between the layers
• Makes it much easier to identify and isolate bugs, though
• Might actually save companies time in the long run, but companies are usually afraid of

taking that risk
• Layered approach can greatly reduce OS performance
• Interactions with the OS often require calls across many layers

• Tradeoff: make fewer layers with greater functionality
• Still realizes many of the benefits of layering

26

Modular Kernels
• Besides reliability issues, monolithic kernels also have extensibility issues
• e.g. want to support a wide range of devices, filesystems, etc.

• Example: add support for a new device to monolithic OS
• Must add the device driver to the kernel’s code-base, then recompile the entire kernel

• Leads to several problems:
• Kernel becomes huge, because it must include compiled-in support for all supported

devices, filesystems, etc.
• More code = more bugs, which makes kernel even less reliable

• Modern monolithic kernels use loadable kernel modules to provide
extensibility during normal operation
• Such kernels are called modular kernels

27

Modular Kernels (2)
• Modular kernels always include certain core services:
• e.g. CPU scheduling, virtual memory management, inter-process communication are

always compiled into the kernel
• Kernel defines interfaces for parts of kernel that require extensibility
• e.g. what set of operations must all filesystems support?

• Kernel includes a module loader that is able to load and statically link a
kernel module directly into the kernel
• At load time, module-references to kernel symbols are updated with actual addresses of

kernel variables and functions
• (Modules can also expose symbols for other modules to access)
• Module code is loaded into kernel space; code runs in kernel mode
• Modules can be unloaded, if no other module is using its symbols

28

Modular Kernels (3)
• Benefits:
• Largely retains high performance of monolithic kernels
• Modules can control what symbols they expose, and encapsulate critical module state
• Yields a much smaller monolithic kernel, since only the modules required for proper

functionality are loaded into memory
• Drawbacks:
• Only slightly reduces reliability issues!
• Modules run in kernel mode; bugs can still cause the OS to crash

• Generally, modules reference and expose symbols that are global within the
kernel
• A modular kernel doesn’t necessarily have a more well-defined structure; it’s just easier to

extend the kernel’s facilities

29

Modular Kernel Notes
• Modular kernels still frequently compile certain modules into the core kernel
• e.g. ATA drivers, SCSI drivers, filesystems commonly used with OS
• Often a requirement to make the boot process more straightforward

• The term “monolithic kernel” refers primarily to how much OS code runs in
kernel mode vs. user mode
• By now, virtually all monolithic kernels are also modular

30

Next Time
• Continue discussion of OS design patterns

31

