OS COMPONENTS
OVERVIEW OF UNIX FILE I/0O

CS124 — Operating Systems
Spring 2024, Lecture 2

.
Operating System Components (1)

- Common components of operating systems:

- Users

- Want to solve problems by using computer hardware Applications

- OS may support only one user at a time, or many
concurrent users, depending on system requirements

- Some systems usually have no users, so they have
an extremely minimal Ul

- e.g. automobile engine computers

Operating System

Computer Hardware

.
Operating System Components (2)

- Common components of operating systems:

- Applications allow users to solve problems

with the computer’s resources Applications
- Applications rely on the OS to manage those
resources
. . _ System Applications
- Some applications are provided by the . Command-Line
. Services Support
operating system
- Services for providing and managing system Operating System
resources

- Command shells (e.g. sh, csh, zsh, bash)
- GUI programs (X-server, system config tools, etc.)

Computer Hardware

. S
Operating System Components (3)

- Common components of operating systems:

- Applications allow users to solve problems

with the computer’s resources Applications
- Applications rely on the OS to manage those User Applications
resources

System Applications

° r lications ar Iign solve T
User applications are designed to Services || CoLmandtie U

specific problems

- e.g. text editors, compilers, web servers Operating System
- e.g. web browsers, word processors, spreadsheets

Computer Hardware

-5
Operating System Components (4)

- Common components of operating systems:

- The OS itself can provide many different

facilities Applications

- Not every OS provides all of these facilities... User Applications

- Most obvious facility: program execution System Applications
- Load and run programs Services Corgfgggg;tuf‘e GUI
- Optionally, ability to perform runtime linking if the OS
supports shared libraries Operating System
- Handle program termination (possibly with errors!)
- Pass along signals, etc.
Execution

Computer Hardware

5
Operating System Components (5)

- Common components of operating systems:

- Another obvious facility: resource allocation

- Resources to manage: Applications
- Processor(s) — especially if OS supports multitasking
- Main memory
- Filesystem/external storage
- Other devices/peripherals

. Filesystems: Operating System
- OS usually supports several different filesystems

. . . . P .
- May also require periodic maintenance

Resource
Allocation

Computer Hardware

System Applications

} Command-Line
Services Support GUI

Operating System Components (6)

- Common components of operating systems:

- Disks and other peripheral devices require

specific interactions to function properly Applications

- 1/0O subsystem provides facilities to control User Applications

computer hardware devices
- Often interact via I/O ports

System Applications

Command-Line

- Do not want apps to do this! Services Support Sl
- Usually modularized by using a device-driver Operating System
abstraction
° E)risseent a clean abstraction for the rest of the OS
- Encapsulate gory details of talking to hardware

Computer Hardware

.
Operating System Components (7)

- Common components of operating systems:
- Many components of OS require

communication Applications
- Collaborating processes need to share User Applications
information System Applications
- Called Inter-Process Communication (IPC) Services || “OTEnanc--ne GUI
- Many mechanisms: pipes, shared memory,
message-passing, local sockets, etc. Operating System

- Some processes need to communicate with

other computer systems

- Many kinds of networking Resource

Allocation

Computer Hardware

. ___°
Operating System Components (8)

- Common components of operating systems:

- Some OSes record resource usage data

- Accounting facility Applications
- Purpose: systems that bill users based on User Applications
CPU usage, storage, network System Applications
- Very common to bill customers for storage Services || “Ognanon ™ GUI

and network use

- Also, with hypervisors, very easy to bill
per-VM for CPU use

Operating System

Program . —
Filesystems || Commu

Eﬁgggﬁgﬁ I/O Services || Accounting

Computer Hardware

. R
Operating System Components (9)

- Common components of operating systems:

- OSes must handle various errors that occur

- Varies widely, depending on what the hardware Applications

can detect User Applications

- Common errors:
Hard disk is full, or broken
Filesystem is corrupt

Memory errors Operating System
A program behaves in an invalid way

- Less common errors: Resource - : Error
Alocation

- Processor failure, etc.

System Applications

} Command-Line
Services Support GUI

Computer Hardware

"
Operating System Components (10)

- Common components of operating systems:

- OSes must prevent many different kinds of

abuses Applications

- OS must be able to protect itself from
malicious programs System Applications

- Applications are not allowed to directly access ||| Services || “Cmand-tine GUI

operating system code or data
- (Computer hardware must provide this capability...)

- All application-interactions with OS are
performed via system calls

Operating System
Program Filesystems || Communication Protection
Execution y Security
Resource : - Error
Allocation /O Services Detection
Computer Hardware

2
Operating System Components (11)

- Common components of operating systems:

- Operating system must also protect processes

from each other Applications

- A process should not be allowed to access another User Applications

process’ data, unless this is specifically allowed by =
the process System Applications
Command-Line GUI

- Again, this requires specific support from the Services Support
computer hardware Operating System

Program : - Protection
Resource . . Error
Allocation /O Services Detection

Computer Hardware

Protection and Security

- Will talk much more about computer hardware in future...

- Two main features on computer processors allow operating systems to
provide protection and security

- Feature 1: multiple processor operating modes

- The processor physically enforces different constraints on programs operating in different
modes

- Minimal requirement:

- Kernel mode (a.k.a. protected mode, privileged mode, etc.) allows a program full access to
all processor capabilities and operations

- User mode (a.k.a. normal mode) only allows a program to use a restricted subset of
processor capabilities

- The operating system kernel is the part of the OS that runs in kernel mode
- The OS may have [many] other components running in user mode

Protection and Security (2)

- Some processors provide more than two operating modes

- Called hierarchical protection domains
or protection rings

- Higher-privilege rings can also access
lower-privilege operations and data

- IA32 provides four operating modes
- Level O = kernel mode; level 3 = user mode
- Support for multiple protection levels
IS ubiquitous, even in mobile devices

- e.9. ARMv7 processors in modern smartphones
have 8 different protection levels for different scenarios

Level 3
Level 2

Level 1

Protection and Security (3)

- Feature 2: virtual memory
- The processor maps virtual addresses to physical addresses using a page table
- The memory management unit (MMU) performs this translation

- Translation Lookaside Buffers (TLBs) cache page table entries to avoid memory access
overhead when translating addresses

- Only the kernel can manipulate the MMU’s configuration, etc.
- Again, will discuss virtual memory much more in the future

CPU

TLB Main Memory

mov 307, %ebx
VPN PTE

> MMU

Page Table

Physical Address >

Virtual Address

< Data >

PTE

Protection and Security (4)

1 (] P _ .f.
- Virtual memory allows OS to give each N g oy
process its own isolated address space each process - Kernel stack Kernel
= Virtua
- Processes have identical memory layouts, hM_aprIDing to memory
simplifying compilation, linking and loading L | Pysiear memery
. _ |dentical for Kernel code
- Regions of memory can also be restricted to eagjcgg%gﬁsé%{ and global data | _
kernel-mode access only, or allow user-mode sesp Userft“k
access "
- Called kernel space and user space R R i
- If user-mode code tries to access kernel space, Process
processor notifies the OS ek A *‘rfr']gl;ﬁc')ry
- Only kernel can manipulate this configuration! ol
Uninitialized data (.bss)
Initialized data (.data)
0x08048000 Program text (. text)
0 Forbidden)

Protection and Security (9)

: : P -specif
- The OS must track certain details for each process gl
. ’ ' eaclherreorzzegst 7 B, S Kernel
e.g. process’ memory mapping p Kerne
- e.g. the process’ scheduling configuration and behavior o I\gacg?lr?]% :T?ory memory
g ysi
- A process can’t be allowed to access these dentical for Kermel code
details directly! sitvooenllll| cncoichelcez |
User stack
- Just as with global kernel state, allowing direct access vesp v
would open security holes A
- Process must ask the kernel to manipulate this state R i
: 0x40000000
on its behalf Process
brk T »\rgretlrJr?ch
. Run-time heap
- Example: Console and file IO (via malloc)
Uninitialized data (.bss)
Initialized data (.data)
0x08048000 Program text (. text)
0 Forbidden ‘

. N
Console and File I/O

- You run a program on a Windows or UNIX system...
- The OS sets up certain basic facilities for your program to use

- Standard input/output/error streams
- What print£f () and scanf () use by default

- Standard input/output/error streams can be from:
- The console/terminal

- Redirected to/from disk files
- Your program sees the contents of a disk file on its standard input
- What your program writes on standard output goes to a file on disk
- Redirected to/from another process!
- Your program sees output of another process on its standard input
- Your program’s standard output is fed to another process’ standard input

. N
UNIX File/Console 10

- All input/output is performed with UNIX system functions:
ssize t read(int filedes, void *buf, size t nbyte)

ssize t write(int filedes, const void *buf,
size t nbyte)

- Attempt to read or write nbyte bytes to file specified by filedes
- Actual number of bytes read or written is returned by the function
- EOF indicated by 0O return-value; errors indicated by values < 0
- The user program requests that the kernel reads or writes up to nbyte bytes,
on behalf of the process
- read () and write () are system calls
- Frequently takes a long time (milliseconds or microseconds; even more for user input)

- Kernel often initiates the request, then context-switches to another process until 1/0
subsystem fires an interrupt to signal completion

2
UNIX File/Console 10 (2)

- £filedes is a file descriptor
- A nonnegative integer value that represents a specific file or device

- Processes can have multiple open files
- Each process’ open files are recorded in an array of pointers

- Array elements point to £ile structs describing the open file,
e.g. the process’ current read/write offset within the file

- filedes is simply an index into this array
- (Each process has a cap on total # of open files)
- Every process has this data structure, but processes
are not allowed to directly manipulate it
- The kernel maintains this data structure on behalf of each process

. B
UNIX File/Console |10 (3)

- Individual £ile structs reference the actual file_ops
details of how to interact with the file f"ina?;ne
- Allows OS to support many kinds of file objects, size

not just disk files flags

- file ops is a struct containing function-pointers

for common operations supported by all file types, e.qg.

struct file operations {
ssize t (*read) (file *f, void *buf, size t nb);
ssize t (*write) (file *f, void *buf, size t nb);

};

e
UNIX File/Console 10 (4)

- Individual £ile structs reference the actual
details of how to interact with the file

- Allows OS to support many kinds of file objects,
not just disk files

- Kernel can easily read and write completely
different file types using indirection
// Kernel code for read(filedes,buf,6 nbyte)
file *f = files[filedes];
f->v ptr->file ops->read(file, buf, nbyte);

3
UNIX File/Console 1O (5)

- Levels of indirection also allow multiple processes to have the same file open
- Each process has its own read/write offset for the file
- Operations are performed against the same underlying disk file

e
|
|

| Process A

' Kernel Data

|

|

|

|

i

| file ops

——— T T T fl | ename
Kernel Data : size

flags

|
|
|
|
|
|
|
|
|
|
|
|
|
:
:
Process B : path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—_—_————e e B —_——_———————— e ——

. S
UNIX Standard I/O

- When a UNIX process is initialized by the OS, standard input/output/error
streams are set up automatically

- Almost always:
- File descriptor 0 = standard input
- File descriptor 1 = standard output
- File descriptor 2 = standard error

- For sake of compatibility, always use constants defined in unistd.h
standard header file
- STDIN FILENO = file descriptor of standard input
- STDOUT FILENO = file descriptor of standard output
- STDERR FILENO = file descriptor of standard error

B
UNIX Standard I/O and Command Shells

- Most programs don’t really care about where stdin and stdout go, as long as
they work

- Command shells care very much!

grep Allow < logfile.txt > output. txt
- Shell sets grep’s stdin to read from logfile. txt

- Shell sets grep’s stdout to write to the file output. txt
- (If output. txt exists, it is truncated)

- Once stdin and stdout are properly set, grep is invoked:
- argc = 2, argv = {"grep", "Allow", NULL}

B
UNIX Command Shell Operation

- UNIX command shells generally follow this process:

1.

Wait for a command to be entered on the shell’s standard input (usually entered by a user
on the console, but not always!)

Tokenize the command into an array of tokens

If tokens[0] is an internal shell command (e.g. history or export) then handle the
internal command, then go back to 1.

Otherwise, fork () off a child process to execute the program. wait () for the child
process to terminate, then go back to 1.

- Child process:

1.

If the parsed command specifies any redirection, modify stdin/stdout/stderr based on the
command, and remove these tokens from the tokenized command

execve () the program specified in tokens[0], passing tokens as the program’s
arguments

If we got here, execution failed (e.g. file not found)! Report error.

Command Shell and Child Process

- How does the child process output to the command shell’s standard output?
How does it get the shell’s stdin?

- When a UNIX process is forked, it is a near-identical copy of the parent
process
- Only differences: process ID and parent process ID

- Specifically, the child process has the same files open as the parent process
- And they have the exact same file descriptors

Command Shell and Child Process (2)

- When child process reads stdin and writes stdout/stderr, it writes the exact
same files that the command-shell has as stdin/stdout/stderr

' Command

' Shell

raﬁli(; ______________________________________ filenam
Process | == . hath

|
|
|
i size
| ' S flags
|
|
|
|

—_——— e e

Command Shell and Child Process (3)

- If command redirects e.g. output to a file, clearly can’t have the command-
shell process do it before forking...

- Would work fine for the child process, but the command-shell’s I/O state would be broken
for subsequent commands

flags

e
 Command :i Global Kernel Data !
|
' Shell ! |
| Ly i
' |
' |
' |
i |
ajab=laal~ I
|
- . _____________—_—-/—- I i
Child ilg
Process 1
1
| flags '
|
|
|_i_node _ |
|
|
|

Command Shell and Child Process (4)

- Child process must set up stdin, stdout, and stderr before it executes the
actual program

- How does a process change what file is referenced by a given file descriptor?
- Process must ask the kernel to modify the file descriptors

' Command

' Shell

FEHII(; ______________________________________ filenam
Process | == . hath

|
|
|
i size
| ' flags
|
|
|
|

—_——— e e

Manipulating File Descriptors

- UNIX provides two system calls: dup () and dup2 ()
-int dup(int filedes)

- Duplicates the specified file descriptor, returning
a new, previously unused file descriptor

- Note that the internal £ile struct is not duplicated,
only the pointer to the £ile struct!

- Implication:
- Reads, writes and seeks through both file descriptors affect a single shared file-offset value
- Even though the one file has two descriptors, should call close () on each

descriptor
- Remember: each process has a maximum number of open files
- (Kernel won't free the £ile struct until it has no more references)

2z
Manipulating File Descriptors (2)

int dup2(int filedes, int filedes2)
- Duplicates the specified file descriptor into the descriptor specified by filedes2

- If £filedes2 is already an open file, it is closed before dup2 () duplicates £iledes
* (Unless filedes == filedes2, in which case nothing is closed)

- This function allows the command-shell’'s child process to redirect standard

input and output

- e.g. to replace stdout with a file whose descriptor is in £d:
dup2 (fd, STDOUT FILENO) ;

- As before, the file descriptor that was duplicated should be closed to keep

from leaking descriptors
- close(£fd) ;

3
Manipulating File Descriptors (3)

- Previous example:
- grep Allow < logfile.txt > output.txt

- After command shell forks off a child process, the child can execute code like
this, before it starts grep:

int in fd, out fd;

in fd = open("logfile.txt", O RDONLY) ;
dup2 (in_fd, STDIN FILENO) ; /* Replace stdin */
close(in fd) ;

out fd = open("output.txt", O CREAT | O TRUNC | O WRONLY, O0);
dup2 (out fd, STDOUT FILENO); /* Replace stdout */
close (out £fd);

Next Time

- Operating system architectural approaches
- Overview of computer hardware and interface with OS

