
OS COMPONENTS
OVERVIEW OF UNIX FILE I/O
CS124 – Operating Systems
Spring 2024, Lecture 2

Operating System Components (1)
• Common components of operating systems:
• Users:
• Want to solve problems by using computer hardware
• OS may support only one user at a time, or many

concurrent users, depending on system requirements
• Some systems usually have no users, so they have

an extremely minimal UI
• e.g. automobile engine computers

User(s)

Applications

Operating System

Computer Hardware

User(s)

2

Operating System Components (2)
• Common components of operating systems:
• Applications allow users to solve problems

with the computer’s resources
• Applications rely on the OS to manage those

resources
• Some applications are provided by the

operating system
• Services for providing and managing system

resources
• Command shells (e.g. sh, csh, zsh, bash)
• GUI programs (X-server, system config tools, etc.)

User(s)

Applications

Operating System

Computer Hardware

Applications

System Applications
Command-Line

Support GUIServices

3

Operating System Components (3)
• Common components of operating systems:
• Applications allow users to solve problems

with the computer’s resources
• Applications rely on the OS to manage those

resources
• User applications are designed to solve

specific problems
• e.g. text editors, compilers, web servers
• e.g. web browsers, word processors, spreadsheets

User(s)

Applications

Operating System

Computer Hardware

User Applications

System Applications
Command-Line

Support GUIServices

4

Operating System Components (4)
• Common components of operating systems:
• The OS itself can provide many different

facilities
• Not every OS provides all of these facilities…

• Most obvious facility: program execution
• Load and run programs
• Optionally, ability to perform runtime linking if the OS

supports shared libraries
• Handle program termination (possibly with errors!)
• Pass along signals, etc.

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line
Support GUIServices

Operating System

Program
Execution

5

Operating System Components (5)
• Common components of operating systems:
• Another obvious facility: resource allocation
• Resources to manage:
• Processor(s) – especially if OS supports multitasking
• Main memory
• Filesystem/external storage
• Other devices/peripherals

• Filesystems:
• OS usually supports several different filesystems
• May also require periodic maintenance

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line
Support GUIServices

Program
Execution Filesystems

Resource
Allocation

6

Operating System Components (6)
• Common components of operating systems:
• Disks and other peripheral devices require

specific interactions to function properly
• I/O subsystem provides facilities to control

computer hardware devices
• Often interact via I/O ports
• Do not want apps to do this!

• Usually modularized by using a device-driver
abstraction
• Present a clean abstraction for the rest of the OS

to use
• Encapsulate gory details of talking to hardware

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

7

Operating System Components (7)
• Common components of operating systems:
• Many components of OS require

communication
• Collaborating processes need to share

information
• Called Inter-Process Communication (IPC)
• Many mechanisms: pipes, shared memory,

message-passing, local sockets, etc.
• Some processes need to communicate with

other computer systems
• Many kinds of networking

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication

8

Operating System Components (8)
• Common components of operating systems:
• Some OSes record resource usage data
• Accounting facility

• Purpose: systems that bill users based on
CPU usage, storage, network

• Very common to bill customers for storage
and network use

• Also, with hypervisors, very easy to bill
per-VM for CPU use

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication

Accounting

9

Operating System Components (9)
• Common components of operating systems:
• OSes must handle various errors that occur
• Varies widely, depending on what the hardware

can detect
• Common errors:
• Hard disk is full, or broken
• Filesystem is corrupt
• Memory errors
• A program behaves in an invalid way
• Printer has no paper or ink

• Less common errors:
• Processor failure, etc.

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication

Error
DetectionAccounting

10

Operating System Components (10)
• Common components of operating systems:
• OSes must prevent many different kinds of

abuses
• OS must be able to protect itself from

malicious programs
• Applications are not allowed to directly access

operating system code or data
• (Computer hardware must provide this capability…)

• All application-interactions with OS are
performed via system calls

User(s)

Applications
User Applications

System Applications

Operating System
System Calls

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication Protection
Security

Error
DetectionAccounting

11

Operating System Components (11)
• Common components of operating systems:
• Operating system must also protect processes

from each other
• A process should not be allowed to access another

process’ data, unless this is specifically allowed by
the process

• Again, this requires specific support from the
computer hardware

User(s)

Applications
User Applications

System Applications

Operating System
System Calls

Computer Hardware

Command-Line
Support GUIServices

Program
Execution

I/O Services

Filesystems

Resource
Allocation

Communication Protection
Security

Error
DetectionAccounting

12

Protection and Security
• Will talk much more about computer hardware in future…
• Two main features on computer processors allow operating systems to

provide protection and security
• Feature 1: multiple processor operating modes
• The processor physically enforces different constraints on programs operating in different

modes
• Minimal requirement:
• Kernel mode (a.k.a. protected mode, privileged mode, etc.) allows a program full access to

all processor capabilities and operations
• User mode (a.k.a. normal mode) only allows a program to use a restricted subset of

processor capabilities
• The operating system kernel is the part of the OS that runs in kernel mode
• The OS may have [many] other components running in user mode

13

Protection and Security (2)
• Some processors provide more than two operating modes
• Called hierarchical protection domains

or protection rings
• Higher-privilege rings can also access

lower-privilege operations and data
• IA32 provides four operating modes
• Level 0 = kernel mode; level 3 = user mode

• Support for multiple protection levels
is ubiquitous, even in mobile devices
• e.g. ARMv7 processors in modern smartphones

have 8 different protection levels for different scenarios

14

Level 3

Level 2

Level 1

Level 0

Protection and Security (3)
• Feature 2: virtual memory
• The processor maps virtual addresses to physical addresses using a page table
• The memory management unit (MMU) performs this translation
• Translation Lookaside Buffers (TLBs) cache page table entries to avoid memory access

overhead when translating addresses
• Only the kernel can manipulate the MMU’s configuration, etc.

• Again, will discuss virtual memory much more in the future

15

CPU
Main Memory

mov 307, %ebx

Physical Address
MMU

Virtual Address

Page Table

TLB

VPN PTE

PTE

Data

Protection and Security (4)
• Virtual memory allows OS to give each

process its own isolated address space
• Processes have identical memory layouts,

simplifying compilation, linking and loading
• Regions of memory can also be restricted to

kernel-mode access only, or allow user-mode
access
• Called kernel space and user space
• If user-mode code tries to access kernel space,

processor notifies the OS
• Only kernel can manipulate this configuration!

16

Process-specific
data structures
Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Kernel
virtual
memory

Different for
each process

Identical for
each process

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

Process
virtual
memory

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

Protection and Security (5)
• The OS must track certain details for each process
• e.g. process’ memory mapping
• e.g. the process’ scheduling configuration and behavior

• A process can’t be allowed to access these
details directly!
• Just as with global kernel state, allowing direct access

would open security holes
• Process must ask the kernel to manipulate this state

on its behalf

• Example: Console and file IO

17

Process-specific
data structures
Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Kernel
virtual
memory

Different for
each process

Identical for
each process

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

Process
virtual
memory

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

Console and File I/O
• You run a program on a Windows or UNIX system…
• The OS sets up certain basic facilities for your program to use

• Standard input/output/error streams
• What printf() and scanf() use by default

• Standard input/output/error streams can be from:
• The console/terminal
• Redirected to/from disk files
• Your program sees the contents of a disk file on its standard input
• What your program writes on standard output goes to a file on disk

• Redirected to/from another process!
• Your program sees output of another process on its standard input
• Your program’s standard output is fed to another process’ standard input

18

UNIX File/Console IO
• All input/output is performed with UNIX system functions:
ssize_t read(int filedes, void *buf, size_t nbyte)
ssize_t write(int filedes, const void *buf,
 size_t nbyte)
• Attempt to read or write nbyte bytes to file specified by filedes
• Actual number of bytes read or written is returned by the function
• EOF indicated by 0 return-value; errors indicated by values < 0

• The user program requests that the kernel reads or writes up to nbyte bytes,
on behalf of the process
• read() and write() are system calls
• Frequently takes a long time (milliseconds or microseconds; even more for user input)
• Kernel often initiates the request, then context-switches to another process until I/O

subsystem fires an interrupt to signal completion

19

UNIX File/Console IO (2)
• filedes is a file descriptor
• A nonnegative integer value that represents a specific file or device

• Processes can have multiple open files
• Each process’ open files are recorded in an array of pointers
• Array elements point to file structs describing the open file,

e.g. the process’ current read/write offset within the file
• filedes is simply an index into this array
• (Each process has a cap on total # of open files)

• Every process has this data structure, but processes
are not allowed to directly manipulate it
• The kernel maintains this data structure on behalf of each process

files[0]
files[1]
files[2]

…
files[3]

offset
flags

v_ptr

offset
flags

v_ptr

20

UNIX File/Console IO (3)
• Individual file structs reference the actual

details of how to interact with the file
• Allows OS to support many kinds of file objects,

not just disk files

• file_ops is a struct containing function-pointers
for common operations supported by all file types, e.g.
struct file_operations {
 ssize_t (*read)(file *f, void *buf, size_t nb);
 ssize_t (*write)(file *f, void *buf, size_t nb);
 ...
};

21

filename
file_ops

i_node

path
size
flags

…

files[0]
files[1]
files[2]

…
files[3]

offset
flags

v_ptr

offset
flags

v_ptr

UNIX File/Console IO (4)
• Individual file structs reference the actual

details of how to interact with the file
• Allows OS to support many kinds of file objects,

not just disk files

• Kernel can easily read and write completely
different file types using indirection
// Kernel code for read(filedes,buf,nbyte)
file *f = files[filedes];
f->v_ptr->file_ops->read(file, buf, nbyte);

22

filename
file_ops

i_node

path
size
flags

…

files[0]
files[1]
files[2]

…
files[3]

offset
flags

v_ptr

offset
flags

v_ptr

UNIX File/Console IO (5)
• Levels of indirection also allow multiple processes to have the same file open
• Each process has its own read/write offset for the file
• Operations are performed against the same underlying disk file

23

files[0]
files[1]
files[2]

…
files[3]

offset
flags

v_ptr

files[0]
files[1]
files[2]

…

files[3]

offset
flags

v_ptr

files[4]
files[5]

Process A
Kernel Data

Process B
Kernel Data

Global Kernel Data

filename
file_ops

i_node

path
size
flags

UNIX Standard I/O
• When a UNIX process is initialized by the OS, standard input/output/error

streams are set up automatically
• Almost always:
• File descriptor 0 = standard input
• File descriptor 1 = standard output
• File descriptor 2 = standard error

• For sake of compatibility, always use constants defined in unistd.h
standard header file
• STDIN_FILENO = file descriptor of standard input
• STDOUT_FILENO = file descriptor of standard output
• STDERR_FILENO = file descriptor of standard error

24

UNIX Standard I/O and Command Shells
• Most programs don’t really care about where stdin and stdout go, as long as

they work
• Command shells care very much!

grep Allow < logfile.txt > output.txt
• Shell sets grep’s stdin to read from logfile.txt
• Shell sets grep’s stdout to write to the file output.txt
• (If output.txt exists, it is truncated)

• Once stdin and stdout are properly set, grep is invoked:
• argc = 2, argv = {"grep", "Allow", NULL}

25

UNIX Command Shell Operation
• UNIX command shells generally follow this process:
1. Wait for a command to be entered on the shell’s standard input (usually entered by a user

on the console, but not always!)
2. Tokenize the command into an array of tokens
3. If tokens[0] is an internal shell command (e.g. history or export) then handle the

internal command, then go back to 1.
4. Otherwise, fork() off a child process to execute the program. wait() for the child

process to terminate, then go back to 1.
• Child process:
1. If the parsed command specifies any redirection, modify stdin/stdout/stderr based on the

command, and remove these tokens from the tokenized command
2. execve() the program specified in tokens[0], passing tokens as the program’s

arguments
3. If we got here, execution failed (e.g. file not found)! Report error.

26

Command Shell and Child Process
• How does the child process output to the command shell’s standard output?

How does it get the shell’s stdin?

• When a UNIX process is forked, it is a near-identical copy of the parent
process
• Only differences: process ID and parent process ID

• Specifically, the child process has the same files open as the parent process
• And they have the exact same file descriptors

27

Command Shell and Child Process (2)
• When child process reads stdin and writes stdout/stderr, it writes the exact

same files that the command-shell has as stdin/stdout/stderr

28

Global Kernel Data

filename
file_ops

i_node

path
size
flags

filename
file_ops

i_node

path
size
flags

files[0]
files[1]
files[2]

…

offset
flags

v_ptr

Command
Shell

offset
flags

v_ptroffset
flags

v_ptr

filename
file_ops

i_node

path
size
flags

files[0]
files[1]
files[2]

…

offset
flags

v_ptr

Child
Process

offset
flags

v_ptroffset
flags

v_ptr

Command Shell and Child Process (3)
• If command redirects e.g. output to a file, clearly can’t have the command-

shell process do it before forking…
• Would work fine for the child process, but the command-shell’s I/O state would be broken

for subsequent commands

29

Global Kernel Data

filename
file_ops

i_node

path
size
flags

filename
file_ops

i_node

path
size
flags

files[0]
files[1]
files[2]

…

offset
flags

v_ptr

Command
Shell

offset
flags

v_ptroffset
flags

v_ptr

filename
file_ops

i_node

path
size
flags

files[0]
files[1]
files[2]

…

offset
flags

v_ptr

Child
Process

offset
flags

v_ptroffset
flags

v_ptr

Command Shell and Child Process (4)
• Child process must set up stdin, stdout, and stderr before it executes the

actual program
• How does a process change what file is referenced by a given file descriptor?
• Process must ask the kernel to modify the file descriptors

30

Global Kernel Data

filename
file_ops

i_node

path
size
flags

filename
file_ops

i_node

path
size
flags

files[0]
files[1]
files[2]

…

offset
flags

v_ptr

Command
Shell

offset
flags

v_ptroffset
flags

v_ptr

filename
file_ops

i_node

path
size
flags

files[0]
files[1]
files[2]

…

offset
flags

v_ptr

Child
Process

offset
flags

v_ptroffset
flags

v_ptr

Manipulating File Descriptors
• UNIX provides two system calls: dup() and dup2()
• int dup(int filedes)
• Duplicates the specified file descriptor, returning

a new, previously unused file descriptor
• Note that the internal file struct is not duplicated,

only the pointer to the file struct!
• Implication:
• Reads, writes and seeks through both file descriptors affect a single shared file-offset value

• Even though the one file has two descriptors, should call close() on each
descriptor
• Remember: each process has a maximum number of open files
• (Kernel won’t free the file struct until it has no more references)

31

offset
flags

v_ptr

files[0]
files[1]
files[2]

…

files[3]
…files[4]

Manipulating File Descriptors (2)
• int dup2(int filedes, int filedes2)
• Duplicates the specified file descriptor into the descriptor specified by filedes2
• If filedes2 is already an open file, it is closed before dup2() duplicates filedes
• (Unless filedes == filedes2, in which case nothing is closed)

• This function allows the command-shell’s child process to redirect standard
input and output
• e.g. to replace stdout with a file whose descriptor is in fd:
dup2(fd, STDOUT_FILENO);

• As before, the file descriptor that was duplicated should be closed to keep
from leaking descriptors
• close(fd);

32

Manipulating File Descriptors (3)
• Previous example:
• grep Allow < logfile.txt > output.txt

• After command shell forks off a child process, the child can execute code like
this, before it starts grep:
int in_fd, out_fd;

in_fd = open("logfile.txt", O_RDONLY);
dup2(in_fd, STDIN_FILENO); /* Replace stdin */
close(in_fd);

out_fd = open("output.txt", O_CREAT | O_TRUNC | O_WRONLY, 0);
dup2(out_fd, STDOUT_FILENO); /* Replace stdout */
close(out_fd);

33

Next Time
• Operating system architectural approaches
• Overview of computer hardware and interface with OS

34

