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Operating System Components (1)
• Common components of operating systems:
• Users:
• Want to solve problems by using computer hardware
• OS may support only one user at a time, or many

concurrent users, depending on system requirements
• Some systems usually have no users, so they have

an extremely minimal UI
• e.g. automobile engine computers
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Operating System Components (2)
• Common components of operating systems:
• Applications allow users to solve problems

with the computer’s resources
• Applications rely on the OS to manage those

resources
• Some applications are provided by the

operating system
• Services for providing and managing system

resources
• Command shells (e.g. sh, csh, zsh, bash)
• GUI programs (X-server, system config tools, etc.)
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Operating System Components (3)
• Common components of operating systems:
• Applications allow users to solve problems

with the computer’s resources
• Applications rely on the OS to manage those

resources
• User applications are designed to solve

specific problems
• e.g. text editors, compilers, web servers
• e.g. web browsers, word processors, spreadsheets
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Operating System Components (4)
• Common components of operating systems:
• The OS itself can provide many different

facilities
• Not every OS provides all of these facilities…

• Most obvious facility:  program execution
• Load and run programs
• Optionally, ability to perform runtime linking if the OS

supports shared libraries
• Handle program termination (possibly with errors!)
• Pass along signals, etc.

User(s)

Applications
User Applications

System Applications

Operating System

Computer Hardware

Command-Line 
Support GUIServices

Operating System

Program
Execution

5



Operating System Components (5)
• Common components of operating systems:
• Another obvious facility:  resource allocation
• Resources to manage:
• Processor(s) – especially if OS supports multitasking
• Main memory
• Filesystem/external storage
• Other devices/peripherals

• Filesystems:
• OS usually supports several different filesystems
• May also require periodic maintenance
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Operating System Components (6)
• Common components of operating systems:
• Disks and other peripheral devices require

specific interactions to function properly
• I/O subsystem provides facilities to control

computer hardware devices
• Often interact via I/O ports
• Do not want apps to do this!

• Usually modularized by using a device-driver
abstraction
• Present a clean abstraction for the rest of the OS

to use
• Encapsulate gory details of talking to hardware
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Operating System Components (7)
• Common components of operating systems:
• Many components of OS require

communication
• Collaborating processes need to share

information
• Called Inter-Process Communication (IPC)
• Many mechanisms:  pipes, shared memory,

message-passing, local sockets, etc.
• Some processes need to communicate with

other computer systems
• Many kinds of networking
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Operating System Components (8)
• Common components of operating systems:
• Some OSes record resource usage data
• Accounting facility

• Purpose:  systems that bill users based on
CPU usage, storage, network

• Very common to bill customers for storage
and network use

• Also, with hypervisors, very easy to bill
per-VM for CPU use
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Operating System Components (9)
• Common components of operating systems:
• OSes must handle various errors that occur
• Varies widely, depending on what the hardware

can detect
• Common errors:
• Hard disk is full, or broken
• Filesystem is corrupt
• Memory errors
• A program behaves in an invalid way
• Printer has no paper or ink

• Less common errors:
• Processor failure, etc.
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Operating System Components (10)
• Common components of operating systems:
• OSes must prevent many different kinds of

abuses
• OS must be able to protect itself from

malicious programs
• Applications are not allowed to directly access

operating system code or data
• (Computer hardware must provide this capability…)

• All application-interactions with OS are
performed via system calls
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Operating System Components (11)
• Common components of operating systems:
• Operating system must also protect processes

from each other
• A process should not be allowed to access another

process’ data, unless this is specifically allowed by
the process

• Again, this requires specific support from the
computer hardware
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Protection and Security
• Will talk much more about computer hardware in future…
• Two main features on computer processors allow operating systems to 

provide protection and security
• Feature 1:  multiple processor operating modes
• The processor physically enforces different constraints on programs operating in different 

modes
• Minimal requirement:
• Kernel mode (a.k.a. protected mode, privileged mode, etc.) allows a program full access to 

all processor capabilities and operations
• User mode (a.k.a. normal mode) only allows a program to use a restricted subset of 

processor capabilities
• The operating system kernel is the part of the OS that runs in kernel mode
• The OS may have [many] other components running in user mode
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Protection and Security (2)
• Some processors provide more than two operating modes
• Called hierarchical protection domains

or protection rings
• Higher-privilege rings can also access

lower-privilege operations and data
• IA32 provides four operating modes
• Level 0 = kernel mode; level 3 = user mode

• Support for multiple protection levels
is ubiquitous, even in mobile devices
• e.g. ARMv7 processors in modern smartphones

have 8 different protection levels for different scenarios
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Protection and Security (3)
• Feature 2:  virtual memory
• The processor maps virtual addresses to physical addresses using a page table
• The memory management unit (MMU) performs this translation
• Translation Lookaside Buffers (TLBs) cache page table entries to avoid memory access 

overhead when translating addresses
• Only the kernel can manipulate the MMU’s configuration, etc.

• Again, will discuss virtual memory much more in the future
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Protection and Security (4)
• Virtual memory allows OS to give each

process its own isolated address space
• Processes have identical memory layouts,

simplifying compilation, linking and loading
• Regions of memory can also be restricted to

kernel-mode access only, or allow user-mode
access
• Called kernel space and user space
• If user-mode code tries to access kernel space,

processor notifies the OS
• Only kernel can manipulate this configuration!
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Protection and Security (5)
• The OS must track certain details for each process
• e.g. process’ memory mapping
• e.g. the process’ scheduling configuration and behavior

• A process can’t be allowed to access these
details directly!
• Just as with global kernel state, allowing direct access

would open security holes
• Process must ask the kernel to manipulate this state

on its behalf

• Example:  Console and file IO
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Console and File I/O
• You run a program on a Windows or UNIX system…
• The OS sets up certain basic facilities for your program to use

• Standard input/output/error streams
• What printf() and scanf() use by default

• Standard input/output/error streams can be from:
• The console/terminal
• Redirected to/from disk files
• Your program sees the contents of a disk file on its standard input
• What your program writes on standard output goes to a file on disk

• Redirected to/from another process!
• Your program sees output of another process on its standard input
• Your program’s standard output is fed to another process’ standard input
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UNIX File/Console IO
• All input/output is performed with UNIX system functions:
ssize_t read(int filedes, void *buf, size_t nbyte)
ssize_t write(int filedes, const void *buf,
              size_t nbyte)
• Attempt to read or write nbyte bytes to file specified by filedes
• Actual number of bytes read or written is returned by the function
• EOF indicated by 0 return-value; errors indicated by values < 0

• The user program requests that the kernel reads or writes up to nbyte bytes, 
on behalf of the process
• read() and write() are system calls
• Frequently takes a long time (milliseconds or microseconds; even more for user input)
• Kernel often initiates the request, then context-switches to another process until I/O 

subsystem fires an interrupt to signal completion
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UNIX File/Console IO (2)
• filedes is a file descriptor
• A nonnegative integer value that represents a specific file or device

• Processes can have multiple open files
• Each process’ open files are recorded in an array of pointers
• Array elements point to file structs describing the open file,

e.g. the process’ current read/write offset within the file
• filedes is simply an index into this array
• (Each process has a cap on total # of open files)

• Every process has this data structure, but processes
are not allowed to directly manipulate it
• The kernel maintains this data structure on behalf of each process
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UNIX File/Console IO (3)
• Individual file structs reference the actual

details of how to interact with the file
• Allows OS to support many kinds of file objects,

not just disk files

• file_ops is a struct containing function-pointers
for common operations supported by all file types, e.g.
struct file_operations {
  ssize_t (*read)(file *f, void *buf, size_t nb);
  ssize_t (*write)(file *f, void *buf, size_t nb);
  ...
};
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UNIX File/Console IO (4)
• Individual file structs reference the actual

details of how to interact with the file
• Allows OS to support many kinds of file objects,

not just disk files

• Kernel can easily read and write completely
different file types using indirection
// Kernel code for read(filedes,buf,nbyte)
file *f = files[filedes];
f->v_ptr->file_ops->read(file, buf, nbyte);
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UNIX File/Console IO (5)
• Levels of indirection also allow multiple processes to have the same file open
• Each process has its own read/write offset for the file
• Operations are performed against the same underlying disk file
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UNIX Standard I/O
• When a UNIX process is initialized by the OS, standard input/output/error 

streams are set up automatically
• Almost always:
• File descriptor 0 = standard input
• File descriptor 1 = standard output
• File descriptor 2 = standard error

• For sake of compatibility, always use constants defined in unistd.h
standard header file
• STDIN_FILENO = file descriptor of standard input
• STDOUT_FILENO = file descriptor of standard output
• STDERR_FILENO = file descriptor of standard error
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UNIX Standard I/O and Command Shells
• Most programs don’t really care about where stdin and stdout go, as long as 

they work
• Command shells care very much!

grep Allow < logfile.txt > output.txt
• Shell sets grep’s stdin to read from logfile.txt
• Shell sets grep’s stdout to write to the file output.txt
• (If output.txt exists, it is truncated)

• Once stdin and stdout are properly set, grep is invoked:
• argc = 2, argv = {"grep", "Allow", NULL}
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UNIX Command Shell Operation
• UNIX command shells generally follow this process:
1. Wait for a command to be entered on the shell’s standard input (usually entered by a user 

on the console, but not always!)
2. Tokenize the command into an array of tokens
3. If tokens[0] is an internal shell command (e.g. history or export) then handle the 

internal command, then go back to 1.
4. Otherwise, fork() off a child process to execute the program.  wait() for the child 

process to terminate, then go back to 1.
• Child process:
1. If the parsed command specifies any redirection, modify stdin/stdout/stderr based on the 

command, and remove these tokens from the tokenized command
2. execve() the program specified in tokens[0], passing tokens as the program’s 

arguments
3. If we got here, execution failed (e.g. file not found)!  Report error.
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Command Shell and Child Process
• How does the child process output to the command shell’s standard output?  

How does it get the shell’s stdin?

• When a UNIX process is forked, it is a near-identical copy of the parent 
process
• Only differences:  process ID and parent process ID

• Specifically, the child process has the same files open as the parent process
• And they have the exact same file descriptors
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Command Shell and Child Process (2)
• When child process reads stdin and writes stdout/stderr, it writes the exact 

same files that the command-shell has as stdin/stdout/stderr
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Command Shell and Child Process (3)
• If command redirects e.g. output to a file, clearly can’t have the command-

shell process do it before forking…
• Would work fine for the child process, but the command-shell’s I/O state would be broken 

for subsequent commands
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Command Shell and Child Process (4)
• Child process must set up stdin, stdout, and stderr before it executes the 

actual program
• How does a process change what file is referenced by a given file descriptor?
• Process must ask the kernel to modify the file descriptors
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Manipulating File Descriptors
• UNIX provides two system calls:  dup() and dup2()
• int dup(int filedes)
• Duplicates the specified file descriptor, returning

a new, previously unused file descriptor
• Note that the internal file struct is not duplicated,

only the pointer to the file struct!
• Implication:
• Reads, writes and seeks through both file descriptors affect a single shared file-offset value

• Even though the one file has two descriptors, should call close() on each 
descriptor
• Remember:  each process has a maximum number of open files
• (Kernel won’t free the file struct until it has no more references)
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Manipulating File Descriptors (2)
• int dup2(int filedes, int filedes2)
• Duplicates the specified file descriptor into the descriptor specified by filedes2
• If filedes2 is already an open file, it is closed before dup2() duplicates filedes
• (Unless filedes == filedes2, in which case nothing is closed)

• This function allows the command-shell’s child process to redirect standard 
input and output
• e.g. to replace stdout with a file whose descriptor is in fd:
dup2(fd, STDOUT_FILENO);

• As before, the file descriptor that was duplicated should be closed to keep 
from leaking descriptors
• close(fd);
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Manipulating File Descriptors (3)
• Previous example:
• grep Allow < logfile.txt > output.txt

• After command shell forks off a child process, the child can execute code like 
this, before it starts grep:
int in_fd, out_fd;

in_fd = open("logfile.txt", O_RDONLY);
dup2(in_fd, STDIN_FILENO);    /* Replace stdin */
close(in_fd);

out_fd = open("output.txt", O_CREAT | O_TRUNC | O_WRONLY, 0);
dup2(out_fd, STDOUT_FILENO);  /* Replace stdout */
close(out_fd);
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Next Time
• Operating system architectural approaches
• Overview of computer hardware and interface with OS
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