
OPERATING SYSTEMS
CS124 – Operating Systems
Spring 2024, Lecture 1

Welcome!
• Detailed exploration of operating system implementation
• Hard prerequisite: CS24
• This is a project class:
• Every assignment requires substantial programming effort
• Most programming is C; a small amount is IA32 assembly
• Use Git version control for managing your code, making checkins, etc.
• Also, Make/Doxygen tools.

• No exams; grade is taken entirely from assignments
• Course uses the Pintos instructional operating system
• A small UNIX-like operating system with very limited capabilities
• Implemented in 2005 for use with Stanford’s CS140 OS class
• Intended to be run on IA32/x86 processor emulator (Bochs, QEMU)
• Can also run on actual IA32 hardware if properly coaxed…

2

Assignments
• Five assignments to complete throughout the term:
• Write a basic operating system shell (1 week)
• Kernel-level threading and thread-scheduling (2 weeks)
• Implement kernel system calls for user-mode programs (2 weeks)
• Implement a virtual memory system for Pintos (2 weeks)
• Implement an ext2-like filesystem for Pintos (2 weeks)

• The last assignment is due at the end of seniors’ finals week

• Assignments are weighted by how many weeks they take
• Two-week assignments are worth twice the one-week assignment

3

Assignments and Collaboration
• The assignments are hard
• Lots of code to understand, significant implementation effort, and lots of debugging to do

• You are required to work in groups of 2-3 students
• Not allowed to tackle this course individually

• Biggest reason: you will have other people to talk with, when designing and
debugging systems

• Students can drop the class, but this will affect others…
• Please only take this course if you really intend to finish it!

• If students drop later in the term, we can adjust the teams
• e.g. move a student into another team (student will have to learn the new team’s code)

4

Assignments and Collaboration (2)
• We will be using GitHub Classroom to manage code repositories, and to

facilitate collaboration
• See course Canvas page for link to join the Classroom

• Two-step submission process for each assignment:
• Push your completed work to your team’s GitHub repository
• One teammate submits the commit-hash and other details on Canvas

5

Assignments and Collaboration (3)
• Each team’s submission must be created entirely by that team alone.

Teams cannot share implementation code. Teams cannot use AI coding tools.
• Cross-team sharing is encouraged in these areas:
• Design and implementation ideas (but not code or pseudocode!)
• Pitfalls you encountered, and how to solve them
• Help with setup and debugging

• Also, Pintos has been around since 2005…
• Do not look for solutions to projects online!

• You are encouraged to look at other resources, e.g. Linux sources, other textbooks,
OS dev. websites, etc.
• Don’t copy code! (see first point above) Focus on understanding it.
• Cite any external sources in your submission, so I can share them with the class this year and

next year.

6

Assignments and Due-Dates
• Each assignment specifies a due-date (Thursdays 5pm)
• Late submissions are penalized as follows:
• 1 day late = 10% deduction
• 2 days late = 10 + 20 = 30% deduction
• 3 days late = 10 + 20 + 30 = 60% deduction
• After 4 days, don’t bother L

• Each team has 6 “late tokens”
• Each token is good for 24 hours of extension, No Questions Asked.
• In your submitted design doc, note how many tokens you are using

• Students/teams can also request extensions due to health or other reasons
• Most important thing is to try to do this beforehand, if possible

7

Development and Testing Platform
• Pintos is designed to be built and tested on 32-bit Linux
• This has become difficult for multiple reasons
• Who runs a 32-bit OS anymore?
• Apple has moved away from Intel x86 processors, to an ARM-based platform

• We have multiple possible solutions
• For Intel x86-based platforms:
• We have a VirtualBox image of 32-bit Mint Linux for you to use

• We also have Docker images for Intel- and ARM-based platforms
• There are also a few other options in the works

8

One more note…
• This course is significantly UNIX focused…
• Linux, macOS, PintOS, …

• By “UNIX” we mean UNIX and its many variants
• SysV, BSD and variants, Linux, macOS, …
• Sometimes indicated as *NIX

• Concepts appear across all major operating systems
• UNIX is just the easiest one to experiment with

• We will point out major themes of other operating systems, but
all your work will be on UNIX-style systems

9

Operating Systems
• What is an operating system?
• Most generally:
• An operating system provides applications with a standardized interface to the computer’s

hardware resources.
• An operating system manages the allocation and sharing of hardware resources to

applications that want to use them.
• Many different variations under this theme!
• How the operating system is architected
• What kinds of devices the OS runs on
• What facilities/services/guarantees the OS provides to applications

• We’ll start with the general principles first…

10

Example: Filesystems
• Many kinds of storage media used in a typical computer
• Hard disks with varying interfaces:
• Serial ATA (SATA) hard disks
• SCSI (Small Computer System Interface) or SAS (Serial Attached SCSI) disks
• On-motherboard SSDs with M.2 SATA or PCIe interfaces
• USB storage devices that can be added and removed at runtime

• Different size HDDs must be accessed in different ways
• Old disks used Cylinder-Head-Sector (CHS) addressing, but this imposed limitations on

supported disk sizes
• (Plus, modern disks have multiple zones, each with its own geometry: outer zones can fit

more sectors around the disk)
• Later disks introduced Logical Block Addressing (LBA) which supports much larger disks

11

Example: Filesystems (2)
• Different storage technologies require different kinds of maintenance
• Magnetic disks are sensitive to fragmentation
• Large files should be stored in contiguous regions of the disk, or disk-seek times will kill

access performance
• SSDs (Solid-State Drives) have a constant seek time; they don’t care about

fragmentation. But:
• SSD memory blocks must be erased before they can be rewritten, and the erase-block size

is much larger than read/write block size
• Blocks can only be erased so many times before they wear out
• To minimize performance and wear issues, the filesystem must interact with SSDs

differently than with magnetic disks

12

Example: Filesystems (3)
• Storage devices may also have many different formats!
• Hard disk drives and solid-state drives:
• NTFS (Windows)
• HPFS (older macOS)
• APFS (newer macOS)
• ext4, btrfs, and many others (Linux)

• Removable flash storage:
• FAT32
• exFAT

• Optical devices:
• ISO9660 (older CD format)
• UDF (newer CD format)

13

Filesystems: Standardized Interface (1)
• UNIX operating systems provide a simple mechanism for interacting with

storage devices in the computer:
• open() Opens a file for manipulation
• close() Closes a file
• read() Read a block of one or more bytes from a file
• write() Write a block of one or more bytes to a file
• etc.

• A Virtual File System (VFS) presents a single unified view of all disks and files
in the computer
• Root of the virtual filesystem is “/”
• Storage devices are mounted at specific paths, e.g. “/mnt/cdrom”
• Every file can be accessed by a path from the root of the filesystem

14

Filesystems: Standardized Interface (2)
• UNIX operating systems provide a simple mechanism for interacting with

storage devices in the computer:
• open() Opens a file for manipulation
• close() Closes a file
• read() Read a block of one or more bytes from a file
• write() Write a block of one or more bytes to a file
• etc.

• In fact, other devices use essentially the same interface!
• Console input and output (printf / scanf use read / write)
• Socket communications
• Pipes between processes

• Only real API difference: how to open each device

15

Filesystems: Resource Sharing
• In UNIX, multiple processes can manipulate the same file
• Scenario:
• Process A opens file foo.txt to read and write it.
• Later, process B deletes foo.txt, while A is still using it.
• (UNIX file deletion is performed using the unlink() system call)

• What should happen?
• Hardware resources are shared by multiple processes…
• The operating system must coordinate access to these shared resources in a

well-defined manner
• e.g. to maintain system security, correctness, performance, etc.

• In UNIX:
• When process B deletes foo.txt, the OS removes the path to the file. But, the actual file

still remains until process A terminates!
• After process A terminates, OS reclaims space used by foo.txt

16

Operating Systems: A Brief History
• Early general-purpose computers were mainframes
• Programmers would create jobs from a series of punch cards

• A job would be fed into mainframe by a human operator…
• …the mainframe does its thing…
• …then the results are printed out for the programmer to use.

• A lot of time was wasted waiting for programs to be loaded, results to be
printed, etc.
• The mainframe’s CPU is sitting idle, blocked on I/O operations

JOB FORTRAN
COMPILER

FORTRAN
PROGRAM

DATA FOR
PROGRAM END

17

Operating Systems: A Brief History (2)
• Later mainframes used batch processing
• A simpler, lower cost computer transfers multiple jobs onto a single input tape

• The mainframe reads and executes each job in sequence
• Instead of printing, job output is saved to an output tape
• Also, system tapes hold common programs like the FORTRAN compiler

• Program output is printed by a simpler, cheaper computer
• Benefit: greatly reduces wasted time!

JOB FORTRAN
PROGRAM

DATA FOR
PROGRAM END

JOB FORTRAN
PROGRAM

DATA FOR
PROGRAM END

JOB FORTRAN
PROGRAM

DATA FOR
PROGRAM END

JOB FORTRAN
PROGRAM

DATA FOR
PROGRAM END

JOB FORTRAN
PROGRAM

DATA FOR
PROGRAM END

18

Operating Systems: A Brief History (3)
• A big problem with batch-processing systems:

• If job 1 is waiting for I/O to complete (e.g. on tape), the mainframe can’t do anything else!
The CPU sits idle until I/O completes.

• This became increasingly common as computer use broadened
• Later-generation mainframes introduced support for multiprogramming
• If one job is blocked on I/O or some other operation, switch execution to another job
• If mainframe can keep several programs in memory, and switch between them, the CPU

can be kept busy most of the time

19

Program Counter

JOB 1 JOB 2 JOB 3 JOB 4 JOB 5Input Tape:

Operating Systems: A Brief History (4)
• To support multiprogramming, mainframe memory was partitioned into regions

for each job

• New problem to solve:
• Need to prevent different jobs from

accessing each other’s memory regions
• Must provide process isolation
• Requires hardware support to implement

effectively
• Requires multiple CPU operating modes,

so the OS is the only program able to
manipulate the memory partitioning

JOB 1 JOB 2 JOB 3 JOB 4 JOB 5Input Tape:

JOB 1

JOB 2

JOB 3

OS

Mainframe
Memory:

20

Operating Systems: A Brief History (5)
• Another problem with batch-processing mainframes:
• If a programmer had a bug in their program, they didn’t know until their job had been

batched up, processed, and the results printed
• Could take hours to even discover you had a syntax error in your code! L

• Timesharing systems were mainframes that provided users with online
terminals
• Timesharing is an extension of multiprogramming, allowing users to issue jobs directly on

the mainframe, and receive their own output
• First appearance of basic multitasking in an operating system

• The mainframe was still large and expensive…
• An individual user won’t keep the CPU utilized at 100%...
• A group of many users will keep CPU much more heavily utilized

21

Operating Systems: A Brief History (6)
• Integrated circuit technology became widespread, and processors became

cheaper and cheaper…
• Instead of an entire university sharing a single computer, each department

could have their own computer
• Minicomputers were smaller and less powerful than mainframes

• As hardware prices continued to drop, became feasible to give individual
users their own microcomputers

• Up to this point, operating systems and programs primarily used text
interfaces for user interaction…
• Graphical User Interfaces (GUIs) were developed to make it easy for people to use

computers, even if a user had no intention of learning how the computer worked

22

Operating Systems: A Brief History (7)
• As processors became less expensive, became common to have multiple

processors in a single computer
• Multiprocessor systems contain multiple processors in separate packages
• Multicore systems have multiple processors in a single package
• Multiprocessor/multicore systems require specific support from the operating

system
• Coordinating access to shared data-structures within the operating system becomes much

trickier
• Process scheduling also takes multiprocessor systems into account to maximize cache

utilization

23

Operating Systems: A Brief History (8)
• Modern computers can even run an operating system as an application within

another operating system
• The host operating system runs the guest operating system as an application

• Emulation:
• A computer with one CPU type simulates another CPU [usually] of a different type, allowing

applications or even a guest operating system to be run within the host system
• Virtualization:
• A computer with one CPU type runs a guest operating system compiled for the same CPU

type
• If the CPU has hardware virtualization support, this will be fast!
• Otherwise, certain CPU features must be emulated by the host OS when running the guest

operating system

24

Operating Systems: A Brief History (9)
• The software that provides a virtual machine for the guest OS is called a

hypervisor
• Handles many concerns similar to more traditional operating systems
• Enforce isolation between guest operating systems
• Management of hardware resources shared between guest OSes

• A few new challenges:
• Guest OSes expect to access hardware directly; hypervisor must present this abstraction to

guest OSes
• (either emulated, or via hardware support on the host processor)
• Can the guest OS tell that it is running within a virtual machine?

• Guest OSes have their own scheduling and caching strategies; host OS should interfere
with these as little as possible

25

Kinds of Operating Systems
• Operating systems are used in many different contexts, for fulfilling many

different purposes
• Mainframe and server operating systems must maximize utilization of

hardware
• Operating system doesn’t require a graphical user interface
• Rather, must support very efficient handling of I/O, and possibly scheduling of many

processes
• Personal computers must be easy to use, and responsive to user input
• Maximizing hardware utilization is less important – responding to user interaction is top

priority!
• Much more code is devoted to making the computer easy to use
• Important to provide a simplified, user-friendly user interface

26

Kinds of Operating Systems (2)
• Mobile device / tablet OSes have several challenging, often conflicting

constraints
• Must be responsive and user-friendly, like PC operating systems
• But, must also try to maximize battery life through careful hardware resource

management
• With smartphones, must support download, installation, execution, and

uninstallation of wide range of applications
• But, basic device capabilities (e.g. voice calls, SMS) must also be rock-solid reliable

• Must support intermittent connectivity, especially when programs are using
that connectivity

27

Kinds of Operating Systems (3)
• By far the most common kind of computer now is the embedded computer
• In your microwave oven, your printer, your WiFi router, your DVD player, controlling your car

engine, your point-and-shoot camera, …
• Embedded OSes tend to have very limited capabilities
• Systems tend to support a specific, fixed set of tasks
• Systems aren’t designed to run arbitrary programs on them

• Can still include a variety of basic OS capabilities
• Basic thread-management and scheduling support
• Basic memory management capabilities
• Support for software upgrades
• Support for peripherals like flash cards, USB drives, networking, …

28

Kinds of Operating Systems (4)
• Real-time operating systems focus on completing tasks by a specific

deadline
• Most general-purpose operating systems provide soft real-time support, e.g.

for media playback
• Not considered a system failure if the OS misses a deadline from time to time (e.g. your

media playback just sounds choppy)
• Some real-time OSes provide hard real-time guarantees
• If the OS misses a deadline, this is considered a fatal error!

• Example: a computer system for running an automobile manufacturing
assembly line
• The OS receives inputs from sensors along the assembly line…
• If the OS doesn’t satisfy guarantees for processing input data and controlling automated

machinery, physical damage will occur
• If OS misses its timing deadlines: Failure! Halt the assembly line!

29

Next Time
• More details on operating system components and hardware interactions
• Overview of UNIX facilities for user programs

30

