
CS122	–	Database	System	Implementation	 Winter	2017	
	

Assignment 6: B+ Tree Indexes
In	this	assignment	you	will	get	to	explore	an	implementation	of	the	B+	tree	index	structure.		Tasks	
to	complete	are	as	follows:	

• Complete	a	B+	tree	tuple-file	implementation.	
• Use	this	functionality	to	manage	indexes	against	table	files.	

Overview
In	the	edu.caltech.nanodb.storage.btreefile	package	you	will	find	a	basic	implementation	
of	a	B+	tree	tuple	file.		This	implementation	follows	the	description	given	in	class,	with	a	few	
important	differences.		Possibly	the	most	important	one	is	that	the	B+	tree	implementation	can	be	
used	to	store	tables	as	well	as	indexes.		This	is	an	important	design	choice,	because	it	makes	it	very	
easy	to	perform	file-scans	over	indexes	without	having	to	make	any	substantial	changes	to	the	file-
scan	code	paths.	

Given	this	design,	an	index	becomes	a	table	that	is	built	against	another	table,	using	some	subset	of	
the	referenced	table’s	columns,	and	including	an	additional	column	that	holds	a	file-pointer	to	
tuples	in	the	referenced	table.		Rows	in	the	index	are	populated	from	the	referenced	table.		Finally,	
the	index	uses	some	file	organization	that	facilitates	equality-based	and/or	range-based	lookups	
against	the	index.	

To	illustrate,	we	can	create	a	table	and	an	index	as	follows:	

CREATE TABLE t (
 a INTEGER,
 b VARCHAR(30),
 c FLOAT
);

CREATE INDEX i ON t (a);	

Under	the	hood,	we	will	end	up	with	a	tuple	file	“T.tbl”	that	has	a	schema	(t.a	:	INTEGER,	t.b	:	
VARCHAR(30),	t.c	:	FLOAT).		Additionally,	we	will	have	an	index	file	called	“T_I.idx”	that	has	the	
schema	(t.a	:	INTEGER,	t.#TUPLE_PTR	:	file-pointer),	with	one	row	for	every	row	in	table	t.		(Recall	
that	index	names	are	unique	on	a	per-table	basis,	but	two	different	tables	can	have	indexes	with	the	
same	name.		Thus,	we	must	use	the	table’s	name	as	part	of	the	index’s	filename.)	

Here	are	some	additional	notes	on	NanoDB’s	B+	tree	implementation:	

• “Fullness”	of	a	node	is	not	determined	by	the	number	of	pointers	or	entries	in	the	node,	but	
rather	by	the	number	of	bytes	used	in	the	node.		Leaf	and	inner	nodes	can	store	different	
numbers	of	entries	and/or	pointers,	since	their	structures	are	slightly	different.		When	a	node	is	
split,	the	implementation	simply	divides	the	number	of	pointers	or	entries	in	half,	and	moves	
half	of	the	entries	to	a	sibling	node.		This	means	that	we	will	generally	satisfy	the	“at	least	half-
full”	rule,	but	there	will	likely	be	nodes	here	and	there	that	do	not	satisfy	this	constraint.		(But,	
they	will	be	close.)	

• When	relocating	entries	or	pointers	from	a	node	to	a	sibling,	only	enough	entries	are	relocated	
to	allow	the	new	entry	to	be	added	to	either	node.		There	is	no	attempt	to	“even	out”	the	
number	of	entries	between	the	pair	of	nodes.		(We	try	to	make	space	for	the	new	entry	to	be	
added	to	either	node	because	when	relocating	or	splitting,	we	don’t	necessarily	know	which	
sibling	the	new	entry	will	end	up	in.)	

CS122	–	Database	System	Implementation	 Winter	2017	
	

Other	than	that,	the	implementation	follows	the	description	in	class	almost	exactly.	

• Each	leaf	node	references	the	next	leaf	in	the	B+	tree,	forming	a	linear	sequence	of	leaves.	

• Inner	nodes	only	reference	other	nodes	in	the	tree	(thus,	they	use	an	unsigned	short	for	these	
page-pointers).	

• No	additional	structure	is	maintained	beyond	that	described	in	the	lecture	slides.		Nodes	do	not	
reference	their	parents	in	the	index	structure.		Leaves	do	not	reference	their	previous	sibling,	
only	their	next	sibling.		Inner	nodes	only	reference	nodes	deeper	in	the	structure.		(The	reasons	
for	this	will	be	explored	in	the	design	document.)	

Important Implementation Classes
Here	are	the	major	components	in	this	B+	tree	implementation.		You	will	notice	that	it	is	mostly	
similar	to	the	heap	file	implementation,	with	a	few	obvious	differences	due	to	the	implementation	
details.	

The	BTreeTupleFile	class	provides	most	of	the	operations	for	accessing	or	modifying	tuples	in	a	
B+	tree	file.		It	delegates	many	file-manipulation	tasks	to	two	classes,	InnerPageOperations	and	
LeafPageOperations,	but	it	does	perform	some	of	the	most	basic	operations	such	as	looking	up	a	
leaf-entry	in	the	file	based	on	a	search-key,	or	finding	new	empty	pages	in	the	file	when	more	data	
needs	to	be	stored.	

The	InnerPageOperations	and	LeafPageOperations	classes	handle	larger-scale	tasks	like	
inserting	entries	into	B+	tree	nodes,	splitting	nodes,	and	relocating	entries	between	nodes.		If	you	
review	this	code,	you	will	note	that	the	implementations	are	very	similar,	but	just	different	enough	
to	force	two	separate	implementations.		(Oh	well.)	

These	two	classes	also	use	the	InnerPage	and	LeafPage	wrapper-classes	to	manipulate	individual	
B+	tree	pages.		Each	of	these	classes	is	used	to	wrap	a	DBPage	object,	allowing	the	contents	of	the	
node	to	be	manipulated	more	easily.	

Finally,	the	BTreeTupleFileManager	class	provides	file-level	operations	such	as	creating	a	new	B+	
tree	file,	storing	the	metadata,	and	so	forth.	

Keys and Indexes
NanoDB	will	automatically	create	indexes	in	certain	situations.		For	example,	if	a	table	is	declared	
with	a	primary	key,	or	one	or	more	UNIQUE	constraints,	the	database	will	automatically	create	
unique	indexes	on	these	keys.		Therefore,	you	can	also	create	indexes	by	issuing	commands	like:	

CREATE TABLE t (
 a INTEGER PRIMARY KEY,
 b VARCHAR(30) UNIQUE,
 c FLOAT
);	

(Foreign	key	constraints	also	cause	NanoDB	to	create	indexes,	but	we	didn’t	have	time	to	test	and	
debug	the	implementation.)	

Index Management Mechanism
Indexes	must	be	checked	and	updated	anytime	a	table	is	changed.		To	facilitate	this,	NanoDB	fires	
events	before	and	after	commands	are	executed,	and	also	before/after	any	row	is	inserted,	updated,	
or	deleted.		The	implementation	for	this	mechanism	is	in	the	edu.caltech.nanodb.server	

CS122	–	Database	System	Implementation	 Winter	2017	
	

package,	in	the	EventDispatcher	class.		Components	can	implement	the	CommandEventListener	
interface	to	receive	before/after	command	events,	or	the	RowEventListener	interface	to	receive	
before/after	insert/update/delete	events.		Such	listeners	would	then	be	registered	on	the	
EventDispatcher	singleton	to	receive	notifications	when	these	events	occur.	

When	the	Storage	Manager	is	initialized,	it	registers	a	row-event	listener	called	the	IndexUpdater	
(in	package	edu.caltech.nanodb.indexes),	which	takes	care	of	index	updates.		Anytime	a	table	
is	modified,	the	index-updater	goes	through	the	table’s	indexes,	applying	the	appropriate	updates.	

Final Notes
The	B+	tree	and	index	code	in	NanoDB	is	still	pretty	new,	so	there	are	definitely	still	some	bugs	in	it.		
While	deleting	a	tuple	from	a	B+	tree	is	supported,	there	are	still	a	few	lurking	bugs,	and	the	tests	
that	exercise	deletion	from	B+	trees	are	disabled	for	HW6.		Similarly,	although	there	are	a	number	of	
index	tests,	most	of	these	are	disabled	for	HW6.	

Also,	if	you	are	trying	to	see	how	to	delegate	tasks	among	your	teammates:		parts	1	and	2	can	be	
completed	in	parallel,	but	at	least	the	first	step	of	part	1	must	be	working	before	you	can	start	
testing	anything	in	part	2.		Within	each	part,	each	step	requires	the	previous	steps	to	work	before	it	
will	work,	but	you	can	still	work	on	them	in	parallel.		The	analysis	in	part	3	can	be	started	once	the	
first	few	tasks	in	part	1	have	been	completed.	

Part 1: Complete Missing B+ Tree Operations
The	B+	tree	implementation	you	have	been	given	is	missing	several	important	pieces,	which	you	
must	implement.		Those	pieces	are	outlined	in	this	section.	

To	test	your	implementation,	you	can	create	tables	using	the	“btree”	storage	format,	which	
corresponds	to	the	B+	tree	implementation.		For	example,	you	can	do	this:	

CREATE TABLE bt (
 a INTEGER
) PROPERTIES (storage = 'btree');

INSERT INTO bt VALUES (53);
INSERT INTO bt VALUES (21);
INSERT INTO bt VALUES (65);
...

As	you	get	your	implementation	working,	you	should	be	able	to	“SELECT * FROM bt”	and	see	the	
tuples	always	produced	in	order.		Note	that	the	tuples	are	sorted	by	all	columns.	

You	can	also	use	the	VERIFY	command	to	check	your	table	for	structural	issues.	

VERIFY bt;

This	command	will	check	the	table	for	any	issues,	along	with	any	indexes	built	against	the	table.		All	
problems	that	are	encountered	will	be	printed	out	to	the	console.	

1. All	operations	–	adding	a	tuple,	removing	a	tuple,	or	searching	for	tuples	–	require	the	B+	tree	
structure	to	be	navigated	from	root	to	leaf.		This	operation	is	partially	implemented	in	the	
navigateToLeafPage()	method	of	the	BTreeTupleFile.		You	will	need	to	complete	this	
implementation.	

CS122	–	Database	System	Implementation	 Winter	2017	
	

Note	that	this	method	only	navigates	the	inner-page	structure	of	the	index	until	it	reaches	a	leaf,	
and	then	the	leaf	page	is	returned	to	the	caller.		What	happens	after	that	depends	on	the	specific	
operation	being	performed.	

Also,	all	key-comparisons	should	be	performed	with	the	comparePartialTuples()	method	of	
the	TupleComparator	class	(edu.caltech.nanodb.expressions	package).		This	method	
allows	tuples	of	different	lengths	to	be	compared,	which	allows	us	to	search	on	any	prefix	of	the	
tuple	file’s	columns,	not	just	the	full	set	of	columns.		(It	will	also	allow	us	to	find	tuples	in	
indexes	without	specifying	the	file-pointer	at	the	end	of	the	search-key.)	

Once	this	function	is	finished,	you	should	be	able	to	create	a	table	like	the	one	above,	insert	
records	into	it,	and	see	that	the	contents	of	the	table	always	appear	in	order.		However,	if	your	
table	gets	large	enough	to	require	two	leaf	pages,	the	implementation	will	fail.		The	reason	is	
that	NanoDB	doesn’t	yet	know	how	to	split	a	leaf	page	into	two	leaves.		Continue	to	the	next	
step…	

2. To	support	B+	tree	files	larger	than	one	leaf	page,	the	implementation	must	be	able	to	split	a	leaf	
into	two	leaves,	and	then	update	the	parent	of	the	leaf	with	the	new	leaf-pointer.		This	operation	
is	handled	by	the	splitLeafAndAddTuple()	method	of	the	LeafPageOperations	class.		You	
will	need	to	complete	this	implementation.	

As	always,	there	are	many	helper	functions	to	help	you	with	the	implementation,	on	both	the	
LeafPage	and	InnerPage	classes.		Probably	the	most	complicated	part	will	be	updating	the	
parent	of	the	leaf	properly,	but	you	can	use	the	InnerPageOperations	class	to	help	you	with	
this	task.	

Note	that	the	pagePath	argument	must	always	be	the	path	to	the	specific	page	being	
manipulated	by	a	given	function.		Thus,	when	calling	InnerPageOperations	functions,	you	
must	remove	the	last	element	from	the	pagePath	list.		This	is	simple	to	do,	and	fast	too,	even	
though	we	are	using	an	ArrayList	for	the	collection:		since	we	are	removing	the	last	element	in	
the	array-list,	this	will	be	a	constant-time	operation.	

Once	you	are	done	with	this	task,	you	should	be	able	to	create	B+	tree	files	with	many	leaf	pages.		
There	is	one	more	problem,	though	–	the	index	implementation	still	can’t	support	multiple	
inner	pages.		To	fix	this	issue,	continue	on	to	the	final	step.	

3. The	last	functionality	to	complete	for	this	index	implementation	is	the	code	that	allows	inner-
page	pointers	to	be	moved	to	a	left-	or	right-sibling	page.		This	is	required	for	splitting	an	inner	
page	into	two,	and	also	for	relocating	pointers	between	two	sibling	inner	pages.		This	
functionality	is	provided	by	the	movePointersLeft()	and	movePointersRight()	methods	of	
the	InnerPage	class.	

These	methods	are	a	bit	tricky	to	implement,	mainly	because	of	the	requirement	that	every	
tuple	in	an	inner	page	must	be	sandwiched	between	two	pointers.		Given	an	inner	page	
containing	N	pointers	and	N-1	tuples,	if	you	move	M	pointers	(and	the	M-1	tuples	between	these	
pointers)	from	the	node	to	its	right	sibling	(M	<	N),	this	will	expose	a	tuple	in	the	node	without	a	
pointer	on	its	right.		Similarly,	if	you	move	M	pointers	from	the	node	to	its	left	sibling,	this	will	
expose	a	tuple	without	a	pointer	on	its	left.	

Additionally,	the	sibling	node	receiving	the	M	pointers	and	M-1	tuples	will	already	have	
pointers	on	both	sides	of	all	its	tuples.	

CS122	–	Database	System	Implementation	 Winter	2017	
	

This	is	where	you	must	figure	out	how	the	parent	node’s	tuple	fits	into	the	puzzle.		In	the	slides	
we	discussed	what	happens	when	a	single	pointer	is	moved	to	a	sibling	inner-node,	but	in	this	
implementation	it	is	possible	to	move	M	pointers,	not	just	one.		You	will	have	to	figure	out	
where	to	store	the	parent’s	old	tuple,	if	provided,	and	what	to	return	as	the	parent’s	new	tuple.	

(You	will	always	return	a	new	key	in	your	implementation.		You	may	not	receive	an	old	tuple	if	
the	top-level	inner	page	is	being	split,	since	there	will	not	yet	be	a	parent	of	the	node	being	split.		
The	tuple	you	return	will	be	used	in	initializing	the	new	top-level	inner	page.)	

The	other	complexity	is	that	when	moving	M	pointers	to	the	left	sibling,	these	pointers	are	
taken	from	the	start	of	the	node’s	sequence,	whereas	when	moving	the	pointers	to	the	right	
sibling,	they	are	taken	from	the	end	of	the	node’s	sequence.		When	moving	pointers	right,	the	
implementation	must	make	room	in	the	target	node	for	the	new	entries.		When	moving	pointers	
left,	the	implementation	must	slide	the	remaining	entries	in	the	source	node	left.		For	these	
kinds	of	operations,	the	DBPage.moveDataRange()	method	will	be	very	helpful.	

You	must	never	write	to	the	DBPage’s	internal	byte-array	directly!		Doing	this	will	break	
the	DBPage’s	ability	to	track	whether	the	page	is	dirty.		Always	use	the	operations	provided	on	
the	DBPage	to	write	to	its	data.		(You	may	find	it	helpful	to	read	from	the	underlying	byte-array,	
however,	when	moving	data	back	and	forth.)	

Once	you	have	successfully	completed	this	task,	your	B+	tree	should	be	complete.	

Part 2: Support for B+ Tree Indexes
Once	you	have	B+	tree	tuple	files	working,	you	can	complete	the	mechanism	that	keeps	indexes	in	
sync	with	their	corresponding	tables.		As	explained	earlier,	there	is	a	row-event	handler	that	will	
update	a	table’s	indexes	based	on	the	changes	made	to	the	table.		You	will	need	to	edit	the	
StorageManager	class	to	set	its	ENABLE_INDEXES	flag	to	true;	this	will	turn	on	index	management.	

The	IndexUpdater	class	(in	the	indexes	package)	handles	adding	and	removing	tuples	on	a	
table’s	indexes.		(Updates	to	a	tuple	are	currently	modeled	as	removing	the	old	version	and	then	
adding	the	new	version,	which	is	not	optimal,	but	it	works.)	

There	are	two	methods	that	you	must	complete	on	this	class:	

1. The	addRowToIndexes()	method	is	called	when	a	row	is	inserted	or	updated	on	a	table.		This	
method	must	iterate	through	the	table’s	indexes,	construct	a	suitable	index-tuple	for	each	index	
(based	on	the	columns	in	the	index),	and	then	add	this	index-tuple	to	the	index’s	tuple	file.	

Also,	some	indexes	are	unique	indexes	while	others	are	not;	this	method	should	also	verify	that	
the	tuple	being	added	will	not	violate	any	unique	constraints.	

2. The	removeRowFromIndexes()	method	is	called	when	a	row	is	updated	or	deleted	on	a	table.		
As	before,	this	method	must	iterate	through	the	table’s	indexes,	removing	the	corresponding	
index-tuple	from	each	index.	

The	IndexUtils	class	has	a	number	of	methods	that	will	be	helpful	for	completing	these	
implementations:	

• The	makeSearchKeyValue()	method	takes	a	tuple	from	a	table,	and	constructs	a	
corresponding	index	tuple	based	on	the	index’s	definition.		The	last	argument	findExactTuple	

CS122	–	Database	System	Implementation	 Winter	2017	
	

can	be	used	to	include	or	exclude	the	file	pointer	to	the	table-tuple,	e.g.	to	either	find	or	store	
the	exact	location	of	the	table	tuple	into	the	index.	

For	example,	when	checking	a	unique	index	to	see	if	a	given	tuple	appears	in	the	index,	false	
should	be	passed	for	findExactTuple,	because	we	don’t	want	to	consider	the	tuple’s	file-
pointer	when	looking	for	another	tuple	with	the	same	index-column	values.	

• The	findTupleInIndex()	method	takes	an	index’s	tuple	file	and	a	search	key,	and	attempts	to	
locate	a	tuple	in	the	index	tuple-file	with	the	same	values	as	the	specified	key.		This	method	
handles	the	different	interfaces	of	sequential	and	hashed	tuple	files,	so	that	the	IndexUpdater	
doesn’t	have	to.	

Part 3: Analysis of Implementation
The	design	document	for	this	assignment	has	a	number	of	questions	for	you	to	answer	

Given	NanoDB’s	B+	tree	implementation,	consider	a	simple	schema	where	an	index	is	built	against	a	
single	integer	column:	

CREATE TABLE t (
 -- An index is automatically built on the id column by NanoDB.
 id INTEGER PRIMARY KEY,
 value VARCHAR(20)
);

Answer	the	following	questions.		(Hint:		You	can	turn	on	logging	in	the	B+	tree	package	to	get	some	
of	these	answers.)		Recall	that	“pointers”	to	other	pages	in	the	B+	tree	structure	are	represented	by	
the	page-number	of	the	referenced	page,	and	therefore	occupy	two	bytes.		Also,	when	discussing	B	
trees	in	general,	the	terms	“node”	and	“page”	are	equivalent,	because	each	node	is	one	page	in	size.	

Make	sure	to	explain	all	of	your	answers;	give	your	rationale,	your	calculations,	and	so	forth.		Don’t	
simply	state	a	value	without	any	explanation,	or	you	will	receive	point	deductions.	

1. What	is	the	total	size	of	the	index’s	search-key	for	the	primary-key	index,	in	bytes?		Break	down	
this	size	into	its	individual	components;	be	as	detailed	as	possible.		(You	don’t	need	to	go	lower	
than	the	byte-level	in	your	answer,	but	you	should	show	what	each	byte	is	a	part	of.)	

2. What	is	the	maximum	number	of	search-keys	that	can	be	stored	in	leaf	nodes	of	NanoDB’s	B+	
tree	implementation?		You	should	assume	the	default	page-size	of	8192	bytes.	

3. What	is	the	maximum	number	of	keys	that	can	be	stored	in	inner	nodes	of	this	particular	
implementation?		(Recall	that	every	key	must	have	a	page-pointer	on	either	side	of	the	key.)	

4. In	this	implementation,	leaf	nodes	do	not	reference	the	previous	leaf,	only	the	next	leaf.		When	
splitting	a	leaf	into	two	leaves,	what	is	the	maximum	number	of	leaf	nodes	that	must	be	read	or	
written,	in	order	to	properly	manage	the	next-leaf	pointers?	

If	leaves	also	contained	a	previous-leaf	pointer,	what	would	the	answer	be	instead?	

Make	sure	to	explain	your	answers.	

5. In	this	implementation,	nodes	do	not	store	a	page-pointer	to	their	parent	node.		This	makes	the	
update	process	somewhat	complicated,	as	we	must	save	the	sequence	of	page-numbers	we	
traverse	as	we	navigate	from	root	to	leaf.		If	a	node	must	be	split,	or	if	entries	are	to	be	relocated	

CS122	–	Database	System	Implementation	 Winter	2017	
	

from	a	node	to	its	siblings,	the	node’s	parent-node	must	be	retrieved,	and	the	parent’s	contents	
must	be	scanned	to	determine	the	node’s	sibling(s).	

Consider	an	alternate	B+	tree	implementation	in	which	every	node	stores	a	page-pointer	to	the	
node’s	parent.		In	the	case	of	splitting	an	inner	node,	what	performance-related	differences	are	
there	between	this	alternate	representation	and	the	given	implementation,	where	nodes	do	not	
record	their	parents?		Which	one	would	you	recommend?		Justify	your	answer.	

6. It	should	be	obvious	how	indexes	can	be	used	to	enforce	primary	keys,	but	what	role	might	they	
play	with	foreign	keys?		For	example,	given	this	schema:	

CREATE TABLE t1 (
 id INTEGER PRIMARY KEY
);

CREATE TABLE t2 (
 id INTEGER REFERENCES t1;
);

Why	might	we	want	to	build	an	index	on	t2.id?	

Part 4: Extra Credit
There	are	two	main	things	you	can	focus	on	if	you	race	through	the	rest	of	this	assignment.		The	
first	option	is	definitely	more	appealing	than	the	second	one.	

Use Indexes in Query Planning
Indexes	can	be	used	in	a	variety	of	ways	during	query	planning.		The	two	most	obvious	ones	for	
NanoDB	are	in	grouping/aggregation,	and	in	using	indexes	for	tuple	lookups:	

• If	a	grouping/aggregation	operation’s	columns	are	all	contained	in	an	index,	we	can	optionally	
perform	a	“file	scan”	over	the	index	to	compute	the	query.1	

• Even	better,	if	the	index	is	ordered	by	the	grouping	columns,	we	can	use	a	sort-based	
grouping/aggregate	operation	instead	of	a	hash-based	grouping/aggregate.	

Similarly:	

• If	a	query’s	predicate	contains	conjuncts	that	can	be	used	with	an	index	to	look	up	tuples	more	
efficiently,	we	can	use	the	index	to	retrieve	the	tuples	instead	of	scanning	through	the	tuple	file.	

NanoDB’s	FileScanNode	has	been	updated	to	be	able	to	scan	through	indexes	as	well,	so	that	you	
can	perform	the	grouping/aggregate	optimization.		However,	you	will	have	to	implement	the	code	
that	determines	when	the	index	can	be	used	for	grouping	and	aggregation.	

Similarly,	a	new	IndexScanNode	has	been	added,	which	can	either	perform	an	equality-based	
lookup	of	tuples,	or	a	range-based	lookup	of	tuples,	using	a	specific	index	on	a	table.		This	
implementation	is	incomplete;	you	must	add	plan-costing	details	to	allow	it	to	be	useful	with	the	
cost-based	planner/optimizer.		Similarly,	you	would	need	to	update	the	planner/optimizer	to	
consider	available	indexes,	and	to	utilize	an	IndexScanNode	instead	of	a	FileScanNode,	when	
using	an	index	would	be	cheaper.	

																																																													
1	Note	that	we	use	the	term	“index	scan”	to	mean	performing	an	equality-based	or	range-based	lookup	on	an	
index.		Similarly,	the	term	“file	scan”	means	to	scan	through	all	tuples	in	a	tuple	file.		Thus,	we	can	perform	a	
“file	scan”	over	an	index.		(Microsoft	SQLServer	has	clearer	terminology;	an	“index	scan”	is	a	file-scan	over	an	
index,	and	an	“index	seek”	is	an	equality-	or	range-based	lookup	against	an	index.)	

CS122	–	Database	System	Implementation	 Winter	2017	
	

Finally,	you	might	note	that	the	plan	costs	have	no	way	of	estimating	seeks,	so	you	will	have	to	find	
a	way	to	represent	this	in	your	plan	costs.		(Recall	that	index	scans	can	generate	huge	numbers	of	
seeks…)	

Use Indexes for Constraint Enforcement
The	indexes	package	also	contains	a	class	named	DatabaseConstraintEnforcer,	which	
endeavors	to	enforce	various	constraints,	including	NOT NULL	constraints,	primary/candidate	key	
constraints,	and	foreign	key	constraints.		Unfortunately,	this	class	needs	to	be	largely	rewritten	and	
cleaned	up;	it	chooses	some	very	hacky	ways	to	implement	this	functionality.		(It	was	written	by	a	
student,	and	I	have	not	yet	had	time	to	clean	it	up.)	

If	you	are	a	glutton	for	punishment,	you	should	rewrite	this	and	get	constraint	enforcement	
working	properly	in	NanoDB.	

You	will	need	to	enable	the	database	constraint	enforcer	by	registering	it	as	a	row-event	listener	at	
the	end	of	the	StorageManager.initialize()	function.	

Submitting Your Assignment
When	you	are	finished	with	the	coding	part	of	the	assignment,	tag	it	with	a	hw6	tag	as	usual,	and	
then	push	all	of	your	changes	to	your	repository	on	the	CMS	cluster.	

