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Assignment 4:  Join Optimization 
In this assignment you will write a planner/optimizer that chooses an optimal join ordering using a 
dynamic programming algorithm.  Your optimizer must generate valid plans for queries involving 
outer joins as well as inner joins, which increases the complexity of the planner somewhat. 

Your planner should be able to handle the same queries that your Assignment 2 planner was 
required to handle, including queries with ORDER BY clauses, and grouping and aggregation.  Of 
course, you can reuse your Assignment 2 code to achieve this goal.  (Recall that the suggested 
design uses an abstract base-class so that multiple planners can share common functionality.) 

Overview 
Join ordering can have a profound impact on query execution performance, so most databases 
devote specific effort to finding an optimal join order.  Most database systems use a Selinger-style 
join optimizer that uses dynamic programming to choose a join order, but that also keeps costlier 
plans that generate results in “interesting orders.”  For this assignment you won’t worry about 
result ordering (we don’t have any plan nodes that can take advantage of result-ordering anyway); 
you simply need to implement a join planner that uses dynamic programming to find the optimal 
order. 

Although we will identify an optimal join order based on plan costs, we will also employ a heuristic 
to simplify planning:  we will always perform selection as early as possible in plans.  We can do this 
because NanoDB doesn’t have any indexes yet, and all tables are heap files, so this will produce 
optimal plans.  However, in general it is a bad approach since it may rule out other more optimal 
plans, particularly when there are indexes or other optimizations that affect when selection should 
be applied. 

As before, plan optimization is performed on units of SELECT-FROM-WHERE blocks; if a FROM 
clause includes a subquery then the subquery will be optimized separately, and then the subquery’s 
generated plan is treated as a black box. 

Optimization Procedure 
The general approach for an optimizer based on dynamic programming is as follows: 

• Identify all “leaves” in the FROM-expression of the query.  This would include base-tables and 
subqueries, for example. 

• Create an optimal plan for each leaf identified above.  Store each optimal leaf plan, along with its 
cost. 

• For every pair of leaves, create an optimal plan that joins the pair of leaves together.  Store each 
of these plans, along with their costs.  When accessing each leaf, use the plans cached in the 
previous step. 

• Continue this process for three leaves, etc., using the optimal plans generated in the previous 
steps, until all leaves are joined together into a single plan.  As we go, if a more optimal plan is 
found to join a particular set of leaves, it will replace any previous plan that joins that set of 
leaves. 

Although this process is conceptually straightforward, it can be somewhat involved to handle all of 
the details.  Specifically, while join-expressions may specify the conditions to join on, we may also 
have conditions in the WHERE clause that we can take advantage of lower in the tree as well.  
Consider these three queries: 
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SELECT * FROM t1, t2 WHERE t1.a = t2.a AND t2.b > 5; 
SELECT * FROM t1 JOIN t2 ON t1.a = t2.a WHERE t2.b > 5; 
SELECT * FROM t1 JOIN t2 ON t1.a = t2.a AND t2.b > 5; 

All three of these queries produce the exact same results, but the conditions appear in different 
places on the SQL abstract syntax tree: 

• The first query performs a Cartesian product of t1 and t2, and has a WHERE-expression 
specifying both the join condition and an additional condition. 

• The second query performs a theta-join with a condition of t1.a = t2.a, and also has a WHERE-
expression specifying the additional condition. 

• The third query performs a theta-join with a composite condition of t1.a = t2.a AND 
t2.b > 5.  It has no WHERE-expression in the SQL AST. 

A good optimizer should be able to take any of these queries and produce the exact same execution 
plan. 

Approach 
Generally, planners manipulate components of predicates called conjuncts.  A conjunct is simply a 
condition that is ANDed together with other conjuncts to create the overall predicate.  The above 
examples specify two conjuncts:  t1.a = t2.a, and t2.b > 5.  Once these conjuncts are collected out of 
the query, we can determine the optimal place to apply each conjunct in the final execution plan. 

For a query SELECT SelectVals… FROM JoinExpr WHERE Pw, the SQL standard specifies that it 
should be translated into a relational algebra expression like this: 

ΠSelectVals( σPw( JoinExpr ) ) 

The join expression JoinExpr will include join conditions if a NATURAL join or a USING/ON clause is 
specified in the query.  Additionally, there may be conjuncts in the WHERE-predicate Pw that can be 
used to constrain joins, or even constrain the inputs to a join.  In other words, we may be able to 
take some or all of the conjuncts in Pw, and push them down into the plan we create for the JoinExpr 
to make it more efficient. 

Therefore, we need to collect all of these conjuncts together in order to determine the optimal 
placement of each conjunct in the plan.  That way we can constrain each node to generate as few 
records as possible, and if we have indexes or equijoin conditions, we can take advantage of them. 

Equivalence Rules 
When it comes to inner joins, we are quite free to rearrange the join order and place conditions 
wherever we want in the plan, because we have many equivalence rules for manipulating inner 
joins.  Here is a small sampling: 

• E1  E2  E2  E1 
• E1  (E2  E3)  (E1  E2)  E3 
• σθ1(E1  E2)  σθ1(E1)  E2 (θ1 only refers to attributes in E1) 

As long as we are careful to only place predicates where they make sense (i.e. where the referenced 
columns are actually available), we won’t get into any trouble. 

This suggests that our planner will need to traverse the contents of the join-expression JoinExpr, 
identifying all base-tables and SELECT subqueries to be manipulated – these are the leaves of the 
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join expression, for which we need to determine an optimal join ordering.  Additionally, we will also 
need to collect all conjuncts contained in join-conditions in JoinExpr, so that we can apply each 
conjunct as early as possible in the plan. 

Outer joins complicate this process, because there are many equivalence rules that hold for inner 
joins that do not hold on outer joins.  For example, these general cases apply: 

• E1  E2  E1,E2(E2  E1)   (requires a project to properly order the schemas) 
• E1  E2  E1,E2(E2  E1)  (requires a project to properly order the schemas) 
• σθ1(E1  E2)  σθ1(E1)  E2    (θ1 only refers to attributes in E1) 
• σθ2(E1  E2) is not equivalent to E1  σθ1(E2)  (θ2 only refers to attributes in E2) 
• σθ1(E1  E2) is not equivalent to σθ1(E1)  E2  (θ1 only refers to attributes in E1) 
• (E1  E2)  E3 is not equivalent to E1  (E2  E3) 

Looking at second through fourth points, it is relatively easy to see that we can only push a conjunct 
down through an outer-join if the “outer” side is not opposite the child that the conjunct applies to.  
For example, in the first point above, we can push θ1 down through the left-outer join, since the 
right side of the join is not an “outer” side.  (It should be evident that full-outer joins completely 
disallow pushing conjuncts down through them.) 

Since outer joins generally resist reorganizing, our planner will basically leave them alone.  This 
involves two basic strategies: 

• Treat outer joins as “leaves” when scanning the join expression JoinExpr for the set of input-
relations to determine an optimal order for. 

• Be careful to only push conjuncts down through an outer join if the resulting plan will still be 
equivalent to the original query. 

Thankfully, this doesn’t complicate things too much. 

Implementation 
Your implementation of the dynamic-programming join planner will go into the 
CostBasedJoinPlanner class in the queryeval package.  (Feel free to copy over code from your 
SimplePlanner to fill in missing pieces.)  Note that several helper functions are provided to 
simplify your efforts; if you find yourself needing a particular operation, it may already exist. 

You will notice that the CostBasedJoinPlanner class contains a nested class called 
JoinComponent.  This class holds all details for a particular join-plan, including the set of conjuncts 
used within the plan, and the set of leaf-plans that are joined together by the join-plan.  This allows 
us to easily build up the overall plan from the various components. 

As before, the main entry-points into the planner are: 

• makePlan() – generates a plan for a SELECT-FROM-WHERE expression 
• makeSimpleSelect() – generates a simple “SELECT * FROM table WHERE predicate” plan 

You will note that the CostBasedJoinPlanner includes several other operations; these will be 
discussed in subsequent sections.  There is a third entry-point you will need to be aware of: 

• makeJoinPlan(FromClause) – generates an optimal join-plan from a specified FromClause.  
This method takes a second argument, a collection of conjuncts from above the join-plan.  The 
optimizer may be able to apply these conjuncts within the join-plan to produce a better plan. 
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The makeJoinPlan() method is private because it is not for external use, but there will definitely 
be situations where you need to recursively invoke it to handle certain situations.  This method is 
implemented for you; it simply coordinates the phases of the planning outlined earlier. 

Collecting Details from the FromClause 
The initial detail-collection is performed by the collectDetails(FromClause, ...) method in 
the join-planner.  You must implement this method, and also write a Javadoc header for it. 

The detail-collection phase must collect both the set of conjuncts and the list of leaf FromClauses 
from the specified FromClause argument.  Here are a few notes to help in your implementation: 

• This method accumulates its results into a couple of collections specified as parameters.  This 
should make it easy for collectDetails() to recursively invoke itself on child clauses. 

• As mentioned before, this method should consider base-tables, subqueries, and outer-joins to 
be leaves.  The FromClause class also has a method isOuterJoin() which should help with 
this implementation. 

• Only collect conjuncts from the predicates that appear on non-leaf FromClauses you encounter. 

• A helper method PredicateUtils.addConjuncts() has been provided (in the expressions 
package), which can properly handle the various cases you might encounter in a predicate.  If a 
WHERE predicate or a join condition is a Boolean AND-expression (such as our previous 
example of t1.a = t2.a AND t2.b > 5), then we want to break this expression apart and store each 
individual term as a conjunct.  Any other kind of predicate is simply stored as a single conjunct.  
(We could be more sophisticated and perform logical analysis on our predicates, but that would 
be beyond the scope of the assignment.  Feel free to increase the sophistication of this method 
on your own though, if you prefer.) 

Once all leaves are identified and all conjuncts are collected, we can begin generating an optimal 
plan to join the leaves. 

Generating Optimal Leaf-Plans 
The first step in creating an optimal query plan is to devise an optimal plan for each of the leaf 
expressions in the FROM component of the query.  The method responsible for generating all leaf 
plans is the generateLeafJoinComponents() method; it uses the helper makeLeafPlan() to 
generate the actual plan for each leaf.  You must implement the makeLeafPlan() method. 

Coming up with a basic plan for each leaf is very straightforward; we already know how to do this: 

• If the leaf is a base table, use a FileScanNode. 

• If the leaf is a derived table then recursively call the planner to get a query plan for the 
subquery. 

• If the leaf is an outer join, generate an optimal plan for each child from-clause by recursively 
invoking the makeJoinPlan() method, then create a plan-node to perform the outer join on 
these two children. 

Your code for this case should be careful to pass conjuncts down to the recursive invocation of 
makeJoinPlan(), but only when the resulting plan will still be equivalent to the original query.  
You can make use of the two methods on FromClause, hasOuterJoinOnLeft() and 
hasOuterJoinOnRight(), to determine when to pass conjuncts to the recursive invocation. 
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Now, this may be a basic plan, but an “optimal” plan will also apply selections as early as possible.  
(Recall that this is a heuristic, and may not generate an optimal plan in the presence of indexes.)  To 
do this, we need to see if any conjuncts can be applied to each leaf plan-node we generate.  Since 
this can become a tedious operation, and Java is not an ideal language for this kind of thing, several 
helper methods are provided for you to use: 

• The PredicateUtils.findExprsUsingSchemas() method is a very powerful helper method.  
It takes a collection of expressions and one or more schemas, and it pulls out all expressions 
that can be evaluated against the specified schemas.  For example, given the schema from table 
t2 and the set of conjuncts (t1.a = t2.a, t2.b > 5), this method would pull out t2.b > 5 since that 
can be evaluated against t2’s schema.  The first conjunct would be excluded because it also 
needs t1 as well as t2. 

Note that the caller must provide a collection that the results are stored into; a newly created 
HashSet<Expression> object would be best for this.  Also, note that this helper method can 
optionally remove matching expressions from the input collection; when generating leaf plans, 
you don’t want to remove matching expressions from the input collection. 

• To use the previous method, you need the schema of the leaf-plan.  You can cause the leaf plan 
to compute its schema and cost by calling prepare() on the plan.  Before you call prepare(), 
the plan’s getSchema() method will return null; once you have prepared the plan then you 
will be able to retrieve the plan’s schema and cost details. 

Try to call prepare() as little as possible, since it traverses an entire plan recursively! 

• Once you have created a leaf-plan and you have the set of conjuncts that can be applied to that 
leaf plan, you will want to create a new predicate and apply it to that leaf-plan.  (This is 
following the “apply selections as early as possible” heuristic.)  Two methods are provided to 
make this very easy: 

• The PredicateUtils.makePredicate() helper takes a collection of zero or more 
conjuncts, and builds a predicate that can be applied to a plan.  If the collection contains no 
conjuncts then the return-value is null.  If the collection contains a single conjunct then this 
is returned as the predicate.  Otherwise, the helper builds up a Boolean AND-expression 
combining all conjuncts. 

• The PlanUtils.addPredicateToPlan() helper takes an existing plan-node and a 
predicate, and it modifies the plan to include the selection predicate.  If the passed-in plan-
node is a select operation then the predicate will be incorporated into that plan-node’s 
predicate.  If the passed-in plan-node is some other kind of operation then a new 
SimpleFilterNode will be added above the passed-in node, with the specified predicate. 

• When you change a plan, you must call prepare() on it again!  This includes adding a 
predicate to a plan; the plan’s cost and statistics must reflect the predicate you have added. 

Generating an Optimal Join Plan:  Approach 
The final step of join optimization is to combine the N leaf plans into one optimal join plan.  We will 
use dynamic programming for this step, allowing us to reuse earlier computations as we search for 
the answer.  The algorithm will operate in a loop, starting with a collection of join-plans that 
combine n leaf-plans in an optimal way, and producing a collection of join-plans that combine n+1 
leaf-plans in an optimal way.  Initially we start with the set of leaf plans (each of which “combines” 
one leaf in an optimal way); the first iteration will produce plans that join 2 leaves together; the 
next iteration will produce plans that join 3 leaves together; and so forth. 
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In the final iteration of this algorithm, we should have a set of plans that combine N-1 leaf-plans 
together, and we should produce a plan that combines all N leaf-plans together.  Since we only keep 
the optimal plan for each distinct set of n leaves being joined, we should end up with only one join-
plan that optimally combines all N leaves. 

For a specific iteration of this algorithm, we will start with a set of plans JoinPlansn that join n leaf-
plans together, and the set of leaf-plans LeafPlans.  To generate plans that join n+1 leaves together, 
we will simply iterate over both of these sets: 

for plann in JoinPlansn:  # Iterate over plans that join n leaves 
      for leaf in LeafPlans: # Iterate over the leaf plans 
            if leaf already appears in plann: 
                  continue  # This leaf is already joined in by the current plan 
 
            plann+1 = a new join-plan that joins together plann and leaf 
            newCost = cost of new plan 
            if JoinPlansn+1 already contains a plan with all leaves in plann+1: 
                  if newCost is cheaper than cost of current “best plan” in JoinPlansn+1: 
                        # plann+1 is the new “best plan” that combines this set of leaf-plans! 
                        replace current plan with new plan in JoinPlansn+1 
            else: 
                  # plann+1 is the first plan that combines this set of leaf-plans 
                  add plann+1 to JoinPlansn+1 

Reviewing the above algorithm, it is again clear that we should store additional details with each 
join-plan we generate: 

• The join-plan itself (obvious).  Plans know their own estimated costs, so we can easily find a 
plan’s cost from the plan itself. 

• The set of leaf plan-nodes combined by the join-plan.  This is essential, because it is how we 
identify whether two different plans join together the same set of leaves. 

• The set of conjuncts applied within the join-plan.  This is again helpful to determine which 
conjuncts have not yet been applied in the plan, so that we can ensure they are not left out. 

Generating plann+1 from plann and leaf 
This process is generally straightforward, but there are two important details about generating a 
new join-plan.  First, we will constrain our join optimizer to only consider left-deep plans.  In other 
words, leaf nodes should always appear on the right of a theta-join operation; a sub-plan involving 
other joins will always automatically end up on the left of a theta-join.  (For this assignment we 
don’t care if a nested subquery ends up as the right sub-plan of a join.  Hopefully the estimated cost 
will make it unappealing.)  This makes plan-generation simpler, because we don’t need to generate 
two candidates from plann and leaf; we simply join them in that order, and that is our new plan. 

The second important detail is that we must again follow our heuristic of applying selection as early 
as possible, so if there are conjuncts we can apply on the theta-join in the new join plan, we want to 
go ahead and apply them there.  This requires a bit of effort: 

SubplanConjuncts = LeftChildConjuncts  RightChildConjuncts 
UnusedConjuncts = AllConjuncts – SubplanConjuncts 

This is why we want to store the conjuncts used by each plan we generate, so that we can easily 
determine what conjuncts remain to be applied when generating a new plan. 
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Of this set of UnusedConjuncts, we must determine which of those conjuncts should be applied to 
the theta-join.  Once that is determined, we can easily compute the set of conjuncts used by the new 
plan, and we can store this with the new plan. 

Storing the Optimal Plan 
As is given in the pseudocode earlier, we must determine if a plan combining the specified leaf-
nodes has already been stored.  If so, we must compare the costs of the two plans, and if the new 
plans is cheaper than the current “best plan” then the new plan should replace the old plan.  Or, if 
there is no plan for this combination of leaf nodes, we always store the new plan. 

Generating an Optimal Join Plan:  Implementation 
In NanoDB, all Expression classes and all PlanNode classes implement the hashCode() and 
equals() methods, allowing them to be used with HashSets and HashMaps.  For example, the set 
of leaves joined by a plan are collected within a HashSet<PlanNode> object, and it is very easy to 
perform set-membership tests with such a collection.  Additionally, the hash-set itself can be used 
as a key into a mapping; specifically, we can map a set of leaf-plans to the optimal join-plan that 
combines those leaves. 

Similarly, conjuncts can be manipulated with HashSet<Expression> objects.  HashSets 
implement several methods for set operations:  the addAll() method can be used to compute a 
set-union, the removeAll() method can be used to compute set-difference, and the retainAll() 
method can be used to compute the set-intersection.  (Note that all of these methods change the 
object they are called on.)  The HashSet constructor can also take another collection as an 
argument; the collection’s contents are copied into the HashSet. 

The optimal join plan is generated by the generateOptimalJoin() method; an outline of the 
solution is provided in this method to steer you in the right direction.  There isn’t much else to say 
about this method that hasn’t already been said, except that the implementation relies on two 
collections that look like this: 

HashMap<HashSet<PlanNode>, JoinComponent> joinPlans 

This mapping is used to store the optimal plan for joining together n leaf-plans.  The key for this 
mapping is the set of leaf-nodes joined together by each plan; the value is an object that holds the 
plan itself, the conjuncts applied by the plan, and the set of leaf-plans joined together by the plan. 

Because all plan-nodes implement the hashCode() and equals() methods, two HashSets of plan-
nodes will hash and compare equal if they contain the same plans.  Therefore, if you generate a new 
plan that joins together the same leaves, you can use the set of leaves to look up any existing plan 
for those leaves, and compare an existing plan’s cost to the new plan’s cost.  

Some other notes: 

• Note that HashMap provides several useful views of the mapping.  The keySet() method 
exposes the keys in the mapping; the values() method provides a collection of all values. 

• Make sure you only join in each leaf-plan once.  This should be easy to do. 

• The findExprsUsingSchemas() helper will again be very useful to determine what conjuncts 
to apply.  Find the set of conjuncts unused by either sub-plan, and see which of those conjuncts 
can be applied to the join.  Note that you can call this helper method with multiple schemas, so 
you should be able to pass in both child-plans’ schemas to find the set of unused conjuncts.  (See 
the Javadocs on this method for an example.) 
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• Make sure that when you compute the set of unused conjuncts, you don’t change the set of all 
conjuncts, or either child-plan’s set of conjuncts!  Be careful to avoid subtle side-effect bugs. 

• As before, when you generate a new plan joining two plans together, you must call prepare() 
on the new plan to actually compute its schema and cost.  If you have written your code 
correctly, you shouldn’t have to call prepare() on either child-plan in this method, since this 
will have already been done earlier.  Also, you should only have to call prepare() on the new 
plan once. 

Testing Your Work 
Once you have completed your join planner, you should start with very simple tests to make sure 
everything is working properly.  However, you must first tell NanoDB use the new planner.  All 
commands that require a planner use the PlannerFactory class to get one.  (This class is in the 
edu.caltech.nanodb.queryeval package.) 

The easy way to tell the PlannerFactory to use your planner is to change the DEFAULT_PLANNER 
constant from SimplePlanner to CostBasedJoinPlanner.  (Leave the package name the same!)  
Once you have rebuilt your code-base, it should begin using your new planner. 

(You could also edit the nanodb script or the nanodb.bat batch-file to specify the property 
nanodb.planner.class, which would be less intrusive, but setting DEFAULT_PLANNER and then 
rebuilding is the easiest way.) 

Make sure you have ANALYZEd your tables before testing your planner.  You should be able to 
handle very simple queries such as: 

SELECT * FROM states; 
SELECT state_id FROM states; 

If these queries work, you might want to try something more challenging, such as this three-table 
join from the last assignment: 

SELECT store_id, property_costs 
FROM stores, cities, states 
WHERE stores.city_id = cities.city_id AND 
                cities.state_id = states.state_id AND 
                state_name = 'Oregon' AND 
                property_costs > 500000; 

Regardless of what order you specify the tables or conditions, or how the conditions are specified 
(e.g. in ON clauses, or in the WHERE clause, etc.), you should get the exact same join plan.  For 
example, I always get this plan: 

Project[values:  [STORES.STORE_ID, STORES.PROPERTY_COSTS]] cost=[tuples=22.7, …, cpuCost=11866.2, blockIOs=26] 
    NestedLoop[pred:  STORES.CITY_ID == CITIES.CITY_ID] cost=[…, cpuCost=11843.5, blockIOs=26] 
        NestedLoop[pred:  CITIES.STATE_ID == STATES.STATE_ID] cost=[…, cpuCost=298.0, blockIOs=2] 
            FileScan[table:  STATES, pred:  STATES.STATE_NAME == 'Oregon'] cost=[…, cpuCost=44.0, blockIOs=1] 
            FileScan[table:  CITIES] cost=[tuples=254.0, tupSize=23.8, cpuCost=254.0, blockIOs=1] 
        FileScan[table:  STORES, pred:  STORES.PROPERTY_COSTS > 500000] cost=[…, cpuCost=2000.0, blockIOs=4] 

Submitting Your Assignment 
When you are finished with the assignment, tag it with a hw4 tag as usual, and then push all of your 
changes to your team’s repository. 
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