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Assignment 3:  Table Statistics and Plan Costing 
In this assignment you will complete the following features: 

• Complete the implementation of statistics-collection from table data. 
• Complete the plan-costing computations for various plan-nodes. 
• Compute the selectivity of various predicates that can appear within execution plans. 
• Perform some simple experiments with your implementations. 

These tasks are described in the following sections. 

There are also a few opportunities for extra credit described at the end of this assignment, if you 
want to supplement your grade. 

Plan Costing Overview 
Plan costing is a remarkably imprecise operation.  Given a particular query execution plan, we must 
somehow make an estimate of how costly it will be to evaluate that plan, given statistics that are 
hopefully up to date, and a general understanding of how our plan nodes work in various cases.  In 
addition, there can be several measures for how to represent the “cost” of a plan, such as the total 
number of rows produced at each plan node, the total time to produce the results, the time to 
produce the first result, the CPU/memory/disk usage of the plan, and so forth. 

NanoDB has a very basic way of representing both plan costs and table statistics, but you will see 
that even with these simple representations, plan costing can be quite involved.  Furthermore, we 
can only make costing estimates in very limited situations; in many other situations, we must 
simply use default guesses because there’s no way to know. 

Nonetheless, as imprecise as the whole effort is, it still gives our database the ability to choose a 
plan that is likely to be “better” than other plans.  This allows us to generate multiple equivalent 
plans and then select the “best” one out of the bunch. 

Statistics Collection 
Plan costing is nearly impossible to perform effectively unless we have some basic table statistics 
describing the data that queries will run against.  Therefore, we must first ensure that we have 
useful statistics before we even attempt to perform any plan costing. 

Every table in NanoDB stores statistics describing that table’s contents.  These statistics are stored 
in the header page (page 0) of each table-file, immediately after the table’s schema.  These statistics 
are not updated continuously; that would be too costly.  NanoDB currently requires the user to 
manually invoke the statistics-update operation.  Additionally, the initial statistics created when a 
table is empty are, obviously, empty. 

Users can update a table’s statistics using the ANALYZE command.  This command takes one or 
more table names as arguments, and performs stats collection on those tables: 

CMD> ANALYZE cities, states, stores, employees; 
Analyzing table CITIES 
Analyzing table STATES 
Analyzing table STORES 
Analyzing table EMPLOYEES 
Analysis complete. 
CMD>  



CS122 – Database System Implementation Winter 2018 
 

This analysis process scans each table file, collecting useful statistics from the table and then 
storing the results into the header page.  When a table is opened in preparation to execute a query, 
the table’s statistics are automatically loaded from the header page. 

The statistics we will collect are: 

• The total number of tuples in the table file 
• The average size of a tuple, in bytes 
• The total number of data pages in the table file (for NanoDB heap files, this is just the total 

number of pages minus one, since only the header page is not a data page) 

In addition, for each column, we will collect: 

• The total number of distinct values in that column, excluding NULL values 
• The total number of NULL values 
• The minimum and maximum value that appears in the column, but only if there are non-NULL 

values, and if the column’s type is suitable for computing inequality-based selectivity estimates 

Note that we only want to store the minimum and maximum values for a column if we can easily 
compute inequality-based selectivity estimates (such as T.A > 5) for the column.  Generally we do 
this by computing the ratio (high – low) / (maxVal – minVal); depending on whether we are 
performing >, ≥, <, or ≤, we will use maxVal or minVal for the high or low value, and the actual 
comparison-value for the other value. 

Although we could certainly find the max and min value for a VARCHAR column, it’s substantially 
more difficult to perform the above computation with strings, so we will simply not gather 
min/max statistics for string columns.  (In addition, the max or min string value may be very large, 
and it could use up substantial space in the header page, with no real benefit.) 

You should also note that we will always find the total number of distinct values for a column, 
regardless of whether we will find the min and max values, because we need the number of distinct 
values to estimate the selectivity of = and ≠ conditions. 

Completing the Stats-Collection Functionality 
In NanoDB, all tuple file formats may provide statistics-collection capabilities through the 
TupleFile.analyze() interface-method.  This is the method that NanoDB ultimately calls when 
the user issues the ANALYZE command.  The (empty) implementation for this method is in the 
HeapTupleFile class; this is where you will implement statistics-collection for heap files. 

In a database, you should always try to do as much work as possible with as little IO as possible.  
Specifically, when collecting statistics, your implementation should collect all stats in one pass over 
the table file.  This is really not difficult to do; statistics collection can be implemented roughly like 
this: 

for each data block in the tuple file: 
    update stats based on the data block 
    (e.g. use tuple_data_end – tuple_data_start to update a “total bytes in all tuples” value) 
 
    for each tuple in the current data block: 
        update stats based on the tuple (e.g. increment the tuple-count) 
        for each column in the current tuple: 
            update column-level stats 
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Note:  While the TupleFile interface has getFirstTuple() and getNextTuple() methods, it 
will be faster if you access the file’s DBPages and their contents more directly, without using these 
methods.  Therefore, you should avoid using those functions in your implementation. 

A handful of helper classes are provided to make statistics collection simpler (all of these classes 
are in the edu.caltech.nanodb.queryeval package): 

• The TableStats class holds all the statistics for the tuple file.  Among other things, it holds a 
list of ColumnStats objects, each one holding the statistics for the corresponding column. 

• To help you compute the column statistics, there is a ColumnStatsCollector class that can be 
fed the values from a given column, and it will record the minimum and maximum values, the 
set of distinct values, and the number of NULL values.  Then, it can be used to generate a 
ColumnStats object that holds the necessary details. 

In your implementation of HeapTupleFile.analyze(), you will want to create an array of 
ColumnStatsCollector objects, one for each column in the tuple file.  As you traverse the 
tuples in the file, you can loop over each tuple’s columns, passing each column’s value into the 
corresponding ColumnStatsCollector object.  When you have traversed all columns, you can 
generate a list of ColumnStats objects for the table statistics. 

Don’t forget that a tuple-slot can be empty if the corresponding tuple has been deleted!  Make sure 
to use the HeaderPage and DataPage helper classes in implementing this class; they should make 
it very straightforward.  Don’t duplicate the same functionality already provided there, or you will 
lose points. 

Finally, when you have completed generating the table statistics, you can save the new statistics as 
follows: 

1) Create a new TableStats object with the new statistics you have computed 

2) Store your TableStats object into the HeapTupleFile.stats field on the tuple-file object 

3) Call heapFileManager.saveMetadata(), passing in the tuple-file object (this).  The 
heapFileManager field is set to the HeapTupleFileManager that loaded the heap file that you 
are analyzing in your function. 

The above function will update the header page with the serialized version of the current schema 
and statistics.  Once you have done this, the stats will be saved to the tuple file. 

Testing Statistics-Collection 
The ANALYZE command doesn’t print out the details when it is run on a table, so you can’t really tell 
if it is working correctly by itself.  However, NanoDB also has a “SHOW TABLE t STATS” command, 
which will output the statistics for the specified table.  You can compare your results to the contents 
of the SQL files you loaded.  Note that for some of the integer stats, -1 indicates “NULL” or 
“unknown”, but for object-values, the stats will contain a null reference if the value is unknown. 

Plan Costing and Selectivity Estimates 
Plan costs in NanoDB are represented with a few simple measures.  There are the standard ones 
you would expect, such as the number of tuples produced by each plan-node, the worst-case 
number of disk IOs that will be performed, and so forth.  These values are managed in the 
PlanCost class (edu.caltech.nanodb.queryeval package). 
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There is also a “CPU cost” measure, which is a simple estimate of the computational cost of 
evaluating a plan, using some imaginary units.  For example, we might say that the CPU cost of 
processing one tuple in a plan-node has a CPU cost of 1.0.  A select plan-node might only produce 10 
tuples, but if it has to look at 1000 tuples then the CPU cost generated by that node will be 1000.1 

Also, unlike row-counts, these CPU costs should accumulate up the tree:  if we have two equivalent 
plans, and our row-estimates are incredibly accurate so that we think the two plans will produce 
the same number of rows, the CPU cost will still tell us which plan is likely to do more work to 
generate the same results.  For example, if a select plan-node must consider 1000 tuples, its cost 
will be 1000 plus the CPU-cost of its sub-plan. 

Plan-Node Details 
Every plan-node has a prepare() method that computes three critical pieces of information for the 
node: 

• The schema of the plan node, stored in the protected field PlanNode.schema 
• The estimated cost of executing the plan node, stored in the protected field PlanNode.cost 
• Column-level statistics on the tuples produced by the plan node, stored in the protected field 

PlanNode.stats 

Since these fields are protected access, all subclasses can access and manipulate these values.  
Subclasses are expected to provide an implementation of prepare() to compute these details. 

You will need to complete this method for three of the plan-node types, computing the cost 
of each kind of node.  (The schema and statistics are already computed for you.)  The nodes whose 
implementation you must complete are: 

• SimpleFilterNode – a select applied to a subplan 
• FileScanNode – a select applied to a table file stored on disk 
• NestedLoopJoinNode – a theta-join applied to two subplans; the join may be an inner or an 

outer join 

The cost is represented as a PlanCost object (in the edu.caltech.nanodb.queryeval package).  
You should look at this class to see all values that your implementation must estimate.  Use “best 
case” estimates; for now, you can assume that NanoDB always has all the memory it needs. 

You can also look at examples of the prepare() method already implemented, in these classes:  
RenameNode, SortNode, ProjectNode.  Be aware that these implementations are written to 
operate properly even when a child plan’s cost is not available.  You do not need you mimic this; 
you can assume that the child plans’ costs are always available, because once you are done they 
always should be available. 

Estimating Selectivity 
Selectivity estimates are essential for guessing how many rows a plan-node will produce.  Besides 
our table statistics, we must also be able to guess the selectivity of a predicate.  A predicate’s 
“selectivity” is simply the probability that a row from the input will satisfy the predicate; if we know 
the number of rows that come into a node, and we know the selectivity of a node’s predicate, we 
simply multiply the two together to estimate the number of rows produced. 

                                                           
1 We might want to be more intelligent and scale the CPU cost based on the size of the predicate, but we will 
keep it simple for now. 
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In NanoDB, the SelectivityEstimator class (queryeval package) is used for making all 
selectivity estimates.  You must complete the implementation of this class to compute the 
selectivity of predicates that appear in query plans.  Specifically, you must support these kinds 
of predicates: 

• P1 AND P2 AND … 
• P1 OR P2 OR … 
• NOT P 
• COLUMN = VALUE and COLUMN ≠ VALUE, for all column-types 
• COLUMN ≥ VALUE and COLUMN < VALUE, for column-types that support the ratio-computation 

discussed earlier 
• COLUMN ≤ VALUE and COLUMN > VALUE, for column-types that support the ratio-computation 

discussed earlier 
• COLUMN_A = COLUMN_B and COLUMN_A ≠ COLUMN_B, for all column-types 

If a predicate doesn’t fall into one of these categories, use a default selectivity estimate of 25%. 

Some important caveats about the last four kinds of predicates: 

• Be aware that the necessary statistics are not always available!  For example, if someone hasn’t 
run ANALYZE on a table in a query.  In those cases, use the default selectivity estimate. 

• These conditions are grouped in pairs for a reason – you should implement the first estimate, 
and then implement the second one in terms of the first one.  For example, we can assume that 
P(A > 5) = 1.0 – P(A ≤ 5), or that P(A ≠ B) = 1.0 – P(A = B). 

• NanoDB includes a normalize() method on comparison expressions, such that when a column 
and a value are being compared, the column will always appear on the left.  This means we 
don’t have to support VALUE op COLUMN, only COLUMN op VALUE. 

• Finally, recall that we will only estimate the selectivity of >/≥/</≤ when the column-type easily 
supports it; we will not support this estimate for strings, for example. 

You will see many detailed comments in the SelectivityEstimator class; you really only have to 
focus on the costing equations, and how to extract the statistics you will need.  (Read the Javadocs 
for the various classes you will need to use.)  Many other parts are provided for you, including the 
computeRatio() method that is able to take a column’s min and max values, and compute the ratio 
(high – low) / (maxVal – minVal) mentioned earlier.  This function can work with any numeric type. 

Testing Plan Costing 
 After you have completed your plan-costing code, you will want to ensure that it works properly.  
You don’t have to write any test classes this week (but if you do, there will be extra credit for it!).  A 
simple schema is provided for you on the course website; you can load make-stores.sql, and 
then load stores-28K.sql.2  Obviously, make sure to ANALYZE these tables before trying any 
queries, or else you won’t have statistics for the costing computations to use. 

Note:  You will need to put the answers for this section into your design document, so you might as 
well record them. 

As mentioned last week, NanoDB has an EXPLAIN command you can use to see what it generates 
for different query plans.  For example, you can try this: 

EXPLAIN SELECT * FROM cities; 
                                                           
2 Note that the states table contains 51 rows since it also includes the District of Columbia. 
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Once you have completed the costing implementation, you should see something like this (your 
costs might be different, depending on your assumptions): 

Explain Plan: 
    FileScan[table:  CITIES] cost=[tuples=254.0, tupSize=23.8, cpuCost=254.0, blockIOs=1] 
 
Estimated 254.0 tuples with average size 23.787401 
Estimated number of block IOs:  1 

If you then try:  EXPLAIN SELECT * FROM cities WHERE population > 5000; 

This should print out the same plan costs, since the smallest city-population in that table is 100135. 

You can see the costs change if you try queries like this: 

EXPLAIN SELECT * FROM cities WHERE population > 1000000; 
EXPLAIN SELECT * FROM cities WHERE population > 5000000; 

Take note of how many rows the database expects this last query will produce.  (My estimate is 99.3 
tuples.)  However, how many tuples does the query actually produce? 

Now, if you run the following query, notice that you will get the exact same results, but if you 
EXPLAIN it, the costing estimate is very different: 

SELECT * FROM cities WHERE population > 8000000; 

This is the fundamental limitation of the simple statistics that we track in NanoDB.  Clearly, 
recording a histogram for different columns would produce much more accurate estimates. 

Costing Joins 
You can also try your costing estimates on more complex queries involving join operations.  For 
example: 

EXPLAIN SELECT store_id FROM stores, cities 
WHERE stores.city_id = cities.city_id AND cities.population > 1000000; 

(My analyzer predicts 1776.2 tuples for this query, and a CPU cost of 1,019,776.3 units.  Don’t feel 
like you have to match these numbers exactly; they are just my analyzer’s estimates.) 

Of course, the planner isn’t quite intelligent enough to position the query predicates in optimal 
locations in the query plan, although we can manually rewrite the query to put predicates in better 
positions: 

EXPLAIN SELECT store_id 
FROM stores JOIN 
     (SELECT city_id FROM cities 
      WHERE population > 1000000) AS big_cities 
     ON stores.city_id = big_cities.city_id; 

(The rewritten query is still estimated to produce 1776.2 tuples, but the CPU cost is now 962,940.8 
units.  Woo, 56000 “CPU units” less!) 

Finally, here is a slower query for you to tinker with: 

SELECT store_id, property_costs 
FROM stores, cities, states 
WHERE stores.city_id = cities.city_id AND cities.state_id = states.state_id AND 
      state_name = 'Oregon' AND property_costs > 500000; 
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The estimated tuple-count on this one is ~23 tuples, and the solution estimates a CPU cost of 
45,214,024.0.  The actual tuple-count is 7. 

See how fast you can get it by rewriting it!  (I was able to take it from 35 seconds down to 0.5 
seconds on my laptop, with a final CPU cost of 299,724.4.) 

Submitting Your Assignment 
When you are finished with the assignment, tag it with a hw3 tag as usual, and then push all of your 
changes to your team repository.  (Remember, if you need to submit an updated version later, 
update the tag to hw3-2, etc.  Don’t try to reuse the same tag multiple times; it will only mess 
everything up.) 

Finally, complete the design document, including the Git commit-hash of the checkin you want us to 
grade, and submit this file on Moodle. 

 

Extra Credit 
This week’s assignment is a bit easier than the previous two assignments.  So, if you want to earn 
some extra credit, here are some options for you to pursue. 

• The assignment doesn’t require you to modify the statistics describing a plan-node’s output, but 
this is a straightforward thing to add, as long as you constrain the kinds of situations you 
support.  You should modify the selection plan-nodes to produce statistics based on the 
selection predicate.  Try supporting predicates of the form:  P1 AND P2 AND …, where P1, P2, 
etc. are of these forms: 

o COLUMN op VALUE 
o COLUMN IN (VALUE-LIST) (there is a specific operator for this kind of comparison) 
o COLUMN = VALUE1 OR COLUMN = VALUE2 OR … (where all column-references are the 

same column name; in other words, the column is b) 
 
This should sufficiently constrain the problem that it will be feasible to implement.  Don’t feel 
compelled to support other forms of predicates, unless you see something very easy to support.  

You will receive maximal points for supporting all of the above forms with a clean architecture, 
and with corresponding unit tests.  Partial support, messy implementation details, or lack of 
testing will reduce the bonus correspondingly. 

• You may have noticed that there is no testing for the table-analysis and plan-costing code in 
Assignment 3.  Implement some unit-tests to exercise and verify these components.  The better 
and more useful tests you add, the more extra credit points you will get.  (If they are very good, 
we will likely incorporate them into the course codebase.) 

• Similarly, the Assignment 2 testing is also limited.  For example, there are few queries 
exercising various kinds of joins, nested queries in the FROM clause, queries requiring renaming 
of various tables, subqueries involving grouping and aggregation, and so forth.  Add more tests!  
The more useful tests you add, the more extra credit points you will get. 
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