
CS122 – Database System Implementation Winter 2018

CS122 Assignment 1: NanoDB Set-Up and Storage Layer (100 points)
In this assignment you have these tasks to complete:

• Get your code repository and development environment set up
• Add support for tuple updates and deletion in NanoDB
• Improve the insert performance of the NanoDB heap file implementation, without substantially

increasing the overall file size
• Submit your work along with a design document describing your efforts

The above tasks are described in detail, in the following sections.

Software Requirements
The NanoDB codebase requires the following tools and libraries to be present:

Java SE 8 Development Kit

• http://www.oracle.com/technetwork/java/javase/downloads/index.html
• The commands javac, java, and javadoc all need to be on your path. For example, typing

“javac -version” should report 1.8 or higher as the version.
• You need the Java Development Kit (JDK), not just the Java Runtime Environment (JRE).

Apache Ant

• http://ant.apache.org/
• The ant command should be on your path. For example, typing “which ant” should show you

where ant resides.

Additionally, you are encouraged to use a Java IDE (Integrated Development Environment) to work
on NanoDB, because it is rather sizeable. The Community edition of IntelliJ IDEA is very nice,
having some very powerful features; you can get it at http://www.jetbrains.com/idea/. However, if
you prefer Eclipse or another IDE, or even just Emacs or Vim, feel free to use it!

NanoDB Repository Setup
The NanoDB codebase is substantial, and your team will be developing some complex features on
the project. In situations like this, a version control system is absolutely essential; it allows you to
make checkpoints of your work as you go, and it facilitates collaborative coding by multiple people.
Additionally, you will submit your work using the version-control system so that we can retrieve
and grade what you have done.

We will be using the Git distributed version control system for CS122. You can install Git onto your
local machine from the following website: http://git-scm.com/. (It is already installed on the CMS
cluster, a.k.a. “the CS cluster,” if you decide to work there.) There are installers for all major OSes.
Once Git is installed, you can follow the instructions below to get started on NanoDB.

At least one team member must also have a CMS cluster account for CS122. This is how you
will retrieve the source code. If your repository is hosted on the CMS cluster, this is also how you
will submit your homework. Make sure that someone on your team can log in to the CMS cluster as
soon as possible.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://www.jetbrains.com/idea/
http://git-scm.com/

CS122 – Database System Implementation Winter 2018

Your team has a choice of using a Git respository hosted on the CMS cluster, or using a private Git
repository on GitHub or Bitbucket.

• If you intend to use the CMS cluster for your Git repository, please email Donnie ASAP so that he
can create an empty repository for you. If you use this approach, all teammates must have
working cluster accounts.

• If you intend to use a Git repository hosted somewhere else, please make sure it is a private
repository that is only accessible by the people who need to access it.

Steps:

1. First you will need to figure out a location to work. You can work on your local computer, on
the CMS cluster, or wherever you feel comfortable doing so. (If you decide to change where you
do your assignments, you will need to complete these setup instructions again.)

I usually program within a projects directory on my laptop, but perhaps you will want to
create a cs122 directory for yourself to work in.

2. Once you have figured this out, you need to clone your team’s repository into whatever location
you have chosen. This means that you are making a complete copy of the original repository
(which Git calls “origin”) for yourself. You will be able to make whatever changes you want to
this local repository without affecting the team’s repository that you cloned.

If you are using a 3rd-party Git service like GitHub or Bitbucket, you will probably need to read
their instructions for cloning the team repository. However, these services will often tell you
exactly what to type in order to clone your repository.

If you are using the CMS cluster for your team’s repository then you need to run the following
command, replacing username with your CMS username, and reponame with your team’s
repository name. It will create a local copy of the repository, in a directory named reponame.

git clone username@login.cms.caltech.edu:/cs/courses/cs122/teams/reponame

(Note: If you are familiar with SSH, you can set this up to login for you automatically, but this is
a bit beyond the scope of this document.)

When you execute this command, you may see it say something like:

Cloning into 'reponame'...
warning: You appear to have cloned an empty repository.

This is fine – you haven’t put the NanoDB source code into your repository yet. You will do that
in a few steps.

Once you have cloned your team’s repository, change into the directory that was just created.

3. Next, you must configure Git with your user information. (This is required so that we can tell
what work each teammate has committed to the project.) The double-quotes in these
commands are necessary if you have spaces in the values you specify.

git config --global user.name "Your Name"

git config --global user.email "your@email.tld"

You will probably also find it helpful to turn on colorful output:

git config --global color.ui true

CS122 – Database System Implementation Winter 2018

4. Now, one teammate needs to do the following:

(If multiple teammates do this, it will mess everything up! You have been warned…)

In your local repository, run:

git pull username@login.cms.caltech.edu:/cs/courses/cs122/nanodb

This command will suck the entire NanoDB codebase down into your local repository.

Next, make this code available in your team repository by running “git push --all”. This
will push your local repository’s contents into your team’s repository, so that your teammates
can also access the NanoDB source.

Once you have finished this, your teammates can also run “git pull” in their local
repositories, to retrieve the NanoDB sources.

Now you should be ready to experiment with NanoDB!

Optional Note: If you want to make it simpler to pull from the original NanoDB sources (e.g.
when Donnie makes changes to the original sources, and you want to grab them), you can add
the NanoDB repository location to your local Git configuration. Since it is highly likely that
Donnie will make changes to the sources as the course progresses, you should probably do
this.

If you run “git remote -v”, you will see that your team’s repository is now nicknamed
“origin”. This is the default remote that is used when you run “git pull” or “git push”.

You can add other remotes, like this:

git remote add nanodb username@login.cms.caltech.edu:/cs/courses/cs122/nanodb

Now, when you run “git remote -v”, you should see something like this:

nanodb username@login.cms.caltech.edu:/cs/courses/cs122/nanodb (fetch)
nanodb username@login.cms.caltech.edu:/cs/courses/cs122/nanodb (push)
origin username@login.cms.caltech.edu:/cs/courses/cs122/teams/reponame (fetch)
origin username@login.cms.caltech.edu:/cs/courses/cs122/teams/reponame (push)

(Your origin may be different, if you are hosting your team repository elsewhere. Also, the
NanoDB repository will be read-only for you, so that you can’t accidentally push your changes
back to it.)

Once you have set things up this way, you can type “git pull nanodb” to get any changes to
the original sources. You can use “git pull” to retrieve changes made by your teammates.

Git Repository Details
You should be aware that your local repository actually contains two components in one. First, you
will see directories and files like src, build.xml, test, etc. These are actually not part of the Git
repository itself; they are a working copy that you can edit separately. If you decide you don’t like
the changes you have made in your working copy, you can always revert back to the local
repository’s version with no problems.

When you are completely satisfied with your changes, then you can commit these changes to your
repository. The repository itself is stored in a subdirectory named .git, which you can see if you

CS122 – Database System Implementation Winter 2018

type “ls -al”. (Feel free to look in this directory, but don’t modify anything in there unless you
know exactly what you are doing.)

Compiling NanoDB with Ant
The first thing you should do is try to build NanoDB and generate the API documentation:

(in your local teamname directory)
ant compile javadoc

The compile task attempts to build all NanoDB sources, and the javadoc task generates the API
documentation.

After this operation is completed, a new build directory will be created containing the results of
the build process. This directory should never be checked into Git. To ensure that it is not,
create a file named .gitignore in the directory, and add the line build to the file. Git will now
ignore this file when it is examining your working copy. To be sure that Git remembers this, add the
.gitignore file to your local repository by running the commands:

git add .gitignore

git commit

When you run the second command, Git will prompt you for a commit-log message, typically by
starting vim. Make sure to always describe what you are doing when you commit a change to
your repository, using the 50/72 format.1 This is critical in any software-development
environment. If you fail to do this for every commit to your repository, you will lose substantial
points on your assignments.

The message doesn’t have to be too detailed; just be clear, complete and concise. A message like
“Added .gitignore to ignore build directory” is perfect.

To view the API documentation for NanoDB, open the file build/javadoc/index.html in a web
browser. The documentation is reasonably complete, although there are some gaps.

You can also test the NanoDB code by running ant test. The test results will be viewable in the
file build/results/index.html. A lot of work is still needed on the test suite. Additionally,
many tests will fail because you can’t yet execute most SQL.

Other HTML output is generated by other build tasks; you can access all of this output by navigating
to the file build/index.html. (I create a browser bookmark to this file on my local system.)

Finally, you can force a complete rebuild of the NanoDB code by typing ant clean. This will
delete the build directory. For example, if you make substantial architectural changes, you
would want to do ant clean compile to ensure that your changes didn’t cause any unexpected
breakages.

Running NanoDB
You might be tempted to try NanoDB out by writing a 15-line SQL reporting query with multiple
subqueries, grouping, and all kinds of joins, but it isn’t going to work. In fact, NanoDB is extremely
limited – it can only run simple SELECT and INSERT statements at this point. You will be
implementing these other features in the coming weeks.

1 You can read about proper Git log formatting at http://chris.beams.io/posts/git-commit/

http://chris.beams.io/posts/git-commit/

CS122 – Database System Implementation Winter 2018

Also, you will notice many places in the NanoDB sources that say “TODO: IMPLEMENT” or “TODO:”
followed by other notes. You only have to implement the portions of NanoDB specified in each
assignment. Some of the TODOs will be addressed in future assignments, and others are just
general work needed to improve NanoDB. You are only responsible for what each assignment says
to complete.

You can start NanoDB by running:

./nanodb
Welcome to NanoDB. Exit with EXIT or QUIT command.

CMD>

(Note: If you have the rlwrap utility on your computer, the nanodb script will automatically use it
to start NanoDB, so that you can scroll through old commands, edit more easily, and so forth. You
really should install this great utility!)

You can try creating a table:

CMD> create table t (a integer);
Created table: T

CMD> insert into t values (1);
CMD> insert into t values (2);
CMD> insert into t values (3);

You can also perform basic selects:

CMD> select * from t;
+---+
| A |
+---+
| 1 |
| 2 |
| 3 |
+---+

SELECT took 0.003193 sec to evaluate.
Selected 3 rows.
CMD> select * from t where a < 3;
+---+
| A |
+---+
| 1 |
| 2 |
+---+

SELECT took 0.003350 sec to evaluate.
Selected 2 rows.

Finally, you can drop the table when you are finished. If you are able to do these things,
congratulations, you are ready to start improving NanoDB.

You will notice that table files are created in the ./datafiles directory. Similarly, the tests will
create table files in the ./test_datafiles directory. Add both of these directories to your
.gitignore file since they should never be checked into the repository.

CS122 – Database System Implementation Winter 2018

Debugging Your Work
NanoDB uses Apache Log4j pretty extensively, and the storage layer in particular will produce
obscene amounts of logging output if so requested. Simply edit the logging.conf file,
uncommenting the lines towards the end that set the log-levels of various components. If you set
the log-level to DEBUG, you will be given reams of information about what is going on.

Of course, you can always add your own logging commands to the code. Just make sure that all of
this is disabled before you submit your work; overly verbose output is likely to be penalized.
Adding simple print commands will be penalized; always use logging instead!

NanoDB Tuple Updates and Deletion
As it stands, NanoDB does not yet support updating or deleting tuples! Your first tasks will be to
implement the process of updating and deleting tuples in a table.

Note: Tables and indexes are both implemented as “tuple files” in NanoDB. This allows us to use
the same storage implementation to manage both tables and indexes.

As noted in class, NanoDB tuple files have a simple structure. The major aspects are described here,
along with the classes that provide the associated functionality. All of these classes are in the
edu.caltech.nanodb.storage.heapfile package; you should go to this package and read
through the classes mentioned here.

• Page 0 (or block 0; we use the terms interchangeably) is the header page of the table file, and
stores details such as the table’s schema. No tuples are stored in page 0.

The HeaderPage class provides some lower-level operations for reading and writing fields
within the header page; these operations are exposed as static methods.

• All other pages in the table file are data pages, implementing the slotted-page data structure as
described in class. The DataPage class provides lower-level operations for manipulating data
pages; again, these are exposed as static methods.

• The HeapTupleFileManager class provides the ability to create, open and delete tuple files
that use the heap-file organization. When a table is opened for scanning, this class is used to
open the table’s corresponding tuple file.

• The HeapTupleFile class provides operations like scanning a tuple file, inserting a record into
a tuple file, and so forth. The implementation of these operations relies heavily on the
HeaderPage and DataPage classes.

• The HeapFilePageTuple class represents individual tuples whose data is backed by the file
block that contains the tuple. You will see that the bulk of the page-tuple abstraction is
implemented in the edu.caltech.nanodb.storage.PageTuple class, so that this tuple-
storage code can be used in multiple file formats. (For example, if you were to implement a
hash-file format, you could subclass PageTuple to allow reading and writing of tuples in your
hash files.)

When a tuple is to be deleted, the HeapTupleFile.deleteTuple() method is called with the
specific tuple to be deleted. This method determines the slot-index of the tuple, and then uses the
DataPage.deleteTuple() method to delete the tuple at this slot.

CS122 – Database System Implementation Winter 2018

Enable tuple deletion by completing the implementation of the DataPage.deleteTuple()
method. Your implementation should conform to these guidelines:

• Reclaim the space that was previously occupied by the tuple being deleted by using the
deleteTupleDataRange() helper function. Make sure you don’t accidentally clobber adjacent
tuples.

• Set the tuple’s slot to the EMPTY_SLOT value.
• Finally, if there are empty slots at the end of the header, remove them so that this space can also

be reclaimed. Remember that you cannot remove an empty slot if it is followed by one or more
non-empty slots.

Enable tuple updating by completing the implementation of the setNullColumnValue() and
setNonNullColumnValue() methods of the PageTuple class. These methods are somewhat
tricky to get right. They are called by PageTuple.setColumnValue() to modify an existing tuple’s
column values.

• The setNullColumnValue() method sets the bit in the tuple’s null-bitmask to indicate that the
column’s value is now NULL. Then it removes the space that the old value used to occupy.
(Obviously, none of these steps are necessary if the old value for the column was NULL.)

• The setNonNullColumnValue() method must replace any existing value for the column with
a new value.

• Some general implementation details are included as comments in these methods.

NanoDB Storage Performance
As discussed in class, NanoDB has a very simplistic approach to managing its heap files. In each
heap file, NanoDB devotes the first page (page 0) to schema and other high-level details, and the
remaining pages are devoted to tuple storage.

When NanoDB inserts a new tuple into a heap file, it follows a very simple process: Starting with
page 1, it looks for enough space to store the tuple. If the page being considered has enough space
then the tuple is added to that page.2 If not, NanoDB goes on to page 2, and then page 3, and so
forth. If NanoDB reaches the end of the file then it creates a new page and stores the tuple there.

This approach is very slow (O(N2)) for adding a large number of tuples, but it does have the benefit
of using space reasonably effectively. However, there is no reason why we shouldn’t be able to have
both benefits; fast inserts as well as efficient space usage.

The implementation of this strategy is in the addTuple() method of the HeapTupleFile class, in
the edu.caltech.nanodb.storage.heapfile package.

Measuring Storage Performance
You can give NanoDB a try on this front by creating a simple table. After compiling NanoDB, start it
with the nanodb script (or nanodb.bat on Windows), and create a simple table:

CREATE TABLE insert_perf (
 id INTEGER,
 str VARCHAR(200),
 num FLOAT
);
INSERT INTO insert_perf VALUES (1, 'hello', 3.14);

2 Note that this is a first-fit strategy, not a best-fit strategy.

CS122 – Database System Implementation Winter 2018

INSERT INTO insert_perf VALUES (2, 'goodbye', 6.28);
EXIT;

(A .sql file for this schema is in the schemas/insert-perf directory.)

You should now see a file named INSERT_PERF.tbl in the datafiles subdirectory. This is the
table that we just created and then added the tuples to. It will be 16KB in size since the default
page-size is 8KB.3 If you want to get rid of this table, you can either delete the INSERT_PERF.tbl
file from this directory, or you can use the command “DROP TABLE insert_perf;” in NanoDB.

How do we measure the actual performance? Wall-clock time (i.e. the actual time that the test takes
to run) is not useful, because the test will be very dependent on computer hardware. Therefore,
NanoDB includes a “SHOW STORAGE STATS” command, which will print out some statistics that will
give us an approximation of the storage performance:

• storage.pagesRead and storage.pagesWritten are the number of disk pages that have
been read and written, since the NanoDB server was started. (Note that this statistic is
independent of the actual size of the pages.)

• storage.fileChanges is the number of times NanoDB accessed a different file from the
previous file that was accessed. In a typical scenario using an HDD, a large disk seek would be
performed every time a different file is accessed. For these tests, this value will be 1.

• storage.fileDistanceTraveled is an approximation of the absolute distance traveled
within files as pages are accessed, in units of 512-byte sectors. For example, if sector 15 in the
file is accessed, and then sector 29 is accessed, and then sector 3 is accessed, the distance
traveled will be abs(29 – 15) + abs(3 – 29) = 40. In a typical scenario using an HDD, this would
approximate the amount of distance that the disk head would have to move. It is an extremely
rough approximation, though.

Ideally, as you improve your insert performance, you should see both the total number of accesses
and the distance traveled decrease dramatically.

You can try some larger files, also provided in the schemas/insert-perf directory:

• ins20k.sql – 20,000 rows of data. With the default implementation, this file occupies 2.7MB
of space, reads 3,306,267 pages, and has a “distance traveled” value of 105,144,752.

• ins50k.sql – 50,000 rows of data. With the default implementation, this file occupies 6.7MB
of space, reads 20,645,580 pages, and has a “distance-traveled” value of 659,042,640.

• ins50k-del.sql – 50,000 rows of data, but also includes a smattering of DELETE statements
that remove collections of rows from the table. Try this when you want to see how well you
reclaim space! The default implementation’s final result occupies 5MB of space.

You can try these operations simply by piping these files into the nanodb script, for example:

./nanodb < schemas/insert-perf/make-insperf.sql

./nanodb < schemas/insert-perf/ins20k.sql

Here are your tasks:

1. Modify the storage format to improve the insert performance. You can modify the
HeapFileTableManager class in any way that you see fit. You can also modify the

3 You can specify a different default page size by editing the nanodb script to pass -Dnanodb.pagesize=n, where n is a
power of 2 between 29 and 216, inclusive. You can also specify a table’s page-size in the CREATE TABLE command, like
this: create table t (a integer) properties (pagesize = 65536);

CS122 – Database System Implementation Winter 2018

HeaderPage and DataPage classes, which do the actual work of reading and writing table
pages.

For example, you might want to add a linked-list of blocks with available space to the table-file,
anchored from block 0. You might find it easiest to store such a list at the end of each block, but
the design is entirely up to you. For example, you could subtract some space from the value that
the getTupleDataEnd() method in the DataPage class returns, to open up some extra space
for bookkeeping.

You could also create some kind of bitmap that records which blocks have available space. If
you do this, your design should support the maximum number of blocks in NanoDB files, which
is 65,536 (64K). Recall that page sizes may vary from 512B to 65,536B; your implementation
should work properly regardless of a table’s page size.

Don’t forget to update your bookkeeping structures during tuple updates and deletes as
well!

Do not use the table statistics as part of your implementation. This is not actually the
intended use of table statistics. Table stats are updated infrequently by the database, and are
therefore almost always out of date. Plus, stats-collection is not currently implemented; you
will implement this yourself in a future assignment.

When you need to add a new page to a table file, you should be aware that the DBFile class
provides a method getNumPages() that returns how many pages are currently in the file.
Every DBPage has a reference to the DBFile object that it came from, so it should be very easy
to tell where the new page should reside.

2. Provide detailed documentation of your approach in the class-level comments for the
HeapTupleFile.

Additional requirements:

• Although you could easily improve performance by simply putting every new tuple in its own
data page, you should endeavor to keep your data file to within 5% of the size of the original
data file. Excessively large data files will be penalized.

• Additionally, you must actually modify the storage file format to improve this operation; do not
simply modify the in-memory data tracked by the table manager.

Committing Work to Your Repository
As you work on your assignment, you may want to commit your changes as you get various parts of
the project working. In fact, you are encouraged to do this! Nothing is more frustrating than
finishing a complicated feature, then immediately mangling it as you start working on the next task.
Commit your work anytime you finish anything you don’t feel like doing again. At any point in your
work, you can run the command “git status” to see what files have been modified in your
working directory.

The command to commit changes to your repository is “git commit”. However, it is important to
understand Git’s workflow for committing changes to the repository. Changes you make in your
working directory will not immediately be included when you commit to your repository; rather,
Git maintains a “staging area” of changes to be included in the next commit. In other words, you can
make some changes that will be included in the commit, and other changes that will not be included
in the commit. A file whose changes will be included in the next commit is described as being

CS122 – Database System Implementation Winter 2018

“staged” (i.e. its changes are in the staging area). A file whose changes will not be included in the
next commit is “unstaged,” or “modified but not staged.”

To complicate this somewhat, files also fall into two categories: tracked files, which have been
added to the repository and Git is managing them; and untracked files, which have not yet been
added to the repository.

The upshot of all this is that if you want to add a new file to your repository, or you want to include
changes of an existing file into your repository, you must run “git add filename” to include the
file in the staging area. Then, these changes will be included in the next commit.

There is a simplification for when you haven’t added any new files: you can run “git commit -a”,
which will perform the staging step as well as the commit step. However, if you create a brand new
file, you still need to run “git add filename” on that new file before it will be committed.

Pushing Changes to the Team Repository
If you want to protect yourself from system crashes, you can also push your committed changes to
your team’s shared repository by running “git push” at any time. This is strongly encouraged,
since every year at least one or two students struggle with a crashed machine. If you
regularly push to the team repository, it will be relatively easy to get back online if your local
system goes down in flames.

Submitting Your Work
When you are ready to submit your work, this is the process you should follow. Only one member
of your team should perform these steps. If multiple people on your team do this, it will mess
things up.

The first thing to do is tag your submission so that we can retrieve the correct version of your work:

git tag hw1

This will tag the current version of your repository with the name “hw1”.

Once you have done this, you can push all of your changes to your CMS cluster repository:

git push --tags

The --tags argument will cause all tags in your local repository to be replicated into your CMS
cluster repository. Once this is done, we will be able to retrieve the version of your work marked
with this tag, so that we can grade it.

Note that if you decide to resubmit your work (e.g. because you found a bug that you needed
to fix), you cannot reuse the same tag name again! Therefore, use a modified tag name that
includes “hw1” in it, e.g. “hw1-2”, so that we can still find your submission. Also, don’t forget to push
the new tag to your submission repository.

Finally, one team member should submit the completed Assignment 1 design document on
the CS122 course Moodle.

	CS122 Assignment 1: NanoDB Set-Up and Storage Layer (100 points)
	Software Requirements
	NanoDB Repository Setup
	Git Repository Details

	Compiling NanoDB with Ant
	Running NanoDB
	Debugging Your Work
	NanoDB Tuple Updates and Deletion
	NanoDB Storage Performance
	Measuring Storage Performance

	Committing Work to Your Repository
	Pushing Changes to the Team Repository

	Submitting Your Work

