B

Relational Database

S m Impleme ion

Last Time: Two-Phase Locking

Require that transactions manage locks in two phases
Growing phase:

e A txn may acquire new locks, and may not release any lock
Shrinking phase:

e A txn may release locks, and may not acquire any new locks

Transactions start in the growing phase

e As transaction operates on various data items, it acquires
locks on those items

Once a txn releases any lock, it enters the shrinking phase
e [t can only release locks, until all of its locks are released

Two-phase locking protocol only allows conflict-serializable
execution schedules

Two-Phase Locking Example

Previous example, updated Ty
to follow two-phase rule:

e Now we know it is
conflict-serializable

What new problem do we have?

e Shared and exclusive locks
are incompatible...

A schedule executing these
transactions is prone to deadlock!

lock-X(B);
read(B);

Bkt

write(B);
lock-X(A4);
read(A4);

A:=A+30;

write(A4);
unlock(B);
unlock(4);
commit.

Tj:

lock-S(4);
read(A4);
lock-S(B);
read(B);
unlock(4);
unlock(B);
display(4 + B);
commit.

| 2PL and Deadlocks

* A two-phase locking schedule 71: lockx(B); T

that deadlocks: read(B);
B :=B - 30;
write(B);
» Can’t avoid this issue... o),
: read(4);
e Never know what data items lock-X(A4);
a transaction might use! read(A); lock-S(B);
. : : A:=A+30; read(B);
® Only recourse is to identify titell) ki
deadlocks when they occur unlock(B); unlock(B);
S : display(4 + B);
e Choose one transaction in anacsl splay(a + B);
commit. commit.

the deadlock, and abort it.
e Aborted transaction is called the victim

= /

2PL: Detecting Deadlocks

Current Lock Manager design:

e Lock manager tracks every data item that is locked

« Lock manager records the transaction that has the item locked,
and the lock mode (shared or exclusive)

e [f other transactions are waiting to lock a data item, the
lock manager also records these lock-requests

The lock manager also maintains a waits-for graph,
tracking relationships between waiting transactions

e Ifa transaction T; holds a lock on a data item @, and T; is
waiting to lock @, the waits-for graph records T; =2 T;

2PL: Detecting Deadlocks (2)

If waits-for graph contains a cycle, a deadlock exists!
e All transactions in the cycle are deadlocked, not just one

How many outgoing edges will a transaction have in
the waits-for graph?
e Depends on the mode of the current lock on the item!

e e.g.if item is locked in shared-mode by multiple txns,
and an exclusive-mode request is made, requester will
have outgoing edges to all txns holding the lock

Multiple deadlock cycles could exist in waits-for graph
e One transaction could be involved in multiple cycles
e Deadlock detection must identify all cycles in graph

/—\

2PL: Detecting Deadlocks (3)

Waits-for graph can be updated every time a request
cannot be granted immediately

e [farequest can be granted immediately, no reason to
update the waits-for graph... transaction isn’t waiting...

When a transaction unlocks a data item, one or more
waiting requests can be granted

e Must again update the waits-for graph

When a txn aborts, all of its locks and outstanding
requests are removed from the lock manager

e Again, must update the waits-for graph

8

2PL: Detecting Deadlocks (4)

When should deadlock detection be invoked?

e Will certainly consume CPU resources, so don’t want to
run it all the time

Don't need to run it all the time...
e Deadlocks have a nice property: they don’t go away!

Only need to consider running deadlock detection
when a lock request can’t be granted right away

e e.g.if alock request isn’t satisfied within a specific time
interval, invoke deadlock detection algorithm

2

2PL: Resolving Deadlocks

If deadlock is detected, another important question:

How should we choose a victim transaction to abort?
Example:

e Transaction T} is performing a long-running analysis

e Transaction T, involves three quick operations

e [f T, and T, deadlock, which should be aborted?

e Preferably, T, should be aborted so that less work is lost

Goal:
e Choose a victim to abort that will incur the least cost

10

/—\
2PL: Resolving Deadlocks (2)

[dentifying victim that will incur least cost is difficult to do

Can consider definite measures:
e How long each transaction in the deadlock cycle has been
running
« Abort the youngest transaction in the cycle?

e How costly the transaction itself will be to abort:
- How many data-items has the transaction modified?
« The more writes the transaction has performed, the more costly it
will be to rollback all changes
e How many deadlock cycles the transaction is involved in

« Every deadlock cycle must be broken! If multiple cycles can be
broken by aborting one transaction, everybody [else| wins.

>

11

2PL: Resolving Deadlocks (3)

Can also try to predict the future:

e How close is each transaction to being finished?

« If not throwing away a large amount of work, would be nice to
abort transactions that still have a long way to go

e How many more data items will the transaction need?

» Prefer to abort a transaction that requires more resources over
one that requires less

e Can be challenging to make these predictions, but the set
of queries against a DB usually doesn’t vary a lot

Or, just pick one randomly ©

12

Two-Phase Locking Protocol

So far, two-phase locking protocol ensures conflict-
serializable execution schedules...

...but we really wanted strict schedules.

e Rules out cascading aborts, nonrecoverable schedules,
and complicated recovery processing

The form of 2PL previously introduced is called
basic two-phase locking

13

| Basic Two-Phase Locking

Want to modify 2PL protocol to only allow strict
transaction schedules

A schedule S is strict if, for every pair of txns T; and T;:

e If T; reads or writes a data-item previously written by T,
then T; is not allowed to do this until 7; first commits

What could T; do to ensure that T; can’'t read or write a
data item T; has written to, until T; commits?

Simple: hang onto its write-locks until after it
commits!

14

/

Strict Two-Phase Locking

Strict two-phase locking extends basic 2PL:

>

e Transactions must still follow the two phases of 2PL

e A transaction must also hold on to all exclusive locks
until after the transaction commits

Ensures the strict schedule requirement is satisfied
e Prevents all undesirable behaviors we want to eliminate

Strict 2PL is sufficient to build a standalone database,
but most commercial DBs don’t actually use it!

&

Distributed Databases

>

Distributed databases are increasingly necessary for
handling massive numbers of clients

e Very large companies (banks, credit companies, etc.);
huge number of clients distributed around the world

Either undesirable or infeasible to handle all database
transactions with a single system

e Size of data-set may be far too large for a single server

e Want to be aware of network topology - clients should
interact with servers topologically “close” to them

e Also reduces risk of service outages for clients, if either a
specific server fails, or connectivity between servers fails

16

/—\

Distributed Databases (2)

Homogeneous distributed databases

e All servers use the same DBMS software, and generally
collaborate very closely (e.g. same schemas, queries)

Heterogeneous distributed databases

e Different servers may use different DBMS software, etc.
Still want to make transaction-processing guarantees
for such systems...

e Each database has its own concurrency control system

e Different databases may even use different concurrency-
control mechanisms

17

..
Global Serializability

Individual sites participate in distributed transactions
with each other

>

e A transaction that spans multiple database systems

Individual databases can ensure that local transactions
are executed according to some serializable schedule...

Doesn’t automatically guarantee the global transaction
schedule is also serializable!

Want distributed DB to enforce global serializability
To do this, strict two-phase locking is not enough

18

Rigorous Two-Phase Locking

Rigorous two-phase locking is a further modification of
strict two-phase locking:

e Transactions follow the two phases of 2PL...

e A transaction must hold on to all locks (shared or
exclusive) until after the transaction commits

Also known as strong-strict two-phase locking
Has a useful property for distributed databases:
e Transactions can be serialized in the order they commit

e Allows for efficient and scalable distributed transaction
processing that satisfies the ACID properties

L)

/—\

Rigorous Two-Phase Locking (2)

Commercial databases with lock-based concurrency
control actually use rigorous 2PL, not strict 2PL

e Allows them to be used in distributed database systems
Does rigorous 2PL actually have two phases?

e Transactions follow the two phases of 2PL...

e ..and a transaction must hold on to all locks (shared or
exclusive) until after the transaction commits

Second phase is always performed entirely in one shot,
after commit. Not really a “phase”...

20

/—\

Conditional Operations

Transactions don’t always know what data-items they
will need to lock, or what locks they will need to use
Example: conditional operation

e [fA>=100thenAd:=A4- 100, otherwise B := B - 100.

e Transaction reads A first, then either modifies 4 or B.
What lock should we initially acquire against A?

e Depends on current value of A...

e Could simply play it safe, and always lock-X(A)

e But, this would reduce the concurrency of the system

21

/—\

Lock Conversions

A better approach:
e Allow txns to upgrade a shared lock into an exclusive lock

e Similarly, allow them to downgrade an exclusive lock into a
shared lock

As before, lock conversions must follow 2PL protocol:

e Lock upgrades are only allowed during growing phase

e Lock downgrades are only allowed during shrinking phase
Two new operations to support with Lock Manager:

e upgrade(Q) Upgrades a shared lock on Q to exclusive
e downgrade(Q)) Downgrades exclusive lock on Q to shared

e

Lock Conversions (2)

® Gives us two options with previous example

e [fA>=100thend:=A4- 100, otherwise B := B - 100.
® Option 1:

e Acquire a shared lockon A

e [fA>=100 then upgrade to exclusive lock on A

e Otherwise, acquire an exclusive lockon B T: lock-S(4);
(must retain shared lock on A) read(4);

Hey, A > 100!
upgrade(A4);
A:=A-100;
write(A);
commit;
unlock(A4).

23

| Lock Conversions (3)

Gives us two options with previous example

e [fA>=100thend:=A4- 100, otherwise B := B - 100.
Option 2:

e Acquire an exclusive lock on 4

e [fA <100 then downgrade to shared lock on 4
and acquire an exclusive lock on B...

Actually, not allowed to do it in that order!!!

e Downgrading releases a lock; causes transaction to enter
the shrinking phase!

e Not allowed to acquire another lock on B

24

/ Lock Conversion Risks

What happens with this transaction schedule?

e T;and T; both acquire T;: lock-S(4); T;
shared locks on A read(A);
lock-S(4);
e T;tries to upgrade its lock, rz;d(ﬁ).)
but is blocked by T; upgrade(A);
o T, tries to upgrade its lock, A=4-100;
Lo write(4);
but is blocked by T; ’ L
T;and T; end up deadlocked A:=A-100;
e One of them must be aborted - WIEEL)
by the database unlock(:él).
commit;

unlock(4).

>

=5

Lock Conversion Risks (2)

What if both T; and T, tried to acquire exclusive locks

right away? T; lockX(4); T;
e Reduces opportunities for read(4);
. A:=A-100;
concurrency, but avoids :
write(4);
deadlocks! ot
One reason why databases unlock(A).
: o lock-X(4);
often provide modifiers to e
SELECT statements, such as: A=A _'100;
SELECT ... FOR UPDATE ; wEitela);

: . commit;
e Acquires exclusive locks, not shared locks unlock(A).

26

>

Typical Lock-Conversion Strategy

Most databases use rigorous 2PL with lock-upgrading
When a transaction T; issues a read((Q) operation:

e [f DB knows that the SQL command is going to read and
then write Q, it can issue lock-X(Q) first, then read(Q)

» e.g. “"UPDATE t SET a = a + 5” must read and write data values
e Otherwise, DB issues a lock-S(Q) first, then read(Q)
When T, issues a write(Q):

e [f T; already has a shared lock on Q then DB issues
upgrade(Q), then write(Q)

e Otherwise, DB issues a lock-X(Q) first, then write(Q)
All locks are released after transaction T; commits

