
CS122	– Lecture	19
Winter	Term,	2018-2019

2

Last Time: Two-Phase Locking
� Require	that	transactions	manage	locks	in	two	phases
� Growing phase:

� A	txn may	acquire	new	locks,	and	may	not	release	any	lock
� Shrinking phase:

� A	txn may	release	locks,	and	may	not	acquire	any	new	locks
� Transactions	start	in	the	growing	phase

� As	transaction	operates	on	various	data	items,	it	acquires	
locks	on	those	items

� Once	a	txn releases	any	lock,	it	enters	the	shrinking	phase
� It	can	only	release	locks,	until	all	of	its	locks	are	released

� Two-phase	locking	protocol	only	allows	conflict-serializable	
execution	schedules

3

Two-Phase Locking Example
� Previous	example,	updated
to	follow	two-phase	rule:

� Now	we	know	it	is
conflict-serializable

� What	new problem	do	we	have?
� Shared	and	exclusive	locks
are	incompatible…

� A	schedule	executing	these
transactions	is	prone	to	deadlock!

Ti: lock-X(B);
read(B);
B :=	B – 30;
write(B);
lock-X(A);
read(A);
A :=	A +	30;
write(A);
unlock(B);
unlock(A);
commit.

Tj: lock-S(A);
read(A);
lock-S(B);
read(B);
unlock(A);
unlock(B);
display(A +	B);
commit.

4

2PL and Deadlocks
� A	two-phase	locking	schedule
that	deadlocks:

� Can’t	avoid	this	issue…
� Never	know	what	data	items
a	transaction	might	use!

� Only	recourse	is	to	identify
deadlocks	when	they	occur

� Choose	one	transaction	in
the	deadlock,	and	abort	it.

� Aborted	transaction	is	called	the	victim

Ti: lock-X(B);
read(B);
B :=	B – 30;
write(B);

lock-X(A);
read(A);
A :=	A +	30;
write(A);
unlock(B);
unlock(A);
commit.

Tj:

lock-S(A);
read(A);

lock-S(B);
read(B);
unlock(A);
unlock(B);
display(A +	B);
commit.

WAIT

WAIT

5

2PL: Detecting Deadlocks
� Current	Lock	Manager	design:

� Lock	manager	tracks	every	data	item	that	is	locked
� Lock	manager	records	the	transaction	that	has	the	item	locked,	
and	the	lock	mode	(shared	or	exclusive)

� If	other	transactions	are	waiting	to	lock	a	data	item,	the	
lock	manager	also	records	these	lock-requests

� The	lock	manager	also	maintains	a	waits-for	graph,	
tracking	relationships	between	waiting	transactions
� If	a	transaction	Ti holds	a	lock	on	a	data	item	Q,	and	Tj is	
waiting	to	lock	Q,	the	waits-for	graph	records	Tjà Ti

6

2PL: Detecting Deadlocks (2)
� If	waits-for	graph	contains	a	cycle,	a	deadlock	exists!

� All transactions	in	the	cycle	are	deadlocked,	not	just	one
� How	many	outgoing	edges	will	a	transaction	have	in	
the	waits-for	graph?
� Depends	on	the	mode	of	the	current	lock	on	the	item!
� e.g.	if	item	is	locked	in	shared-mode	by	multiple	txns,	
and	an	exclusive-mode	request	is	made,	requester	will	
have	outgoing	edges	to	all	txns holding	the	lock

� Multiple	deadlock	cycles	could	exist	in	waits-for	graph
� One	transaction	could	be	involved	in	multiple	cycles
� Deadlock	detection	must	identify	all cycles	in	graph

7

2PL: Detecting Deadlocks (3)
� Waits-for	graph	can	be	updated	every	time	a	request	
cannot	be	granted	immediately
� If	a	request	can	be	granted	immediately,	no	reason	to	
update	the	waits-for	graph…		transaction	isn’t	waiting…

� When	a	transaction	unlocks	a	data	item,	one	or	more	
waiting	requests	can	be	granted
� Must	again	update	the	waits-for	graph

� When	a	txn aborts,	all	of	its	locks	and	outstanding	
requests	are	removed	from	the	lock	manager
� Again,	must	update	the	waits-for	graph

8

2PL: Detecting Deadlocks (4)
� When	should	deadlock	detection	be	invoked?

� Will	certainly	consume	CPU	resources,	so	don’t	want	to	
run	it	all	the	time

� Don’t	need	to	run	it	all	the	time…
� Deadlocks	have	a	nice	property:		they	don’t	go	away!

� Only	need	to	consider	running	deadlock	detection	
when	a	lock	request	can’t	be	granted	right	away
� e.g.	if	a	lock	request	isn’t	satisfied	within	a	specific	time	
interval,	invoke	deadlock	detection	algorithm

9

2PL: Resolving Deadlocks
� If	deadlock	is	detected,	another	important	question:
� How	should	we	choose	a	victim	transaction	to	abort?
� Example:

� Transaction	T1 is	performing	a	long-running	analysis
� Transaction	T2 involves	three	quick	operations
� If	T1 and	T2 deadlock,	which	should	be	aborted?
� Preferably,	T2 should	be	aborted	so	that	less	work	is	lost

� Goal:
� Choose	a	victim	to	abort	that	will	incur	the	least	cost

10

2PL: Resolving Deadlocks (2)
� Identifying	victim	that	will	incur	least	cost	is	difficult	to	do
� Can	consider	definite	measures:

� How	long	each	transaction	in	the	deadlock	cycle	has	been	
running
� Abort	the	youngest	transaction	in	the	cycle?

� How	costly	the	transaction	itself	will	be	to	abort:
� How	many	data-items	has	the	transaction	modified?
� The	more	writes	the	transaction	has	performed,	the	more	costly	it	
will	be	to	rollback	all	changes

� How	many	deadlock	cycles	the	transaction	is	involved	in
� Every deadlock	cycle	must	be	broken!		If	multiple	cycles	can	be	
broken	by	aborting	one	transaction,	everybody	[else]	wins.

11

2PL: Resolving Deadlocks (3)
� Can	also	try	to	predict	the	future:

� How	close	is	each	transaction	to	being	finished?
� If	not	throwing	away	a	large	amount	of	work,	would	be	nice	to	
abort	transactions	that	still	have	a	long	way	to	go

� How	many	more	data	items	will	the	transaction	need?
� Prefer	to	abort	a	transaction	that	requires	more	resources	over	
one	that	requires	less

� Can	be	challenging	to	make	these	predictions,	but	the	set	
of	queries	against	a	DB	usually	doesn’t	vary	a	lot

� Or,	just	pick	one	randomly	J

12

Two-Phase Locking Protocol
� So	far,	two-phase	locking	protocol	ensures	conflict-
serializable execution	schedules…

� …but	we	really	wanted	strict	schedules.
� Rules	out	cascading	aborts,	nonrecoverable schedules,	
and	complicated	recovery	processing

� The	form	of	2PL	previously	introduced	is	called
basic two-phase	locking

13

Basic Two-Phase Locking
� Want	to	modify	2PL	protocol	to	only	allow	strict	
transaction	schedules

� A	schedule	S is	strict if,	for	every	pair	of	txns Ti and	Tj:
� If	Tj reads	or	writes	a	data-item	previously	written	by	Ti,	
then	Tj is	not	allowed	to	do	this	until	Ti first	commits

� What	could	Ti do	to	ensure	that	Tj can’t	read	or	write	a	
data	item	Ti has	written	to,	until	Ti commits?

� Simple:		hang	onto	its	write-locks	until	after	it	
commits!

14

Strict Two-Phase Locking
� Strict	two-phase	locking extends	basic	2PL:

� Transactions	must	still	follow	the	two	phases	of	2PL
� A	transaction	must	also	hold	on	to	all	exclusive	locks	
until	after	the	transaction	commits

� Ensures	the	strict	schedule	requirement	is	satisfied
� Prevents	all	undesirable	behaviors	we	want	to	eliminate

� Strict	2PL	is	sufficient	to	build	a	standalone	database,	
but	most	commercial	DBs don’t	actually	use	it!

15

Distributed Databases
� Distributed	databases are	increasingly	necessary	for	
handling	massive	numbers	of	clients
� Very	large	companies	(banks,	credit	companies,	etc.);	
huge	number	of	clients	distributed	around	the	world

� Either	undesirable	or	infeasible	to	handle	all	database	
transactions	with	a	single	system
� Size	of	data-set	may	be	far	too	large	for	a	single	server
� Want	to	be	aware	of	network	topology	– clients	should	
interact	with	servers	topologically	“close”	to	them

� Also	reduces	risk	of	service	outages	for	clients,	if	either	a	
specific	server	fails,	or	connectivity	between	servers	fails

16

Distributed Databases (2)
� Homogeneous distributed	databases

� All	servers	use	the	same	DBMS	software,	and	generally	
collaborate	very	closely	(e.g.	same	schemas,	queries)

� Heterogeneous distributed	databases
� Different	servers	may	use	different	DBMS	software,	etc.

� Still	want	to	make	transaction-processing	guarantees	
for	such	systems…
� Each	database	has	its	own	concurrency	control	system
� Different	databases	may	even	use	different	concurrency-
control	mechanisms

17

Global Serializability
� Individual	sites	participate	in	distributed	transactions
with	each	other
� A	transaction	that	spans	multiple	database	systems

� Individual	databases	can	ensure	that	local	transactions	
are	executed	according	to	some	serializable	schedule…

� Doesn’t	automatically	guarantee	the	global transaction	
schedule	is	also	serializable!

� Want	distributed	DB	to	enforce	global	serializability
� To	do	this,	strict	two-phase	locking	is	not	enough

18

Rigorous Two-Phase Locking
� Rigorous	two-phase	locking is	a	further	modification	of	
strict	two-phase	locking:
� Transactions	follow	the	two	phases	of	2PL…
� A	transaction	must	hold	on	to	all locks	(shared	or
exclusive)	until	after	the	transaction	commits

� Also	known	as	strong-strict	two-phase	locking
� Has	a	useful	property	for	distributed	databases:

� Transactions	can	be	serialized	in	the	order	they	commit
� Allows	for	efficient	and	scalable	distributed	transaction	
processing	that	satisfies	the	ACID	properties

19

Rigorous Two-Phase Locking (2)
� Commercial	databases	with	lock-based	concurrency	
control	actually	use	rigorous	2PL,	not	strict	2PL
� Allows	them	to	be	used	in	distributed	database	systems

� Does	rigorous	2PL	actually	have	two	phases?
� Transactions	follow	the	two	phases	of	2PL…
� …and	a	transaction	must	hold	on	to	all locks	(shared	or
exclusive)	until	after	the	transaction	commits

� Second	phase	is	always	performed	entirely	in	one	shot,	
after	commit.		Not	really	a	“phase”…

20

Conditional Operations
� Transactions	don’t	always	know	what	data-items	they	
will	need	to	lock,	or	what	locks	they	will	need	to	use

� Example:		conditional	operation
� If	A >=	100	then	A :=	A – 100,	otherwise	B :=	B – 100.
� Transaction	reads	A first,	then	either	modifies	A or	B.

� What	lock	should	we	initially	acquire	against	A?
� Depends	on	current	value	of	A…
� Could	simply	play	it	safe,	and	always	lock-X(A)
� But,	this	would	reduce	the	concurrency	of	the	system

21

Lock Conversions
� A	better	approach:

� Allow	txns to	upgrade a	shared	lock	into	an	exclusive	lock
� Similarly,	allow	them	to	downgrade an	exclusive	lock	into	a	
shared	lock

� As	before,	lock	conversions	must	follow	2PL	protocol:
� Lock	upgrades	are	only	allowed	during	growing	phase
� Lock	downgrades	are	only	allowed	during	shrinking	phase

� Two	new	operations	to	support	with	Lock	Manager:
� upgrade(Q) Upgrades	a	shared	lock	on	Q to	exclusive
� downgrade(Q) Downgrades	exclusive	lock	on	Q to	shared

22

Lock Conversions (2)
� Gives	us	two	options	with	previous	example

� If	A >=	100	then	A :=	A – 100,	otherwise	B :=	B – 100.
� Option	1:

� Acquire	a	shared	lock	on	A
� If	A >=	100	then	upgrade	to	exclusive	lock	on	A
� Otherwise,	acquire	an	exclusive	lock	on	B
(must	retain	shared	lock	on	A)

Ti: lock-S(A);
read(A);
Hey,	A	>	100!
upgrade(A);
A :=	A – 100;
write(A);
commit;
unlock(A).

23

Lock Conversions (3)
� Gives	us	two	options	with	previous	example

� If	A >=	100	then	A :=	A – 100,	otherwise	B :=	B – 100.
� Option	2:

� Acquire	an	exclusive	lock	on	A
� If	A <	100	then	downgrade	to	shared	lock	on	A
and	acquire	an	exclusive	lock	on	B…

� Actually,	not	allowed	to	do	it	in	that	order!!!
� Downgrading	releases	a	lock;	causes	transaction	to	enter	
the	shrinking	phase!

� Not	allowed	to	acquire	another	lock	on	B

24

Lock Conversion Risks
� What	happens	with	this	transaction	schedule?

� Ti and	Tj both	acquire
shared	locks	on	A

� Ti tries	to	upgrade	its	lock,
but	is	blocked	by	Tj

� Tj tries	to	upgrade	its	lock,
but	is	blocked	by	Ti

� Ti and	Tj end	up	deadlocked
� One	of	them	must	be	aborted
by	the	database

Ti: lock-S(A);
read(A);

upgrade(A);
A :=	A – 100;
write(A);

commit;
unlock(A).

Tj:

lock-S(A);
read(A);

upgrade(A);
A :=	A – 100;
write(A);

commit;
unlock(A).

25

Lock Conversion Risks (2)
� What	if	both	Ti and	Tj tried	to	acquire	exclusive	locks	
right	away?
� Reduces	opportunities	for
concurrency,	but	avoids
deadlocks!

� One	reason	why	databases
often	provide	modifiers	to
SELECT	statements,	such	as:
SELECT	…	FOR	UPDATE	;
� Acquires	exclusive	locks,	not	shared	locks

Ti: lock-X(A);
read(A);
A :=	A – 100;
write(A);
commit;
unlock(A).

Tj:

lock-X(A);
read(A);
A :=	A – 100;
write(A);
commit;
unlock(A).

26

Typical Lock-Conversion Strategy
� Most	databases	use	rigorous	2PL	with	lock-upgrading
� When	a	transaction	Ti issues	a	read(Q)	operation:

� If	DB	knows that	the	SQL	command	is	going	to	read	and	
then	write	Q,	it	can	issue	lock-X(Q)	first,	then	read(Q)
� e.g.	“UPDATE	t SET	a	=	a	+	5”	must	read	and	write	data	values

� Otherwise,	DB	issues	a	lock-S(Q)	first,	then	read(Q)
� When	Ti issues	a	write(Q):

� If	Ti already	has	a	shared	lock	on	Q then	DB	issues	
upgrade(Q),	then	write(Q)

� Otherwise,	DB	issues	a	lock-X(Q)	first,	then	write(Q)
� All	locks	are	released	after	transaction	Ti commits

