
CS122	– Lecture	18
Winter	Term,	2018-2019

2

Last Time: Transaction Isolation
� Model	transactions	as	a	sequence	of	reads	and	writes
� A	pair	of	schedules	S and	S’ are	conflict	equivalent if:

� One	schedule	can	be	transformed	into	the	other,	solely	
by	swapping	adjacent	non-conflicting	operations

� Adjacent	operations	conflict	if	they	involve	the	same	data	
item,	and	at	least	one	operation	is	a	write

� A	schedule	S is	conflict	serializable if	it	is	conflict	
equivalent	to	a	serial	schedule

� Not	all	conflict	serializable schedules	maintain	
atomicity	and	durability!

3

Last Time: Transaction Isolation (2)
� This	schedule	is	conflict	serializable,	but	not	
recoverable

� Problem:		Tj reads	a	value	that
Tiwrites,	but	wants	to	commit
before	Ti commits	or	aborts.

� A	schedule	S is	recoverable if,
for	every	pair	of	txns Ti and	Tj:
� If	Tj reads	a	data-item	previously
written	by	Ti,	then	Tj is	not	allowed
to	commit	until	Ti first	commits

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
abort.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

4

Last Time: Transaction Isolation (3)
� If	Ti aborts	then	we	must
abort	Tj too
� Called	a	cascading	rollback

� Cascadeless schedules prevent
cascading	rollbacks

� A	schedule	S is	cascadeless if,
for	every	pair	of	txns Ti and	Tj:
� If	Tj reads	a	data-item
previously	written	by	Ti,
then	Tj is	not	allowed	to
perform	this	read	until	Ti
first	commits

Ti:
read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
abort.

Tj:

read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);

abort.

Tk:

read(C);
C :=	C *	1.03;
write(C);

abort.

5

Last Time: Transaction Isolation (4)
� Write-ahead	logging	introduces
a	subtle	read-dependency
between	transactions
� Previous	approaches	cannot
handle	blind	writes	properly

� To	simplify	recovery	processing,
further	constrain	schedules	to	be	strict

� A	schedule	S is	strict if,	for	every
pair	of	transactions	Ti and	Tj:
� If	Tj reads	or	writes a	data-item	previously
written	by	Ti,	then	Tj is	not	allowed
allowed	to	do	this	until	Ti first	commits

Ti: A :=	2
write(A);

abort.

Tj: A :=	3
write(A);

abort.

Ti:		start

Ti:		abort

Tj:		start
Ti:		A,	1,	2

Write-Ahead	Log:

Ti CLR:		A,	1

Tj CLR:		A,	2
Tj:		abort

Tj:		A,	2,	3

6

Strict Schedules
� Would	like	our	transaction	schedules	to	be	strict

� Conflict-equivalent	to	a	serial	execution	schedule
� Disallows	cascading	rollbacks
� Makes	recovery	processing	very	easy

� How	do	we	enforce	only	strict	transaction	execution	
schedules	in	a	multi-user	database?

7

Concurrency Control System
� A	concurrency	control system	must	govern	all	operations	of	
all	transactions	in	the	database
� A	transaction	wants	to	read	or	write	a	data	item…
� The	concurrency	control	system	may	allow,	delay,	or	even	
deny	the	operation

� Conservative	schedulers	tend	to	delay	operations
� By	delaying	operations,	scheduler	can	often	reorder	them	to	
avoid	conflicts

� Aggressive	schedulers	tend	to	perform	operations	
immediately
� Can’t	reorder	operations	once	they	are	performed…
� Sometimes	run	into	unresolvable	conflicts	that	require	
aborting	a	transaction

8

Concurrency Control System (2)
� Several	different	ways	to	implement	concurrency	control,	
with	different	characteristics

� Conflict-serializable	schedules:
� Allow	adjacent	operations	of	two	transactions	to	be	swapped	
when	they	don’t	conflict

� Two	adjacent	operations	conflict	when:
� Both	operations	are	on	the	same	data-item
� At	least	one	of	the	operations	is	a	write

� A	simple	idea	for	implementing	concurrency	control:
� Use	locks	on	data-items	to	enforce	concurrency	control
� If	two	transactions	perform	conflicting	operations,	locks	will	
simply	disallow	reordering	the	operations

9

Lock-Based Protocol
� Reads	don’t	conflict	with	other	reads,	but	writes	
conflict	with	everything…

� Introduce	two	kinds	of	locks:
� A	shared-mode lock	acquired	by	readers

� Multiple	transactions	can	hold	a	shared-mode	lock	on	a	single	
data	item

� An	exclusive-mode lock	acquired	by	writers
� Only	one	transaction	can	hold	an	exclusive-mode	lock	on	a	
data-item

� A	lock	compatibility	function
specifies	when	different	lock
modes	are	compatible:

shared exclusive

shared true false

exclusive false false

10

Lock-Based Protocol (2)
� Introduce	operations	for	transactions	to	use:

� lock-S(Q) Acquire	a	shared	lock	on	data-item	Q
� lock-X(Q) Acquire	an	exclusive	lock	on	data-item	Q
� unlock(Q) Release	a	lock	on	data-item	Q

� A	lock	manager is	responsible	for	handling	requests
� Transactions	must	guard	reads	and
writes	with	lock/unlock	operations

� Next	operation	in	transaction	cannot
be	performed	until	lock	is	granted

Ti: lock-X(A);
read(A);
A :=	A – 50;
write(A);
unlock(A);
commit.

11

Lock Manager
� The	Lock	Manager	handles	requests	for	locks

� Must	keep	track	of	which	transactions	hold	which	locks

� If	a	request	can	be	satisfied,	the	Lock	Manager	grants	
the	lock	to	the	requester	immediately

� If	a	request	is	blocked	by	an	existing	lock,	the	Lock	
Manager	blocks	requester	until	lock	becomes	available

12

Lock Manager (2)
� Lock	manager	keeps	a	mapping	of	all	currently	locked	
data	items,	along	with	lock-holders	and	requesters
� Often	called	a	lock	table

� Also	helpful	to	keep	a	mapping	of	active	transactions,	
and	all	locks	and	requests	held	by	each	transaction
� Makes	it	easy	to	release	all	locks	at	commit	or	abort	time
� When	a	transaction	is	aborted,	must	also	clear	out	its	
lock	requests

13

Lock Manager (3)
� When	a	lock	request	arrives:

� If	the	data	item	is	not	currently	locked,	lock	manager	can	
grant	it	immediately,	regardless	of	lock	mode

� If	the	data	item	is	already	locked	by	a	transaction:
� Lock	manager	must	ensure	that	the	new	lock-request	is	
compatible	with	mode	of	the	current	lock

� If	so,	lock	manager	can	generally	grant	the	request	
immediately	(with	caveats)

� Otherwise,	the	lock-request	is	added	to	a	request-queue	
for	that	data	item

14

Lock Manager (4)
� Lock	manager	must	prevent	starvation
� Example:		data	item	Q

� T1 requests	a	shared	lock	on	Q;	granted	immediately
� T2 requests	an	exclusive	lock	on	Q;	T2 must	wait
� T3 requests	a	shared	lock	on	Q;	granted	immediately
� T1 releases	its	lock	on	Q
� T4 requests	a	shared	lock	on	Q;	granted	immediately
� T3 releases	its	lock	on	Q
� …

� If	we	always grant	compatible	requests,	some	transactions	
may	never	receive	their	requested	locks

15

Lock Manager (5)
� To	prevent	starvation,	only	grant	incoming	request	if:

� Request	is	compatible	with	current	lock	mode
� There	is	no	earlier	lock-request	still	waiting	for	the	lock

� When	an	unlock	request	arrives:
� Lock	manager	removes	lock	entry	for	the	unlocking	txn
� If	other	transactions	are	waiting	to	lock	the	data	item,	
handle	those	requests	as	previously	specified
� e.g.	a	single	exclusive-mode	lock	request	may	be	granted,	or	a	
series	of	shared-mode	lock	requests	may	be	granted

� An	unlock	operation	from	one	transaction	may	unblock	
another	transaction,	allowing	it	to	resume	its	progress

16

Locking and Scheduling
� Is	wrapping	individual	reads	and	updates	with	locks	
sufficient	to	enforce	conflict-serializable schedules?

� Example:
� Ti transfers	$30	from	B to	A
� Tj retrieves	sum	of	balances

� No!		Conflicting	operations
may	still	be	swapped.
� If	all	of	Tj executes	between
Ti’s unlock(A)	and	lock-X(B)
steps,	Tj’s result	will	be	wrong

Ti: lock-X(B);
read(B);
B :=	B – 30;
write(B);
unlock(B);
lock-X(A);
read(A);
A :=	A +	30;
write(A);
unlock(A);
commit.

Tj: lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A +	B);
commit.

17

Locking and Scheduling (2)
� Must	specify	rules	governing	when	transactions	are	
allowed	to	lock	and	unlock	data	items
� Called	a	locking	protocol

� Locking	protocol	restricts	the	set	of	allowed	schedules
� A	schedule	S is	legal under	a	given	locking	protocol,
if	S follows	the	locking	rules	specified	by	the	protocol

� Goal:
� Design	the	locking	protocol	so	that	we	are	restricted	to	
only	conflict-serializable (or	preferably	strict)	schedules

18

Two-Phase Locking Protocol
� Require	that	transactions	manage	locks	in	two	phases
� Growing phase:

� A	txn may	acquire	new	locks,	and	may	not	release	any	lock
� Shrinking phase:

� A	txn may	release	locks,	and	may	not	acquire	any	new	locks
� Transactions	start	in	the	growing	phase

� As	transaction	operates	on	various	data	items,	it	acquires	
locks	on	those	items

� Once	a	txn releases	any	lock,	it	enters	the	shrinking	phase
� It	can	only	release	locks,	until	all	of	its	locks	are	released

� Called	the	two-phase	locking protocol	(2PL	for	short)

19

Two-Phase Locking Protocol (2)
� The	two-phase	locking	protocol	enforces	conflict-
serializable transaction	schedules…

� To	prove	this,	we	need	a	way	of	reasoning	about	
transaction	schedules

� Define	a	precedence	graph of	all	transactions	
participating	in	a	schedule	S
� Also	known	as	a	serialization	graph

� Vertices	in	precedence	graph	are	the	transactions	in	S
� Edges	in	graph	are	edges	Tià Tj,	such	that	Ti performs	
a	conflicting	operation	before	Tj does,	in	the	schedule	S

20

Precedence Graph
� Vertices	in	precedence	graph	are	the	transactions	in	S
� Edges	in	graph	are	edges	Tià Tj,	such	that	Ti performs	
a	conflicting	operation	before	Tj does,	in	the	schedule	S

� Example:		a	serial	execution	schedule

� Precedence	graph:

� Which	operations	conflict?

� Only	one	arrow,	from	Ti to	Tj
� All operations	in	Ti that	conflict
with	ones	in	Tj are	performed
before the	conflicting	ones	in	Tj

Ti Tj

conflicting
operations

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

21

Precedence Graph (2)
� Another	example:		a	serializable	execution	schedule
� Which	operations	conflict?

� Precedence	graph:

� Again,	only	one	arrow,	from	Ti to	Tj
� All operations	in	Ti that	conflict
with	ones	in	Tj are	performed
before the	conflicting	ones	in	Tj

Ti Tj

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);

commit.

Tj: read(A);
A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);

commit.

22

Precedence Graph (3)
� One	more	example:		a	non-serializable schedule

� Clearly	produces	spurious	results
� Now,	precedence	graph	has
two	arrows

� Ti reads	A before	Tjwrites	A
� Tiwrites	A before	Tjwrites	A
� Tj reads	A before	Tiwrites	A

Ti Tj

Ti: read(A);
A :=	A – 50;

write(A);

read(B);
B :=	B +	50;
write(B);

commit.

Tj: read(A);

A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);

commit.

23

Precedence Graph (3)
� A	cycle	in	the	precedence	graph
indicates	that	the	schedule	is	not
serializable

� Cycle	indicates	that	two	txns
in	the	schedule	have	conflicting
operations	that	are	interleaved

� Cannot swap	these	conflicting
operations	to	get	to	a	serial
schedule…
� Not equivalent	to	a	serial	schedule

Ti Tj

Ti: read(A);
A :=	A – 50;

write(A);

read(B);
B :=	B +	50;
write(B);

commit.

Tj: read(A);

A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);

commit.

24

Precedence Graph (4)
� Can	certainly	have	precedence	graphs	with	more	
interesting	structures

� As	long	as	graph	has	no
cycles,	it	represents	a
serializable	schedule

� Graph	imposes	a	partial	order
over	all	transactions	in	the	graph

� Any	linear	order	consistent	with	the	partial	order	
specified	by	the	graph	is	called	a	serializability order
� Indicates	the	schedule	is	equivalent	to	a	serial	execution	
of	transactions	in	the	serializability order

Ti Tj

Tk

Tl

Tn

Tm To

25

2PL and Serializability
� If	2PL	doesn’t	allow	cycles	in	the	precedence	graph,	
then	it	will	only	allow	conflict-serializable	schedules

� In	two-phase	locking,	every	transaction	has	a	lock	point
� The	point	in	the	transaction’s	execution	when	it	acquires	
its	last	lock

� At	that	point,	the	txn holds	all	locks	it	will	ever	acquire
� A	schedule	can	only	perform	one	operation	at	a	time

� Every	lock	request	and	release	occurs	at	a	different	time
� Every	transaction’s	lock	point	is	distinct

26

2PL and Serializability (2)
� If	Tià Tj in	the	precedence	graph:

� Ti performed	some operation	that	conflicted	with	an	
operation	in	Tj (e.g.	on	data	item	Q),	before	Tj’s operation

� Before	Ti could	perform	this	operation	on	Q,	it	had	to	
lock	Q.		Similarly,	Tjmust	lock	Q before	doing	its	thing.

� Therefore,	Ti had	to	release	its	lock	on	Q before	Tj could	
acquire	its	lock	on	Q

� To	follow	two-phase	rule,	Ti has	to enter	the	shrinking	
phase	before	Tj can	acquire	the	lock
� Ti’s lock	point	occurs	before	Tj’s lock	point

27

2PL and Serializability (3)
� If	Tià Tjà Tk in	the	precedence	graph:

� As	before,	Ti released	a	lock	before	Tj acquires	its	lock
� Similarly,	Tj released	a	lock	before	Tk acquires	its	lock
� Tj is	in	the	shrinking	phase	before	Tk acquires	its	lock

� Transactions	that	follow	two-phase	locking	can	be	
ordered	by	their	lock	points

� Can	extend	this	to	arbitrary	chains	of	transactions	
using	induction

28

2PL and Serializability (4)
� Finally,	assume	we	have	T1à T2à…	à Tnà T1

� A	cycle	in	precedence	graph;	not	a	serializable	schedule
� To	arrive	at	this	situation:

� T1 released	some	lock	before	T2 could	acquire	its	lock
� T2 released	some	lock	before	T3 could	acquire	its	lock
� …
� Tn released	some	lock	before	T1 could	acquire	its	lock

� This	situation	can	only	occur	if	T1 tries	to	acquire	a	
lock	after it	has	already	released	a	lock…

� This	is	disallowed by	the	two-phase	locking	protocol!

29

2PL and Serializability (5)
� Two-phase	locking	protocol	only	allows	conflict-
serializable	execution	schedules

� Transactions	can	be	ordered	based	on	their	lock	points
� This	ordering	is	a	serializability	order	for	the	entire	set	
of	transactions
� The	2PL	schedule	is	equivalent	to	a	serial	schedule	
where	txns are	executed	in	order	of	their	lock	points

30

Two-Phase Locking Example
� Previous	example,	updated
to	follow	two-phase	rule:

� Now	we	know	it	is
conflict-serializable

� What	new problem	do	we	have?
� Shared	and	exclusive	locks
are	incompatible…

� A	schedule	executing	these
transactions	is	prone	to	deadlock!

Ti: lock-X(B);
read(B);
B :=	B – 30;
write(B);
lock-X(A);
read(A);
A :=	A +	30;
write(A);
unlock(B);
unlock(A);
commit.

Tj: lock-S(A);
read(A);
lock-S(B);
read(B);
unlock(A);
unlock(B);
display(A +	B);
commit.

31

2PL and Deadlocks
� A	two-phase	locking	schedule
that	deadlocks:

� Can’t	avoid	this	issue…
� Never	know	what	data	items
a	transaction	might	use!

� Only	recourse	is	to	identify
deadlocks	when	they	occur

� Choose	one	transaction	in
the	deadlock,	and	abort	it.

� Aborted	transaction	is	called	the	victim

Ti: lock-X(B);
read(B);
B :=	B – 30;
write(B);

lock-X(A);
read(A);
A :=	A +	30;
write(A);
unlock(B);
unlock(A);
commit.

Tj:

lock-S(A);
read(A);

lock-S(B);
read(B);
unlock(A);
unlock(B);
display(A +	B);
commit.

WAIT

WAIT

32

2PL: Detecting Deadlocks
� Current	Lock	Manager	design:

� Lock	manager	tracks	every	data	item	that	is	locked
� Lock	manager	records	the	transaction	that	has	the	item	locked,	
and	the	lock	mode	(shared	or	exclusive)

� If	other	transactions	are	waiting	to	lock	a	data	item,	the	
lock	manager	also	records	these	lock-requests

� The	lock	manager	also	maintains	a	waits-for	graph,	
tracking	relationships	between	waiting	transactions
� If	a	transaction	Ti holds	a	lock	on	a	data	item	Q,	and	Tj is	
waiting	to	lock	Q,	the	waits-for	graph	records	Tjà Ti

33

2PL: Detecting Deadlocks (2)
� If	waits-for	graph	contains	a	cycle,	a	deadlock	exists!

� All transactions	in	the	cycle	are	deadlocked,	not	just	one
� How	many	outgoing	edges	will	a	transaction	have	in	
the	waits-for	graph?
� Depends	on	the	mode	of	the	current	lock	on	the	item!
� e.g.	if	item	is	locked	in	shared-mode	by	multiple	txns,	
and	an	exclusive-mode	request	is	made,	requester	will	
have	outgoing	edges	to	all	txns holding	the	lock

� Multiple	deadlock	cycles	could	exist	in	waits-for	graph
� One	transaction	could	be	involved	in	multiple	cycles
� Deadlock	detection	must	identify	all cycles	in	graph

34

2PL: Detecting Deadlocks (3)
� Waits-for	graph	can	be	updated	every	time	a	request	
cannot	be	granted	immediately
� If	a	request	can	be	granted	immediately,	no	reason	to	
update	the	waits-for	graph…		transaction	isn’t	waiting…

� When	a	transaction	unlocks	a	data	item,	one	or	more	
waiting	requests	can	be	granted
� Must	again	update	the	waits-for	graph

� When	a	txn aborts,	all	of	its	locks	and	outstanding	
requests	are	removed	from	the	lock	manager
� Again,	must	update	the	waits-for	graph

35

2PL: Detecting Deadlocks (4)
� When	should	deadlock	detection	be	invoked?

� Will	certainly	consume	CPU	resources,	so	don’t	want	to	
run	it	all	the	time

� Don’t	need	to	run	it	all	the	time…
� Deadlocks	have	a	nice	property:		they	don’t	go	away!

� Only	need	to	consider	running	deadlock	detection	
when	a	lock	request	can’t	be	granted	right	away
� e.g.	if	a	lock	request	isn’t	satisfied	within	a	specific	time	
interval,	invoke	deadlock	detection	algorithm

36

2PL: Resolving Deadlocks
� If	deadlock	is	detected,	another	important	question:
� How	should	we	choose	a	victim	transaction	to	abort?
� Example:

� Transaction	T1 is	performing	a	long-running	analysis
� Transaction	T2 involves	three	quick	operations
� If	T1 and	T2 deadlock,	which	should	be	aborted?
� Preferably,	T2 should	be	aborted	so	that	less	work	is	lost

� Goal:
� Choose	a	victim	to	abort	that	will	incur	the	least	cost

37

2PL: Resolving Deadlocks (2)
� Identifying	victim	that	will	incur	least	cost	is	difficult	to	do
� Can	consider	definite	measures:

� How	long	each	transaction	in	the	deadlock	cycle	has	been	
running
� Abort	the	youngest	transaction	in	the	cycle?

� How	costly	the	transaction	itself	will	be	to	abort:
� How	many	data-items	has	the	transaction	modified?
� The	more	writes	the	transaction	has	performed,	the	more	costly	it	
will	be	to	rollback	all	changes

� How	many	deadlock	cycles	the	transaction	is	involved	in
� Every deadlock	cycle	must	be	broken!		If	multiple	cycles	can	be	
broken	by	aborting	one	transaction,	everybody	[else]	wins.

38

2PL: Resolving Deadlocks (3)
� Can	also	try	to	predict	the	future:

� How	close	is	each	transaction	to	being	finished?
� If	not	throwing	away	a	large	amount	of	work,	would	be	nice	to	
abort	transactions	that	still	have	a	long	way	to	go

� How	many	more	data	items	will	the	transaction	need?
� Prefer	to	abort	a	transaction	that	requires	more	resources	over	
one	that	requires	less

� Can	be	challenging	to	make	these	predictions,	but	the	set	
of	queries	against	a	DB	usually	doesn’t	vary	a	lot
� Can	observe	past	behavior	of	queries

� Or,	just	pick	one	randomly	J

39

Two-Phase Locking Protocol
� So	far,	two-phase	locking	protocol	ensures	conflict-
serializable execution	schedules…

� …but	we	really	wanted	strict	schedules.
� Rule	out	cascading	aborts,	nonrecoverable schedules,	
and	complicated	recovery	processing

� This	form	of	2PL	is	called	basic two-phase	locking
� Next	time,	discuss	refinements	of	two-phase	locking	
with	much	more	desirable	characteristics

