
CS122	– Lecture	17
Winter	Term,	2018-2019

Transaction Isolation
� ACID	Properties:

� Atomicity,	Consistency,	Isolation,	Durability
� Have	talked	about	atomicity,	consistency,	durability

� Important	whether	the	DB	is	single-user	or	multi-user
� Traditional	approach	is	to	use	a	write-ahead	log,	although	
shadow-page	technique	shows	up	in	some	places

� Transaction	isolation	is	very important	when	a	DB	can	be	
used	by	multiple	clients	at	the	same	time
� Multiple	concurrent	operations	against	same	data	values
� Without	proper	precautions,	DB	will	produce	spurious	results

� Five	kinds	of	spurious	results	can	occur,	without	proper	
transaction	isolation

2

Transaction Isolation Issues
� Dirty	writes:

� A	transaction	T1 writes	a	value	to	X
� Another	transaction	T2 also	writes	a	value	to	X,	before	T1commits	or	aborts
� If	T1 or	T2 aborts,	what	should	be	the	value	of	X?

� Dirty	reads:
� A	transaction	T1 writes	a	value	to	X
� T2 reads	X before	T1 commits
� If	T1 aborts,	T2 has	an	invalid	value	for	X

� Nonrepeatable	reads:
� T1 reads	X
� T2 writes	to	X,	or	deletes	X,	then	commits
� If	T1 reads	X again,	value	is	now	different	or	gone

3

Transaction Isolation Issues (2)
� Phantom	rows,	a.k.a.	phantoms:

� Transaction	T1 reads	rows	that	satisfy	a	predicate	P
� Transaction	T2 then	writes	rows,	some	of	which	satisfy	P
� If	T1 repeats	its	read,	it	gets	a	different	set	of	results
� If	T1 writes	values	based	on	original	read,	new	rows	
aren’t	considered!

� Lost	updates:
� Transaction	T1 reads	the	value	of	X
� Transaction	T2 writes	a	new	value	to	X
� T1 writes	to	X based	on	its	previously	read	value

4

Serial Transaction Execution
� A	simple	solution	to	transaction	isolation	issues:

� Only	allow	one	transaction	to	execute	at	a	time
� Transactions	are	executed	in	a	serial order

� Problem:		this	is	really slow
� Doesn’t	maximize	utilization	of	DB	server	resources
� Transaction	throughput	will	be	really	low

� Most	of	the	time,	transactions	work	with	completely	
different	records

� Isolation:
� For	every	pair	of	transactions	Ti and	Tj,	it	appears that	either	Ti
completes	before	Tj starts,	or	that	Tj completes	before	Ti starts

5

Serializable Execution
� Most	databases	interleave	transaction	operations

� As	long	as	database	is	careful	to	maintain	isolation,	
yields	much	higher	transaction	processing	throughput

� Goal:		ensure	that	transactions	are	executed	in	a	way	
that	is	equivalent	to a	serial	execution	schedule
� For	every	pair	of	transactions	Ti and	Tj,	it	appears that	either	Ti
completes	before	Tj starts,	or	that	Tj completes	before	Ti starts

� Called	a	serializable execution	schedule
� Several	different	kinds	of	serializable	schedules,	with	
different	characteristics
� Not	all	serializable	schedules	are	created	equal!

6

SQL Isolation Levels
� Sometimes	applications	are	immune	to	certain	kinds	of	
spurious	results
� e.g.	nonrepeatable	reads	or	phantom	rows
� App	doesn’t	have	queries	that	are	affected	by	these	behaviors,	
e.g.	if	most	transactions	are	simple	retrievals	or	updates

� Can	define	weaker	forms	of	isolation
� Weaker	isolation	allows	greater	concurrency,	and	therefore	
greater	transaction	throughput

� Weaker	isolation	also	allows	more	kinds	of	spurious	results
� SQL	defines	four	isolation	levels	for	use	in	applications

� Can	set	individual	txns	to	have	a	specific	isolation	level

7

SQL Isolation Levels (2)
� Serializable:

� Concurrent	transactions	produce	the	same	result	as	if	
they	were	run	in	some	serial	order

� The	serial	order	may	not	necessarily	correspond	to	the	
exact	order	that	transactions	were	issued

� Called	strong	isolation
� Only	level	that	satisfies	original	definition	of	isolation:

� For	every	pair	of	transactions	Ti and	Tj,	it	appears	that	
either	Ti completes	before	Tj starts,	or	that	Tj completes	
before	Ti starts

8

SQL Isolation Levels (3)
� Other	isolation	levels	are	called	weak	isolation

� Allow	various	kinds	of	spurious	behavior	in	concurrent	
transactions

� Repeatable	reads:
� During	a	transaction,	multiple	reads	of	X produce	same	
results,	regardless	of	committed	writes	to	X in	other	
transactions

� Other	transactions’	committed	changes	do	not	become	
visible	in	the	middle	of	a	transaction

� (If	the	txn	changes	X,	it	sees	its	own	modifications…)

9

SQL Isolation Levels (4)
� Read	committed:

� During	a	transaction,	other	transactions’	committed	
changes	become	visible	immediately

� Value	of	X can	change	during	a	transaction,	if	other	
transactions	write	to	X and	then	commit

� Read	uncommitted:
� Uncommitted	changes	to	X in	other	transactions	become	
visible	immediately

� Aside:		Many	DBs	also	now	include	snapshot isolation
� They	sometimes	call	it	serializable	isolation,	but	it	isn’t!
� Will	discuss	this	isolation	level	in	the	future…

10

SQL Isolation Levels (5)
� Different	SQL	isolation	levels	allow	different	kinds	of	
spurious	behaviors:

Isolation Level Dirty
Writes

Dirty
Reads

Nonrepeatable
Reads Phantoms

serializable NO NO NO NO
repeatable reads NO NO NO YES
read committed NO NO YES YES

read uncommitted NO YES YES YES

11

SQL Isolation Levels (6)
� Databases	often	allow	clients	to	set	the	desired	
transaction	isolation	level

� SQL	syntax:
SET	TRANSACTION	ISOLATION	LEVEL

[SERIALIZABLE	|	REPEATABLE	READS	|

READ	COMMITTED	|	READ	UNCOMMITTED]

� Databases	don’t	always	support	all	isolation	levels!
� DB2,	SQLServer,	MySQL	support	all	four	isolation	levels

� Oracle	and	PostgreSQL	only	support	SERIALIZABLE	and	
READ	COMMITTED	isolation	levels

� (And	by	“serializable”	isolation	they	mean	“snapshot”…)

12

Transaction Schedules
� As	before,	model	transactions
as	a	series	of	reads	and	writes
on	various	data	items

� The	sequences	of	operations	that
txns	perform	are	called	schedules

� A	schedule	can	only	perform
one operation	at	a	time

� A	serial schedule	never	allows	the
reads	and	writes	of	two
transactions	to	be	interleaved
� Very	slow,	but	avoids	all	spurious	results

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

13

Serializable Schedules
� Want	to	interleave	transaction
operations	to	improve	throughput

� Need	to	make	sure	that	results
are	still	valid

� Require	that	execution	schedules
are	equivalent	to	a	serial	schedule
� i.e.	the	schedule	is	serializable

� What	makes	a	schedule	serializable?
� How	do	we	know	two	schedules	are	equivalent?

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);
commit.

14

Serializable Schedules (2)
� Given:

� A	schedule	S containing	operations	performed	by	two	
transactions,	Ti and	Tj

� In	the	schedule,	instruction	I from	transaction	Ti is	
adjacent	to	instruction	J from	Tj

� In	what	situations	can	we	swap	the	order	of	
instructions	I and	Jwithout	affecting	the	results?

� If	we	cannot	swap	instructions	I and	Jwithout	affecting	
the	results,	we	say	that	the	operations	conflict

15

Avoiding Conflicts
� A	simple	example:

� Two	adjacent	instructions	I and	J,	from	different	
transactions	Ti and	Tj,	respectively

� Instruction	I is	read(A)	or	write(A),	on	a	data-item	A
� Instruction	J is	read(B)	or	write(B),	on	a	different
data-item	B

� Does	it	matter	what	order	we	execute	I and	J ?

� If	instructions	I and	J refer	to	different	data-items,	they	
do	not	conflict.		We	can	execute	I and	J in	any	order.

16

Avoiding Conflicts (2)
� Instructions	I and	J could	conflict	if	they	read	or	write	
the	same	data	item

� If	I =	read(Q)	and	J =	read(Q),	can	we	swap	them	
without	affecting	the	results?
� Yes!		Both	transactions	will	see	the	same	value	for	Q,	
regardless	of	the	order.

� If	I =	read(Q)	and	J =	write(Q),	can	we	swap	them	
without	affecting	the	results?
� No!		If	I executes	before	J,	Tiwill	see	the	old	value	of	Q.
If	I executes	after	J,	Tiwill	see	the	new	value	of	Q.

17

Avoiding Conflicts (3)
� Same	issue	if	I =	write(Q)	and	J =	read(Q)

� Cannot	swap	order	of	I and	Jwithout	affecting	the	results
� If	I =	write(Q)	and	J =	write(Q),	can	we	swap	them	
without	affecting	the	results?
� The	write	operations	themselves	will	not	be	affected…
� …but	the	next read	of	Qwill	see	different	results	based	
on	the	order	of	I and	J

� Cannot	swap	order	of	I and	Jwithout	affecting	the	results

18

Conflict Equivalence
� Given	a	transaction	execution	schedule	S,	with	two	
adjacent	operations	I and	J from	different	transactions

� Instructions	I and	J conflict	if:
� I and	J operate	on	the	same	data	item
� At	least	one	of	the	operations	is	a	write

� If	the	instructions	I and	J do	not	conflict:
� We	can	swap	them	to	produce	an	equivalent	schedule	S’
� Execution	of	S or	S’will	produce	the	exact	same	results

19

Conflict Equivalence (2)
� A	pair	of	schedules	S and	S’ are	conflict	equivalent if:

� One	schedule	can	be	transformed	into	the	other,	solely	
by	swapping	adjacent	non-conflicting	operations

� A	schedule	S is	conflict	serializable if	it	is	conflict	
equivalent	to	a	serial	schedule

20

Previous Example Schedules
� Are	these	schedules	conflict	equivalent?
� Yes:		only	non-conflicting	operations	are	swapped.

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);
commit.

21

Previous Example Schedules (2)
� Is	the	right	schedule	conflict	serializable?
� Yes!		Left	schedule	is	a	serial	execution	schedule.

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);
commit.

22

Another Example
� Again,	is	the	right	schedule	conflict	serializable?
� Yes.		Left	schedule	is	serial;	right	is	conflict	equivalent.

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
commit.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

23

A New Problem
� What	if	we	have	this	execution	schedule,	but	Ti aborts?
� This	execution	schedule	violates	atomicity!

� Timodifies	data-item	A…
� Then	Tj also	modifies	A,
based	on	Ti’s	changes!

� Then	Tj commits,	preserving
Ti’s	changes	to	A,	even	though
Ti is	eventually	aborted.

� Could	preserve	atomicity	by
aborting	Tjwhen	Ti aborts…
� That	would	violate	durability!!

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
abort.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

24

Recoverable Schedules
� This	is	a	nonrecoverable execution	schedule

� Can’t	properly	enforce	atomicity,	consistency	and	

durability	with	this	schedule

� Want	to	constrain	ourselves
to	only	recoverable	schedules

� A	schedule	S is	recoverable	if,
for	every	pair	of	txns	Ti and	Tj:
� If	Tj reads	a	data-item	previously
written	by	Ti,	then	Tj is	not	allowed
to	commit	until	Ti first	commits

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
abort.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);
commit.

25

Recoverable Schedules (2)
� Can	make	this	schedule	recoverable	simply	by	delaying	
Tj’s commit	operation
� Tj enters	“partially	committed”
state	initially

� When	Ti aborts,	Tj is	also	aborted
� Transaction	Tj is	dependent on	Ti:

� Tj reads	a	value	that	Ti has	written	to
� General	rule:

� Dependent	transactions	may	not
commit	until	the	initial	transaction
commits

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
abort.

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);

abort.

partially
com

m
itted

26

Recoverable Schedules (3)
� If	Ti aborts	then	we
must	abort	Tj too
� Called	a	cascading	rollback

� This	can	get	very	expensive
� Very	easy	to	introduce
dependencies	between
interleaved	transactions

� Aborting	one	transaction
can	cause	a	large	amount
of	work	to	be	discarded

Ti:
read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);
abort.

Tj:

read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);

abort.

Tk:

read(C);
C :=	C *	1.03;
write(C);

abort.

27

Cascadeless Schedules
� Cascadeless	schedules disallow	cascading	rollbacks	
from	occurring

� A	schedule	S is	cascadeless	if,	for	every	pair	of	
transactions	Ti and	Tj:
� If	Tj reads	a	data-item	previously	written	by	Ti,	then	Tj is	
not	allowed	to	perform	this	read	until	Ti first	completes

� Question:
� What	if	Tjwrites (but	never	reads)	a	data-item	that	Ti
previously	wrote,	and	then	Ti is	aborted?

� Don’t	need	to	cascade	the	rollback	to	Tj…
� Tj never	saw	the	old	value!

28

Blind Writes
� One	more	example:

� Original	value	of	A is	1
� All	writes	in	these	transactions
are	blind	writes
� The	data	item	is	not	read
before	it	is	written

� Is	this	schedule	cascadeless?
� This	schedule	is	cascadeless
� Tj doesn’t	read	A at	all

Ti: A :=	2
write(A);

abort.

Tj: A :=	3
write(A);

abort.

29

Blind Writes (2)
� As	these	txns	are	executed,
write-ahead	log	is	updated

� When	Ti aborts,	it	issues	a
compensating	log	record,	as	usual

� When	Tj aborts,	it	also	issues	a
compensating	log	record…
� …except	that	the	old	value	of	A
is	from	an	aborted	transaction

� Original	value	of	Awas	1,	but
after	Ti and	Tj are	aborted,	it’s	2	L

Ti: A :=	2
write(A);

abort.

Tj: A :=	3
write(A);

abort.

Ti:		start

Tj:		A,	2,	3

Ti:		abort

Tj:		start
Ti:		A,	1,	2

Write-Ahead	Log:

Ti CLR:		A,	1

Tj CLR:		A,	2
Tj:		abort

30

Blind Writes (3)
� Problem:

� The	before-value	of	Awritten
to	the	write-ahead	log	for	Tj
was	taken	from	the	incomplete
transaction	Ti

� If	Ti aborts,	the	before-value
Tj has	is	useless for	rollback!

� Writes	to	a	data-item	also	introduce
subtle	dependencies	between	txns,
through	the	write-ahead	log!

Ti: A :=	2
write(A);

abort.

Tj: A :=	3
write(A);

abort.

Ti:		start

Ti:		abort

Tj:		start
Ti:		A,	1,	2

Write-Ahead	Log:

Ti CLR:		A,	1

Tj CLR:		A,	2
Tj:		abort

Tj:		A,	2,	3

31

Strict Schedules
� To	simplify	recovery	processing,	further	constrain	
transaction	schedules	to	be	strict

� A	schedule	S is	strict if,	for	every	pair	of	txns	Ti and	Tj:
� If	Tj reads	or	writes a	data-item	previously	written	by	Ti,	
then	Tj is	not	allowed	to	do	this	until	Ti first	commits

� If	the	database	only	uses	strict	execution	schedules:
� When	a	transaction	first	writes	to	any	given	data-item,	
the	update	record	written	to	the	WAL	will	never contain	
an	uncommitted	value	from	another	transaction

� This	makes	recovery	processing	much simpler

32

Transaction Schedule Hierarchy
� Can	subdivide	space	of	transaction	schedules	based	on	
classifications	discussed	today:

All	execution	schedules

Recoverable	schedules
Cascadeless	schedules
Strict	schedules

Serial	schedules

Conflict-serializable
schedules

33

