B

Relational Database

S m Impleme ion

Transaction Isolation

ACID Properties:
e Atomicity, Consistency, Isolation, Durability

Have talked about atomicity, consistency, durability
e Important whether the DB is single-user or multi-user

e Traditional approach is to use a write-ahead log, although
shadow-page technique shows up in some places

Transaction isolation is very important when a DB can be
used by multiple clients at the same time

e Multiple concurrent operations against same data values
e Without proper precautions, DB will produce spurious results

Five kinds of spurious results can occur, without proper
transaction isolation

//
Transaction Isolation Issues

Dirty writes:
e A transaction T; writes a value to X

e Another transaction T, also writes a value to X, before T,
commits or aborts

e If T; or T, aborts, what should be the value of X?

Dirty reads:
e A transaction T; writes a value to X
e T, reads X before T; commits
e If T, aborts, T, has an invalid value for X

Nonrepeatable reads:
e T, reads X
e T, writes to X, or deletes X, then commits
e [f T, reads X again, value is now different or gone

Transaction Isolation Issues (2)

Phantom rows, a.k.a. phantoms:
e Transaction T, reads rows that satisfy a predicate P
e Transaction T, then writes rows, some of which satisfy P
e [f T, repeats its read, it gets a different set of results

e [f T, writes values based on original read, new rows
aren't considered!

Lost updates:
e Transaction T, reads the value of X
e Transaction T, writes a new value to X
e T, writes to X based on its previously read value

Serial Transaction Execution

A simple solution to transaction isolation issues:
e Only allow one transaction to execute at a time
e Transactions are executed in a serial order
Problem: this is really slow
e Doesn’t maximize utilization of DB server resources
e Transaction throughput will be really low
Most of the time, transactions work with completely
different records
[solation:

 For every pair of transactions T; and T, it appears that either T;
completes before T; starts, or that T; completes before T; starts

Serializable Execution

Most databases interleave transaction operations

e Aslong as database is careful to maintain isolation,
yields much higher transaction processing throughput

Goal: ensure that transactions are executed in a way
that is equivalent to a serial execution schedule

For every pair of transactions T; and T}, it appears that either T;
completes before T; starts, or that T; completes before T; starts

Called a serializable execution schedule

Several different kinds of serializable schedules, with
different characteristics

e Not all serializable schedules are created equal!

SQL Isolation Levels

Sometimes applications are immune to certain kinds of
spurious results
e e.g. nonrepeatable reads or phantom rows

e App doesn’t have queries that are affected by these behaviors,
e.g. if most transactions are simple retrievals or updates

Can define weaker forms of isolation

e Weaker isolation allows greater concurrency, and therefore
greater transaction throughput

e Weaker isolation also allows more kinds of spurious results
SQL defines four isolation levels for use in applications
e Can set individual txns to have a specific isolation level

/—\

SQL Isolation Levels (2)

Serializable:

e Concurrent transactions produce the same result as if
they were run in some serial order

e The serial order may not necessarily correspond to the
exact order that transactions were issued

Called strong isolation

Only level that satisfies original definition of isolation:

e For every pair of transactions T; and T}, it appears that
either T; completes before T; starts, or that T; completes
before T; starts

SQL Isolation Levels (3)

Other isolation levels are called weak isolation

e Allow various Kinds of spurious behavior in concurrent
transactions

Repeatable reads:

e During a transaction, multiple reads of X produce same
results, regardless of committed writes to X in other
transactions

e Other transactions’ committed changes do not become
visible in the middle of a transaction

e (If the txn changes X, it sees its own modifications...)

10

SQL Isolation Levels (4)

Read committed:

e During a transaction, other transactions’ committed
changes become visible immediately

e Value of X can change during a transaction, if other
transactions write to X and then commit

Read uncommitted:

e Uncommitted changes to X in other transactions become
visible immediately

Aside: Many DBs also now include snapshot isolation
 They sometimes call it serializable isolation, but it isn't!
e Will discuss this isolation level in the future...

11

SQL Isolation Levels (5)

Different SQL isolation levels allow different kinds of
spurious behaviors:

Dirty Dirty | Nonrepeatable

Isolation Level Writes | Reads Reads Phantoms
serializable NO NO NO NO

repeatable reads NO NO NO S

read committed NO NO YES YES

read uncommitted NO YES YES YES

12

SQL Isolation Levels (6)

Databases often allow clients to set the desired
transaction isolation level
SQL syntax:

SET TRANSACTION ISOLATION LEVEL
| SERIALIZABLE | REPEATABLE READS |
READ COMMITTED | READ UNCOMMITTED |

Databases don’t always support all isolation levels!

e DB2, SQLServer, MySQL support all four isolation levels

e Oracle and PostgreSQL only support SERIALIZABLE and
READ COMMITTED isolation levels

e (And by “serializable” isolation they mean “snapshot”...)

13

/\

Transaction Schedules
As bef01_"e, model transacti(_)ns E adbl
as a series of reads and writes A:=A-50;
on various data items write(A);
read(B);

The sequences of operations that B:= B+ 50;
txns perform are called schedules write(B);

commit.

A schedule can only perform T: read(A);
one operation at a time A:=A-30;

4 write(4);

A serial schedule never allows the read((c).)
reads and writes of two C:=C+ 30;

transactions to be interleaved write(C);

commit.

e Very slow, but avoids all spurious results

14

/ Serializable Schedules

Want to interleave transaction 7. 1eaq(4),

operations to improve throughput =
write(4);

Need to make sure that results 1 read(h);
are still valid A:=A-30;
Require that execution schedules . el
are equivalent to a serial schedule p.-p: 0.
* i.e. the schedule is serializable write(h);
commit.

read(C);
What makes a schedule serializable? Cmb A

write(C);

How do we know two schedules are equivalent? commit.

&

Serializable Schedules (2)

Given:

e A schedule S containing operations performed by two
transactions, T; and T;

 In the schedule, instruction I from transaction T; is
adjacent to instruction J from T;

In what situations can we swap the order of
instructions I and J without affecting the results?

If we cannot swap instructions I and J without affecting
the results, we say that the operations conflict

16

/—\

- /

| Avoiding Conflicts

A simple example:

e Two adjacent instructions I and J, from different
transactions T; and T}, respectively

e Instruction I is read(A) or write(4), on a data-item A

e Instruction Jis read(B) or write(B), on a different
data-item B

e Does it matter what order we execute I and J ?

[f instructions I and] refer to different data-items, they
do not conflict. We can execute [and J in any order.

17

Avoiding Conflicts (2)

Instructions I and J could conflict if they read or write
the same data item

If I =read(Q) and J = read(Q), can we swap them
without affecting the results?

e Yes! Both transactions will see the same value for Q,
regardless of the order.

[f I =read(Q) and J = write(Q), can we swap them
without affecting the results?

e No! If I executes before J, T; will see the old value of Q.
If I executes after J, T; will see the new value of Q.

18

Avoiding Conflicts (3)

Same issue if [= write(Q) and J = read(Q)
e Cannot swap order of [and J without affecting the results

If I = write(Q) and J = write(Q), can we swap them
without affecting the results?

e The write operations themselves will not be affected...

e ...but the next read of Q will see different results based
on the order of I and J

e Cannot swap order of [and J without affecting the results

L)

Conflict Equivalence

Given a transaction execution schedule S, with two
adjacent operations I and J from different transactions

Instructions I and J conflict if:

e [and J operate on the same data item

e Atleast one of the operations is a write
If the instructions I and J do not conflict:

e We can swap them to produce an equivalent schedule S’
e Execution of S or S’ will produce the exact same results

=

Conflict Equivalence (2)

® A pair of schedules S and S’ are conflict equivalent if:

e One schedule can be transformed into the other, solely
by swapping adjacent non-conflicting operations

* A schedule S is conflict serializable if it is conflict
equivalent to a serial schedule

Previous Example Schedules

* Are these schedules conflict equivalent?
* Yes: only non-conflicting operations are swapped.

Ti:

read(A4);
A:=A-50;
write(A4);
read(B);
B:= B+ 50;
write(B);
commit.

read(A4);
A:=A-30;
write(A4);
read(C);
C:=C+30;
write(C);
commit.

Ti:

read(A4);
A:=A-50;
write(A4);

read(B);
B:= B+ 50;
write(B);
commit.

read(A4);
A:=A-30;
write(A4);

read(C);
C:=C+ 30;
write(C);
commit.

Previous Example Schedules (2)

o s the right schedule conflict serializable?
® Yes! Left schedule is a serial execution schedule.

T;: read(A); T:: read(A);
A:=A4-50; A:=A-50;
write(A4); write(A4);
read(B); T: read(4);
B:=B + 50; A:=4A4-30;
write(B); write(A4);
commit. read(B);
T: read(A); B:=B+50;
A:=A4-30; write(B);
write(4); commit.
read(C); read(C);
C:=C+ 30; C:=C+ 30;
write(C); write(C);

commit. commit.

Another Example

® Again, is the right schedule conflict serializable?
® Yes. Left schedule is serial; right is conflict equivalent.

T;: read(A); T:: read(A);
A:=A4-50; A:=A-50;
write(A4); write(A4);
read(B); T: read(4);
B:=B + 50; A:=4A4-30;
write(B); write(A4);
commiit. read(C);
T: read(A); C:=C+ 30;
A:=A-30; write(C);
write(A4); commit.
read(C); read(B);
C:=C+ 30; B:=B+ 50;
write(C); write(B);

commit. commit.

24

/—\

/ A New Problem

What if we have this execution schedule, but T; aborts?
This execution schedule violates atomicity!

e T: modifies data-item A... T: read(A);
e Then T; also modifies 4, A =?A(;l)50?
’ ' write(A);
based on T,'s changes! T o)
e Then T; commits, preserving A:=A-30;
T's changes to A, even though write(A);
T; is eventually aborted. el
Could preserve atomicity by write(C);
aborting T; when T; aborts... - commit.
e That would violate durability!! fff‘: lg 3’50;
write(B);

abort.

=5

Recoverable Schedules

This is a nonrecoverable execution schedule

>

e Can't properly enforce atomicity, consistency and
durability with this schedule T

Want to constrain ourselves
to only recoverable schedules

A schedule S is recoverable if,
for every pair of txns T; and T;:
e If T; reads a data-item previously

written by T;, then T; is not allowed
to commit until T, first commits

-
,

S

=~

read(B);
B:=B +50;
write(B);
abort.

i

commit.

26

| Recoverable Schedules (2)

Can make this schedule recoverable simply by delaying
T/'s commit operation

e T;enters “partially committed”

T:: read(A);

state initially A=A~ 50
e When T; aborts, T;is also aborted write(A); .

; : T:: read(A);
Transaction T; is dependent on T;: " 4=430
e T;reads a value that T; has written to write(A);

read(C);
General rule: C:=C+30;
e Dependent transactions may not write(C);
read(B);

commit until the initial transaction """
commits write(B);
abort.

paz1wiuiod
Apnavd

abort.

27

Recoverable Schedules (3)

>

If T; aborts then we
must abort T; too

e Called a cascading rollback
This can get very expensive

e Very easy to introduce
dependencies between
interleaved transactions

e Aborting one transaction
can cause a large amount
of work to be discarded

T;:
read(A4);

A:=A-50;

write(A4);

read(B);

B:=B+50;

write(B);
abort.

T;

read(A4);

A:=A-30;

write(A4);
read(C);

C:=C+ 30;

write(C);

abort.

read(C);
R e B SR

write(C);

abort.

28

/ Cascadeless Schedules

Cascadeless schedules disallow cascading rollbacks
from occurring
A schedule S is cascadeless if, for every pair of
transactions T; and T;:
e If T; reads a data-item previously written by T}, then T; is
not allowed to perform this read until T; first completes

Question:

» What if T; writes (but never reads) a data-item that T;
previously wrote, and then T, is aborted?

e Don’t need to cascade the rollback to T]
o T] never saw the old value!

Blind Writes

Ti: A=2
[. I
One more example: =
e Original value of Ais 1 T: A:=3
: : ; write(4);
o All writes in these transactions .
are blind writes abort.

e The data item is not read
before it is written

¢ Is this schedule cascadeless?
e This schedule is cascadeless
o T] doesn’t read A at all

30

Blind Writes (2)

As these txns are executed, I; ‘V“v rftz(.
write-ahead log is updated T: A:=3
i write(4);
When T; aborts, it issues a o -
compensating log record, as usual abort.
When T, abprts, it also issues a Wt AL
compensating log record... T start
o ...except that the old value of 4 ;i’ 412
: : + start
is from an aborted transaction = Zazr -
AR) &y
Original value of A was 1, but T; CLR: 4, 1
after T; and T; are aborted, it's 2 ® Ly Avort
T.CLR A 2
T;: abort

31

//\
Blind Writes (3)

Problem: e e
write(A4);
e The before-value of A written T A=3
to the write-ahead log for T; - el
was taken from the incomplete Bt

transaction T;

e If T; aborts, the before-value Wi aliedd Log;

: T;: start
: | I
T; has is useless for rollback! =
. . . \
Writes to a data-item also introduce Ty start)
subtle dependencies between txns, (bl b
5 . - T;CLR: 4, 1
through the write-ahead log! T+ abort
T.CLR A 2
T;: abort

32

= / :

/ Strict Schedules

To simplify recovery processing, further constrain
transaction schedules to be strict
A schedule S is strict if, for every pair of txns T; and T;:

e If T; reads or writes a data-item previously written by T,
then T; is not allowed to do this until 7; first commits

[f the database only uses strict execution schedules:

e When a transaction first writes to any given data-item,
the update record written to the WAL will never contain
an uncommitted value from another transaction

e This makes recovery processing much simpler

=

Transaction Schedule Hierarchy

* Can subdivide space of transaction schedules based on
classifications discussed today:

L T

/All execution schedules - _ ~
Conflict-serializable

schedules

/Recoverable schedules)

/Cascadeless schedules

2
Strict schedules

