
CS122	– Lecture	16
Winter	Term,	2018-2019

Write-Ahead Logging
� Last	time,	introduced	write-ahead	logging	(WAL)	as	a	
mechanism	to	provide	atomic,	durable	transactions

� Log	records:
� <Ti:		start>,	<Ti:		commit>,	<Ti:		abort>
� Updates:		<Ti,	Xj,	V1,	V2>

� Records	that	transaction	Ti changed	data-item	Xj from	V1 to	V2
� Redo-only	updates:		<Ti,	Xj,	V>

� Records	that	data-item	Xjwas	rolled	back to	value	V
� Must	always	follow	the	write-ahead	logging	rule:

� All	database	state	changes	must	be	recorded	to	the	log	
on	disk,	before	any	table-files	are	changed	on	disk

2

Write-Ahead Logging (2)
� Recovery	processing	involves	two	phases
� Redo	phase:

� Replay	all	state	changes	recorded	in	the	write-ahead	log
� Find	the	set	of	all	incomplete	transactions

� Undo	phase:
� Roll	back	all	incomplete	transactions,	updating	the	log
as	with	a	normal	transaction	rollback

� Once	recovery	is	completed:
� All	table	files	are	in	sync	with	the	write-ahead	log
� All	transactions	are	in	a	completed	state

3

Recovery Processing
� The	write-ahead	log	records	every	transaction,	and	every	
state-change	performed	against	the	database

� Recovery	processing	scans	this	entire	log	file…
� Unless	database	is	crashing	all	the	time	(unlikely),	most	
transactions	in	log	file	won’t	actually	require	recovery!

� Introduce	a	checkpointmechanism	that	allows	us	to	
pinpoint	where	to	start	recovery	processing	from

� Goal:		As	with	recovery,	checkpoint	procedure	should	bring	
all	table	files	into	sync	with	the	write-ahead	log
� Extent	of	write-ahead	log	required	for	recovery	processing	
will	be	constrained	by	most	recent	checkpoint

4

Checkpoint Procedure
� Constraint:		while	checkpoint	is	being	performed,	no	
other	update	operations	are	allowed
� Imposes	a	small	but	definite	performance	impact

� Checkpoint	procedure	(each	step	performed	in	order):
� Output	all	log	records	currently	in	memory	to	disk,	and	
sync	the	log	file

� Output	all	modified	table-pages	from	memory	to	disk,	
and	sync	each	table-file	as	well

� Output	a	log	record	of	the	form	<checkpoint	L>,	where	L
is	the	set	of	all	active	transactions	at	time	of	checkpoint

5

Checkpoint Records
� When	we	see	a	<checkpoint	L>	record	in	the	log:

� The	table	state	on	disk	reflects	all changes	recorded	in	
the	write-ahead	log	on	disk,	up	to	that	checkpoint	record

� Once	the	checkpoint	is	performed,	can	the	database	
ignore	all	log	records	before	<checkpoint	L>	record?
� NO:		If	one	of	the	transactions	in	Lwas	not	completed	
before	recovery,	it	must	be	aborted	during	recovery

� Database	must	keep	all	logs	up	to	earliest	<Ti:		start>	record,	over	all	transactions	Ti that	appear	in	the	set	L
� Logs	before	this	earliest	<Ti:		start>	record	may	be	discarded

6

Checkpoint Recovery
� Recovery	processing	changes	slightly	with	new	
checkpoint	mechanism

� Database	must	initially	scan	backward	through	logs,
to	find	the	last	checkpoint	record

� Perform	redo	phase	first,	as	before
� This	time,	the	set	of	incomplete	transactions	is	initialized	
to	contain	all	L txns specified	in	<checkpoint:		L>	record

� Can	ignore	all	redo operations	before	this	checkpoint:
� All	logs	were	flushed,	then	all	modified	table-pages	were	
flushed,	before	the	<checkpoint:		L>	record	was	output

� (May	still	need	to	undo	operations	before	checkpoint…)

7

Checkpoint Recovery (2)
� Second,	perform	the	undo	phase:

� At	end	of	redo	phase,	the	set	of	incomplete	transactions	will	
specify	which	transactions	must	be	rolled	back

� Undo	processing	doesn’t	change	at	all
� Traverse	transaction-log	backwards,	undoing	state-changes	
of	transactions	in	the	incomplete	set
� For	a	transaction	Ti in	the	incomplete	set,	remove	it	from	the	
set	when	a	<Ti:		start>	record	is	reached

� Don’t	forget:
� Txns in	set	L from	<checkpoint:		L>	record	may	also	need	to	
be	rolled	back;	their	records	will	be	before checkpoint	record

� Just	scan	backward	in	logs	until	incomplete-set	is	empty

8

Checkpoint Performance
� During	a	checkpoint,	no	other	updates	are	allowed
� Example:

� A	transaction	is	updating	every	record	in	a	very	large	table
� Lots	of	dirty	buffer-pages	in	memory,	logs	being	generated!
� Changes	aren’t	required	to	be	flushed	to	disk	until	commit

� …and	then	a	checkpoint	occurs.
� All	in-memory	write-ahead	log	records	must	be	output
� All	dirty	table-pages	must	be	output

� During	this	time,	all	other	write	operations	will	be	blocked	
until	the	checkpoint	completes
� Even	small	transactions	that	only	need	to	update	one	value!
� If	a	lot	of	data	must	be	output,	this	will	take	some	time

9

Checkpoint Performance (2)
� Can	perform	checkpoints	based	on	how	many	logs	(or	dirty	
table-pages)	have	accumulated	in	memory
� Impose	an	upper-bound	on	the	time	a	checkpoint	takes

� Can	also	implement	fuzzy	checkpoints
� Allows	transactions	to	perform	updates	even	during	the	fuzzy	
checkpoint	procedure

� Modify	the	checkpoint	procedure	slightly:
� Still	require	that	updates	are	blocked	while	WAL	records	are	
output	to	disk,	and	while	<checkpoint>	record	is	written

� Allow	modified	table-pages	to	be	written	to	disk	after the	
<checkpoint>	record	has	been	written

� After	<checkpoint>	is	written,	allow	some	updates	to	proceed

10

Fuzzy Checkpoints
� Fuzzy	checkpoint	procedure	(performed	in	order):

� Output	all	write-ahead	log	records	currently	in	memory	
to	disk,	and	sync	the	log	file

� Output	a	log	record	of	the	form	<checkpoint	L>,	where	L
is	the	set	of	all	active	transactions	at	time	of	checkpoint
� (This	used	to	be	done	after writing	all	table-files	to	disk…)

� Output	all	modified	table-pages	from	memory	to	disk,	
and	sync	each	table-file	as	well

� Checkpoint	record	isn’t	quite	as	strong	now…
� The	<checkpoint	L>	record	no	longer	guarantees	that	
table-files	are	in	sync	with	log	records	up	to	that	point

11

Fuzzy Checkpoints (2)
� When	a	fuzzy	checkpoint	is	performed:

� The	<checkpoint	L>	record	no	longer	guarantees	that	
table-files	are	in	sync	with	log	records	up	to	that	point

� Checkpoint	is	still	incomplete	at	the	time	the	record	is	
written	to	the	log!

� Database	maintains	an	additional	value	on	the	disk:
� A	last-checkpoint value,	recording	the	record-location	of	
the	last	successfully	completed	checkpoint	in	the	log	file

� (Also	want	to	avoid	having	to	scan	backward	through	log	
just	to	find	the	most	recent	checkpoint	record…)

12

Fuzzy Checkpoints (3)
� Database	maintains	a	last-checkpoint value	on	disk
� When	<checkpoint	L>	record	is	written,	DB	must	
collect	all	dirty	table-pages	at	time	of	checkpoint
� Iterate	through	this	collection,	writing	each	page	to	disk
� When	all table-pages	have	been	successfully	written,	
update	last-checkpoint to	point	to	most	recent	
<checkpoint>	record

� Database	can	choose	the	order	that	it	writes	dirty	
pages	out	to	disk
� e.g.	write	them	in	sequential	order	for	very	fast	output

13

Fuzzy Checkpoints (4)
� The	database	must	still	follow	write-ahead	logging	rule…
� Example:

� During	a	fuzzy	checkpoint,	a	dirty	buffer-page	B is	collected	to	
be	output	to	disk…

� …then,	a	transaction	wants	to	write	to	the	data	in	page	B
� Cannot	allow	this	write	until	after page	B is	written	to	disk

� Otherwise,	will	violate	semantics	of	the	checkpoint	procedure
� With	fuzzy	checkpoints,	txns will	still	block	on	individual	
pages	being	output	during	the	fuzzy-checkpoint	process
� Ideally	this	will	be	infrequent,	and	the	delay	will	be	short

14

Long-Running Transactions
� Long-running	transactions	still	cause	issues:

� A	checkpoint	marks	a	point-in-time	when	table	files	and	
write-ahead	log	are	in	sync	with	each	other,	on	disk

� Don’t	need	to	redo	anything	before	the	checkpoint…
� May	still	need	to	undo	operations	before	the	checkpoint,	
if	a	transaction	extended	well	before	that	point

� As	described,	the	write-ahead	logging	mechanism	
doesn’t	handle	this	situation	very	well
� May	still	need	to	traverse	log	far	into	the	past,	just	to	
undo	operations	before	the	checkpoint

� (In	fact,	undos may	already	be	reflected	in	the	table	files!)

15

ARIES Logging/Recovery
� ARIES:		Algorithms	for	Recovery	and	Isolation	
Exploiting	Semantics
� A	no-force,	steal	logging/recovery	system
� Designed	at	IBM	in	1992
� Used	in	IBM	DB2,	MS	SQLServer,	NTFS,	and	many others

� Has	many	transaction-processing	features,	such	as:
� Row-level	locking	instead	of	page-level	locking
� Fuzzy	checkpoints	that	allow	updates	during	checkpoint
� Nested	transactions	and	savepoints
� Parallel	recovery	processing

� Will	do	a	very basic	overview	of	ARIES	mechanisms
� (See	the	research	papers	for	all	the	details!)

16

Log Sequence Numbers
� Many	features	in	ARIES	depend	on	assigning	each	log	
record	a	unique	log	sequence	number (LSN)
� Can	simply	use	the	record’s	offset	in	the	log	file

� Can	refer	to	individual	log	records	using	their	LSNs

� Write-ahead	logging	can	generate	very	large	logs…

� Place	an	upper	bound	on	log	file	sizes

� When	current	log	file	hits	upper	bound,	begin	another	file

� Assign	each	log	file	its	own	number

� Fully	specified	LSN	would	be	logfile_number.offset
� Within	a	single	log	file,	just	use	a	record’s	offset	for	the	LSN

17

ARIES Log Records
� Example:		multiple	concurrent	transactions

� T37:		Transfer	$50	from	account	A to	B (committed)
� T40:		Transfer	$100	from	account	C to	D (active)

� Each	record	has	an	(implicit)	log	sequence	number
� Not	stored;	can	infer	from	the	record’s	position	in	the	file

� All	log	records	contain	a	PrevLSN
field,	specifying	the	LSN	for	the
previous	record	for	that	transaction

� Records	store	the	LSN	of	previous
log-record	in	the	same	transaction

T37:		start

T37:		A,	100,	50
T37:		B,	40,	90

T37:		commit

T40:		start
T40:		C,	350,	250

T40:		D,	100,	200

257

262

339

321

303

285

267

LSN PrevLSN
–

–

303

267

285

257

262

18

ARIES Log Records (2)
� PrevLSN field	makes	it	very easy	to	trace	through	logs	for	a	
specific	transaction

� Continuing	example:		Abort	T40,	transfer	from	C to	D
� Need	to	roll	back	all	state-changes	in	T40
� Start	with	last	log-record	recorded	for	T40:		LSN	321

� DB	also	tracks	the	most	recent	LSN
for	every	active	transaction	in	a	table

� As	before,	ARIES	uses	compensation
log	records	(CLRs)	during	rollback
� These	records	have	an	extra	field
UndoNextLSN,	specifying	the	next
operation	to	undo	in	the	transaction

T37:		start

T37:		A,	100,	50
T37:		B,	40,	90

T37:		commit

T40:		start
T40:		C,	350,	250

T40:		D,	100,	200

257

262

339

321

303

285

267

LSN PrevLSN
–

–

303

267

285

257

262

344 T40:		D,	100 321267

UndoNextLSN

19

ARIES Log Records (3)
� Continuing	example:		Abort	T40,	transfer	from	C to	D

� After	performing	compensating	action	for	LSN	321,
roll	back	LSN	267

� As	before,	continue	process	until
reaching	T40’s	start	log-record

� Using	PrevLSN and	UndoNextLSN
entries,	ARIES	can	provide	very
fast	rollback,	even	during	periods
of	heavy	concurrent	usage

T37:		start

T37:		A,	100,	50
T37:		B,	40,	90

T37:		commit

T40:		start
T40:		C,	350,	250

T40:		D,	100,	200

257

262

339

321

303

285

267

LSN PrevLSN
–

–

303

267

285

257

262

344 T40:		D,	100 321267

362 T40:		C,	350 344262

T40:		abort380 362

20

ARIES Data Pages
� Every	data	page	is	also	given	a	PageLSN field

� Specifies	the	most	recent	write-ahead	log	record	that	has	
been	applied	to	the	page

� When	pages	are	flushed	to	disk,	PageLSN on	disk	is	also	
updated	(obvious)

� DB	buffers	data	pages	in	memory…
� PageLSN value	in	the	page	on	disk
may	differ	from	value	in	memory

� Simply	indicates	that	data	page	on	disk
doesn’t	yet	have	all	updates	applied

� Similarly,	if	PageLSN values	match,
we	know	the	disk	page	is	up	to	date

A	=	50
B	=	90

303

C	=	250
D	=	200

321 Nonvolatile
Memory

1 2

A	=	50
B	=	90

303

C	=	350
D	=	100

362

PageLSN PageLSN

Volatile
Memory

1 2

21

ARIES Data Pages (2)
� PageLSN field	specifies	the	most	recent	write-ahead	log	
record	that	has	been	applied	to	the	page

� During	recovery	processing:
� For	a	given	page,	only	apply	records	with	a	LSN	larger	than	
the	page’s	current	PageLSN

� Unnecessary	to	apply	earlier	records;
data	page	on	disk	already	reflects	the
earlier	updates

� ARIES	also	has	some	update	records
that	can	only	be	applied	once!
� Applying	to	a	page	multiple	times
produces	incorrect	results

� PageLSN value	is	essential to	maintain
idempotence of	recovery	processing

A	=	50
B	=	90

303

C	=	350
D	=	100

362

PageLSN PageLSN

A	=	50
B	=	90

303

C	=	250
D	=	200

321

Volatile
Memory

Nonvolatile
Memory

1

1 2

2

22

Dirty Page Table
� ARIES	also	keeps	a	dirty	page	table,	recording	extra	
details	about	all	dirty	pages	in	the	buffer	manager

� Dirty	page	table	entries	hold	three	values:
� The	dirty	page’s	ID	(e.g.	filename	and	block-number)
� The	current	in-memory	PageLSN value	for	the	dirty	page
� Also,	an	additional	RecLSN field:

� Set	to	the	“current	LSN”	at	the	time	the	page	became	dirty

� When	a	data	page	is	flushed	from	buffer	manager	back	
to	disk,	its	entry	in	the	dirty	page	table	is	removed

23

Dirty Page Table (2)
� Continuing	previous	example…

� Dirty	page	table	contains	one	entry

� Data	page	2	is	dirty

� PageLSN value	is	easy.		RecLSN is	more	challenging…

� Page	2	in	memory	reflects	state	after	aborting	T40
� Page	2	on	disk	has
two	initial	writes

from	T40
� Page	2	became	dirty
again	from	update

recorded	in	LSN	344

T37:		start

T37:		A,	100,	50
T37:		B,	40,	90

T37:		commit

T40:		start
T40:		C,	350,	250

T40:		D,	100,	200

257

262

339

321

303

285

267

LSN PrevLSN

–

–

303

267

285

257

262

344 T40:		D,	100 321267

362 T40:		C,	350 344262

T40:		abort380 362

A	=	50

B	=	90

303

C	=	350

D	=	100

362

PageLSN PageLSN

A	=	50

B	=	90

303

C	=	250

D	=	200

321

Volatile
Memory

Nonvolatile
Memory

1

1 2

2

2

PageLSN RecLSNPgID

Dirty	Page	Table:

362 344

24

Dirty Page Table (3)
� What	can	we	discern	from	the
RecLSN value	recorded	in	the

dirty	page	table?

� RecLSN tells	us	where	to	start	in	the
log,	to	bring	the	disk-version	of	the

data	page	into	synchronization	with
the	in-memory	version	of	the	page

� Very	useful	information	to	have

during	recovery	processing…

T37:		start

T37:		A,	100,	50
T37:		B,	40,	90

T37:		commit

T40:		start
T40:		C,	350,	250

T40:		D,	100,	200

257

262

339

321

303

285

267

LSN PrevLSN

–

–

303

267

285

257

262

344 T40:		D,	100 321267

362 T40:		C,	350 344262

T40:		abort380 362

A	=	50
B	=	90

303

C	=	350
D	=	100

362

PageLSN PageLSN

A	=	50
B	=	90

303

C	=	250
D	=	200

321

Volatile
Memory

Nonvolatile
Memory

1

1 2

2

2 362 344

PageLSN RecLSNPgID

Dirty	Page	Table:

25

ARIES Checkpoints
� ARIES	also	supports	fuzzy	checkpoints
� An	ARIES	checkpoint	record	includes:

� A	table	of	all	active	transactions,	including	the	ID	of	each	
transaction,	and	its	LastLSN value:
� The	log	sequence	number	of	the	last	WAL	record	generated	for	
that	transaction

� The	dirty	page	table,	specifying	all	dirty	pages	at	time	of	
checkpoint,	along	with	their	PageLSN and	RecLSN values

� The	fuzzy	checkpoint	procedure	is	similar	to	before:
� Write	and	flush	all	in-memory	log	records	to	disk
� Write	and	flush	the	checkpoint	record	to	disk

26

ARIES Checkpoints (2)
� ARIES	doesn’t	require	flushing	all	dirty	pages	to	disk	as	
a	part	of	the	fuzzy	checkpoint!
� Makes	checkpointing very	unintrusive to	other	
transaction-processing	operations

� Rather,	buffer	manager	writes	out	dirty	pages	on	a	
regular	basis,	during	normal	execution
� Can	schedule	dirty	page	writes	to	minimize	disk	seeks

� When	a	dirty	page	is	flushed	to	disk:
� Easy	to	follow	the	WAL	rule,	using
PageLSN value	stored	in	each	page

� e.g.	when	flushing	page	2,	simply
ensure	that	write-ahead	log	is
flushed	to	record	with	LSN	362

A	=	50
B	=	90

303

C	=	350
D	=	100

362

PageLSN PageLSN

A	=	50
B	=	90

303

C	=	250
D	=	200

321

Volatile
Memory

Nonvolatile
Memory

1

1 2

2

27

ARIES Recovery
� ARIES	recovery-processing	involves	three	phases:

� Analysis	phase,	redo	phase,	undo	phase
� Analysis	phase	performs	three	important	tasks:

� Determine	the	starting	point	(LSN)	in	the	write-ahead	
log	where	redo	processing	must	commence	from

� Determine	the	set	of	data	pages	that	must	be	brought	
into	sync	with	the	write-ahead	log	state

� Determine	the	set	of	incomplete	transactions	that	must	
be	rolled	back
� (In	ARIES	paper,	these	are	called	loser	transactions)

28

Recovery: Analysis Phase
� Checkpoint	record	contains	a	copy	of	dirty	page	table

� Use	this	table	to	determine	initial	value	of	RedoLSN,
the	LSN	where	the	redo	phase	should	start	from

� e.g.	given	this	dirty	page	table:
� RedoLSN should	be	345

� General	rule:
� Set	RedoLSN to	smallest	value	of
RecLSN that	appears	in	dirty	page	table

� If	checkpoint’s	dirty	page	table	is	empty,
set	RedoLSN to	the	LSN	of	the	checkpoint	record

14 403 389
PageLSN RecLSNPgID

Dirty	Page	Table:

3 521 484
9 505 456
11 398 345
6 584 577
7 522 490

29

Recovery: Analysis Phase (2)
� Next,	analysis	phase	determines	the	set	of	dirty	pages,	
and	the	set	of	incomplete	transactions

� Initial	dirty	page	table,	and	initial	set	of	incomplete	
transactions	are	both	taken	from	the	checkpoint	state

� Start	scanning	forward	through	write-ahead	log,	
starting	with	the	checkpoint	record	(not	RedoLSN!)

30

Recovery: Analysis Phase (3)
� Scan	forward	from	the	checkpoint	record:

� If	a	<Ti:		begin>	record	is	seen,	add	Ti to	set	of	incomplete	
transactions,	with	LastLSN set	to	LSN	of	record
� Allows	us	to	know	where	to	start	undoing	Ti,	if	we	have	to

� If	a	<Ti:		commit>	or	<Ti:		abort>	record	is	seen,	remove	
Ti from	set	of	incomplete	transactions

� For	Ti update	records:		<Ti:		Xj,	V1,	V2>	or	<Ti:		Xj,	V>
� Update	transaction	Ti’s LastLSN to	LSN	of	the	update	record
� If	Xj’s data	page	is	not	in	the	dirty	page	table,	add	it	to	the	table	
with	RecLSN set	to	the	LSN	of	the	update	record,	and	PageLSN
taken	from	the	data	page	on	disk

� When	this	scan	is	complete,	analysis	phase	is	complete

31

Recovery: Redo Phase
� Database	now	has	an	up-to-date	dirty	page	table
� From	earlier:

� ARIES	uses	each	page’s	PageLSN value	to	ensure	that	
each	update	is	only	applied	to	a	page	once

� Required	to	make	recovery	processing	idempotent,	since	
some	ARIES	redo-operations	may	only	be	applied	once

� Redo	phase:		repeat	history!
� Recall:		Found	RedoLSN value	during
analysis	phase	(RecLSN in	Dirty	Page
Table	that	is	furthest	in	the	past)

32

14 403 389
PageLSN RecLSNPgID

Dirty	Page	Table:

3 521 484
9 505 456
11 398 345
6 584 577
7 522 490

Recovery: Redo Phase (2)
� For	each	update	record	<Ti:		Xj,	V1,	V2>	or	<Ti:		Xj,	V>:

� If	Xj’s page	is	in	dirty	page	table	then	apply	the	update
� If	not,	we	know	update	already	hit	the	data	page	on	disk;
no	need	to	apply	the	update	twice!

� At	end	of	redo	phase,	database	will	be	in	exactly	the	same	
state	as	when	the	system	crash	occurred

� The	redo	phase	only	loads	data	pages	that	need	to	be	
updated.		No	updates	are	applied	multiple	times!
� Makes	for	a	much	faster	recovery	process	than	before

� After	redo	phase,	there	will	be	incomplete	transactions
� Roll	these	back	in	the	undo	phase

33

Recovery: Undo Phase
� Undo	phase	must	roll	back	all	incomplete	transactions
� At	end	of	analysis	phase,	had	a	table	of	all	incomplete	
transactions,	along	with	LastLSN of	each	transaction

� Can	roll	back	these	transactions	in	any	order
� Could	roll	each	transaction	back	separately,	or	could	roll	all	
transactions	back	in	a	single	pass

� Each	log	record	specifies	the	LSN	of
the	previous	operation	in	that	txn,	so
rolling	back	these	operations	is	easy

� As	before,	must	write	Compensation	Log
Records	to	WAL	when	undoing	an	update
of	the	form	<Ti:		Xj,	V1,	V2>	!

T37:		start

T37:		A,	100,	50
T37:		B,	40,	90

T37:		commit

T40:		start
T40:		C,	350,	250

T40:		D,	100,	200

257

262

339

321

303

285

267

LSN PrevLSN
–

–

303

267

285

257

262

34

ARIES Logging/Recovery
� Checkpoints	are	often	performed	during	recovery	to	
guard	against	further	crashes	during	recovery
� Next	recovery	attempt	will	begin	further	down	the	line…

� ARIES	is	a	very	complex	logging/recovery	system…
� Provides	many	txn-processing	features	and	benefits
� Checkpoints	and	recovery	processing	are	both	very	fast
� Definitely	worth	the	added	complexity!
� Extensive	use	of	ARIES	demonstrates	this	very	clearly

35

