
CS122	– Lecture	15
Winter	Term,	2018-2019

Transaction Processing
� Last	time,	introduced	transaction	processing
� ACID	properties:

� Atomicity,	consistency,	isolation,	durability
� Began	talking	about	implementing	atomicity	and	durability
� Shadow-copy	technique:

� When	a	transaction	first	writes	to	the	database,	make	a	
complete	copy	of	the	database

� A	“db-pointer”	refers	to	the	current	copy	of	the	database
� All	writes	go	against	the	new	copy	of	the	database
� At	commit	time,	sync	all	files	in	the	new	copy,	then	update	and	
sync	the	db-pointer

� Primary	limitation	of	shadow	copies	is	that	database	can	
only	have	one	transaction	in	progress	at	a	time

2

Write-Ahead Logging
� Instead	of	duplicating	the	entire	database	and	writing	to	a	
copy,	would	like	to	write	to	database	files	in-place

� To	provide	atomicity	and	durability,	maintain	a	single	log	
file describing	all	changes	made	to	the	database
� OS	allows	us	to	update	this	single	file	atomically
� Can	interleave	changes	from	different	txns in	the	log

� Require	that	the	log	file	must	reflect	all data	changes,	sync’d
to	disk,	before any	table	files	are	written
� This	technique	is	called	write-ahead	logging (WAL)

� When	DB	writes	to	the	log	that	a	txn is	committed,	it	is!
� This	write	must	also	make	it	to	the	disk	itself	(e.g.	fsync())
� A	single	atomic	operation	against	persistent	storage

3

Data Access
� As	before,	don’t	model	transactions	at	the	SQL	level!

� Rather,	model	simple	operations	against	data	items
� Also,	must	buffer	disk	access	to	improve	performance
� Two-level	storage	hierarchy:

� Database	transactions	interact	with	buffer	pages
� Buffer	pages	are	transferred	to	and	from	disk	storage

� input(B)	– transfer	physical	block	B to	main	memory
� Data	is	transferred	into	a	page	of	the	Buffer	Manager

� output(B)	– transfer	physical	block	B back	to	disk
� May	or	may	not	also	include	a	sync	of	the	file	that	B is	in

4

Data Access (2)
� Transactions	perform	computations	in	local	variables,	
and	simply	read/write	data	items	in	buffer	pages

� read(X)	– read	data	item	X into	a	local	variable
� If	block	BX that	X resides	in	isn’t	in	memory,	database	
also	issues	input(BX)	to	read	into	memory

� write(X)	– write	a	local	variable	into	data	item	X
� Does	not require	block	BX to	be	written	back	to	disk!

� If	DB	crashes	after	write(X),	the	change	could	be	lost!
� To	ensure	new	X is	recorded,	database	must	eventually	
force BX to	be	stored	to	disk,	by	calling	output(BX)

5

Database Modifications
� Could	require	that	a	transaction	does	not	modify	any	
database	state	until	it	is	committed
� Called	deferred	modification

� Presents	several	challenges:
� A	transaction	must	make	local	copies	of	everything	it	modifies
� If	a	transaction	reads	a	value	it	has	written,	must	make	sure	it	
reads	the	local	copy,	not	the	original	value

� Could	also	allow	a	transaction	to	modify	database	state	
before	it	is	committed
� Called	immediate	modification

� With	immediate	modification,	must	ensure	we	can	properly	
roll	back	all	changes	that	any	transaction	might	make!

6

Write-Ahead Log Records
� Log-file	records	important	transaction	state-changes
� Transaction-status	log	records:

� <Ti start> Transaction	Ti has	been	started
� <Ti commit> Transaction	Ti has	been	committed
� <Ti abort> Transaction	Ti has	been	aborted

� Every	transaction	has	a	unique	ID
� (usually	a	32-bit	or	64-bit	integer	value)

� Completed	transactions	will	have	a	<Ti start>	record,	
and	either	<Ti commit>	or	<Ti abort>,	in	the	log	file

� Incomplete	transactions	will	only	have	a	<Ti start>	
record	in	the	log	file

7

Write-Ahead Log Records (2)
� Log	file	also	records	all modifications	to	database	state
� Update	log	records:		<Ti,	Xj,	V1,	V2>

� Transaction	Tiwrote	to	value	Xj
� Old	value	of	Xjwas	V1,	and	new	value	is	V2

� Xj specifies	the	data	item	that	was	written
� In	discussion,	usually	think	of	Xj as	a	specific	column
� In implementations,	Xj is	actually	usually	a	page	of	a	
specific	data	file
� e.g.	store	file,	block	no.,	old	and	new	state	of	the	block	as	deltas

� Other	kinds	of	database	updates	too!
� e.g.	create	a	new	data	file;	extend	a	file’s	size	by	one	page

8

Write-Ahead Log Records (3)
� Write-ahead	logging	supports	multiple	concurrent	
transactions
� Records	for	different	transactions	are	interleaved	in	the	
log	file

� Database	is	responsible	for	ensuring	that	transactions	
don’t	interfere	with	each	other	in	nasty	ways
� i.e.	that	read(Xj)	and	write(Xj)	operations	from	different	
txns are	properly	scheduled	to	maintain	isolation

� Mechanism	is	called	concurrency-control
� For	now,	we	will	assume	this	is	properly	taken	care	of!

9

Logging Operations
� Write-ahead	log	records	every	database	state-change

� Log	is	always	written	and	synchronized	to	disk	before	
any	other	data	files	are	modified	on	disk

� Earlier	example:		transfer	$50	from	account	A to	B
� Every	write	to	a	data	item	must	be	preceded	by	a	record	
written	to	write-ahead	log

� Commit	record	must	be	written	to	log	before	transaction	
is	reported	as	committed!

T1: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);
commit.

T1:		start
T1:		A,	100,	50
T1:		B,	40,	90
T1:		commit

Write-Ahead	Log:

3

1

2

4

5

6

7

10

Rolling Back a Transaction
� We	can	rollback	transactions	with	our	write-ahead	log!
� Transfer	$50	from	account	A to	B:

� This	time,	transaction	is	aborted	at	attempt	to	read(B)
� Must	undo	all	state-changes	made	in	the	transaction

� Scan	backward	through	write-ahead	log,	undoing	all	
changes	made	by	transaction	T1
� Stop	when	we	reach	<T1:		start>	record

T1: read(A);
A :=	A – 50;
write(A);
read(B);

T1:		start
T1:		A,	100,	50

Write-Ahead	Log:

3

1

2

4 ABORT!

scan

11

Rolling Back a Transaction (2)
� Update	record	specifies	that	Awas	100	before	write…

� Roll	back	the	change	by	restoring	A to	100
� When	undoing	change,	write	a	compensation	log	record
to	the	write-ahead	log
� Compensates	for	previous	state-change	being	undone
� Also	called	a	redo-only log	record:		this	write	is	rolling	
back	a	state-change,	so	it	will	never	be	undone

T1: read(A);
A :=	A – 50;
write(A);
read(B);
A :=	100;
write(A);

T1:		start
T1:		A,	100,	50

Write-Ahead	Log:

3

1

2

4 ABORT!

scan

6

T1 redo-only	A:		100 5

12

Rolling Back a Transaction (3)
� When	all	T1 state-changes	have	been	reversed,	record	
<T1:		abort>	record	to	the	log

� Transaction	is	now	aborted.
� All	state	changes	have	been	rolled	back
� Write-ahead	log	records	both	the	compensating	writes,	
and	the	final	transaction	status

T1: read(A);
A :=	A – 50;
write(A);
read(B);
A :=	100;
write(A);
abort.

T1:		start
T1:		A,	100,	50

Write-Ahead	Log:

3

1

2

4 ABORT!

6
T1:		abort 7

8

scan

T1 redo-only	A:		100 5

13

Force, or No-Force?
� Write-ahead	logging	rule	(a.k.a.	WAL	rule):

� All	database	state	changes	must	be	recorded	to	the	log	on	
disk,	before	any	table-files	are	changed	on	disk

� At	commit	time,	are	we	required to	force	all	modified	table-
pages	out	to	disk?
� In	other	words,	can	a	transaction	be	reported	to	the	client	as	
“committed,”	if	not	all	table	files	have	been	written?

� We	are	not	required	to	write	all	modified	table	pages	at	
commit	time,	if	the	database	follows	the	WAL	rule
� We	know	that	all	changes	are	recorded	in	log	file	on	disk,	even	
if	the	table	pages	themselves	haven’t	yet	been	flushed	to	disk

� Won’t	violate	durability	by	reporting	transaction	“committed”

14

Force, or No-Force? (2)
� Force policy:

� Database	force-outputs	all	dirty	table-pages	before	a	
transaction	is	reported	as	“committed”

� No-force policy:
� Database	can	report	a	transaction	as	“committed”	before	
all	dirty	table-pages	are	output

� No-force	policy	is	much	faster	than	force	policy:
� Writes	from	multiple	transactions	can	be	performed	
against	in-memory	table	pages	without	incurring	disk	IO

� As	long	as	the	DB	records	all	data-changes	to	the	WAL	
on	disk	at	commit	time,	it	can	use	the	no-force	policy

15

Steal, or No-Steal?
� A	similar	question:
� Are	we	forbidden from	writing	modified	table-pages	
out	to	disk	before	a	transaction	commits?
� In	other	words,	can	we	allow	table	changes	performed	
by	an	incomplete	transaction	to	reach	the	disk?

� We	are	not forbidden	from	writing	dirty	table-pages	for	
active	txns,	as	long	as	we	follow	the	WAL-rule:
� Not	only	does	the	log	record	the	new	value	for	each	
modified	value,	but	it	also	records	the	old	value

� Log	will	always	contain	sufficient	information,	on	disk,	to	
undo	any	state	changes	written	to	table	pages	on	disk

16

Steal, or No-Steal? (2)
� Steal policy:

� Database	is	allowed	to	write	dirty	table-pages	to	disk,	even	if	
the	transaction	is	still	active

� No-steal policy:
� Database	is	not	allowed	to	write	dirty	table-pages	to	disk	until	
the	transaction	is	being	committed

� Steal	policy	allows	much	larger	database	updates	to	be	
performed
� Doesn’t	require	a	large	amount	of	buffer	memory	to	hold	
uncommitted	changes

� Modified	pages	can	be	written	to	disk	to	free	up	buffer	space
� As	long	as	DB	follows	WAL	rule,	it	can	use	the	steal	policy

17

Crash Recovery!
� Write-ahead	logging	rule:

� All	database	state	changes	must	be	recorded	to	the	log	
on	disk,	before	any	table-files	are	changed	on	disk

� If	the	system	crashes,	all	important	state	changes	will	
already	be	recorded	to	the	log	file
� All	completed	transactions	will	record:

� All	modifications	performed	by	the	transaction
� A	<Ti:		commit>	or	<Ti:		abort>	record	for	the	transaction

� All	incomplete	transactions	will	record:
� All	modifications	performed	by	transaction	before	the	crash

� Table	files	won’t	necessarily	reflect	all of	these	changes

18

Crash Recovery! (2)
� The	recovery process	performs	two	critical	tasks:

� It	synchronizes	the	current	state	of	all	data	files	with	the	
current	state	of	the	write-ahead	log

� It	completes	all	incomplete	transactions

� Policy	for	incomplete	transactions:
� At	recovery,	incomplete	transactions	are	aborted

19

Crash Recovery! (3)
� Completed	transactions:

� Log	will	contain	a	<Ti:		start>	record,	plus	a	matching
<Ti:		commit>	or	<Ti:		abort>	record

� Ensure	that	data	files	properly	reflect	all	transaction	
state-changes

� Incomplete	transactions:
� Log	will	contain	a	<Ti:		start>	record,	but	no matching
<Ti:		commit>	or	<Ti:		abort>	record

� Ensure	that	all	transaction	state-changes	are	properly	
removed	from	the	data	files

� Recovery	is	performed	in	two	phases

20

Recovery Processing
� Phase	1:		redo	phase

� Scan	forward	through	log,	redoing	updates	from	all txns,	
in	the	exact	order	they	appear	in	the	transaction	log

� For	every	update	record	<Ti,	Xj,	V1,	V2>	in	the	log,	set	Xj to	
the	new	value	V2 recorded	in	the	log

� For	every	redo-only	record	<Ti,	Xj,	V>,	set	Xj to	V
� This	is	called	repeating	history

� During	this	phase,	maintain	a	set	of	incomplete	txns:
� When	a	<Ti:		start>	record	is	found,	add	Ti to	incompletes
� When	a	<Ti:		commit>	or	<Ti:		abort>	record	is	found,	
remove	Ti from	incompletes

21

Recovery Processing (3)
� Phase	2:		undo	phase

� Scan	backward	through	log,	rolling	back	incomplete	txns
� Procedure	is	identical	to	rolling	back	a	single	transaction

� If	record’s	transaction	ID	is	in	the	set	of	incompletes:
� If	the	record	is	a	normal	update	record:		<Ti,	Xj,	V1,	V2>

� Write	a	redo-only	record	<Ti,	Xj,	V1>	to	end	of	log
� Undo	the	state	change:		Restore	Xj to	the	old	value	V1

� If	the	record	is	a	<Ti:		start>	record:
� Write	a	<Ti:		abort>	record	to	end	of	log
� Remove	transaction	Ti from	the	set	of	incompletes

� Undo	phase	is	done	when	the	incomplete-set	is	empty

22

Redo-Only Records
� Redo-only	logs	greatly	simplify	recovery	processing
� To	rollback	a	transaction,	must	undo	its	state-changes	in	
reverse	order	of	its	updates
� A	txn may	write	to	a	given	data	item	multiple	times…
� At	end	of	rollback,	item	must	reflect	the	original value

� Cannot	handle	previously	aborted	txns in	the	undo	phase:
� Could	undo	a	write	performed	by	another	committed	txn!

� Example:
� T1 changes	A from	100	to	200,	then	aborts.
� T2 changes	A from	100	to	50,	then	commits.
� Rolling	back	T1 in	undo	phase	would
overwrite	T2’s	write	to	A in	redo	phase	L

Write-Ahead	Log:
T1:		start
T1:		A,	100,	200
T1:		abort
T2:		start
T2:		A,	100,	50
T2:		commit

23

Redo-Only Records (2)
� In	cases	of	previously-aborted	transactions,	must	undo	
the	transaction’s	writes	during	the	redo	phase

� Scan	backwards	through	the	log	file,	undoing	all	changes	
made	specifically	by	T1…

� Very	slow	– introduces	many	extra	disk	seeks!

� Redo-only	records	make	it	fast to	replay
the	rollback	of	previously	aborted	txns

� Just	keep	scanning	forward	through	the
log,	applying	redo-only	records	for	T1

Write-Ahead	Log:

T1:		start
T1:		A,	100,	200
T1:		abort
T2:		start
T2:		A,	100,	50
T2:		commit

24

Crashes During Recovery
� System	could	also	crash	during	recovery…

� Must	still	be	able	to	recover,	even	if	the	last	crash	
occurred	during	recovery	processing!

� Recovery	procedure	must	be	idempotent:
� Results	of	recovery	processing	must	be	the	same,	
whether	it	is	applied	once	or	multiple	times

� As	described,	this	recovery	procedure	is	idempotent
� We	record	the	actual	old	and	new	values	of	data	items
� Logged	values	aren’t	relative	to	other	operations
� Worst	case	is	that	a	data	item	will	be	“restored”	multiple	
times	(extra	writes,	but	we	don’t	mind)

25

Read-Only Transactions
� Frequently	have	many	transactions	that	only	read	the	
database
� Nothing	to	redo	or	undo	for	such	transactions…
� No	need	to	represent	them	in	the	write-ahead	log!

� Only	record	a	transaction	to	the	write-ahead	log	when	
it	actually	changes	state	in	the	database
� e.g.	at	first	state-change,	write	<Ti:		start>	and	also	the	
first	update-record	to	the	log

26

Logging Performance
� So	far,	assumed	that	new	write-ahead	log	records	are	
always	written	and	sync’d	to	the	log	file	immediately

� Imposes	a	very	expensive	IO	penalty	on	the	system!
� Would	rather	write	multiple	log	records	to	disk	at	once

� Log	file	is	written	in	units	of	blocks,	just	like	table	files
� Database	loads	pages	of	table-files	into	buffer	space…

� Table	data	is	modified	in	memory
� Database	system	can	control	when	these	buffer	pages	are	
flushed	back	to	disk
� Database	can	coordinate	the	output	of	table	blocks,	with	the	
writing	of	log	records

27

Logging Performance (2)
� A	transaction	Ti cannot	be	reported	as	“committed”	until:

� A	<Ti:		commit>	record	is	written	to	the	log,	and	sync’d to	disk
� Before	the	<Ti:		commit>	record	can	be	logged:

� All	other	log	records	for	Timust	also	be	written	to	the	WAL
� These	can	be	sync’d at	same	time	<Ti:		commit>	is	sync’d
� (In	other	words,	these	can	remain	in	buffer	until	it	is	time	to	
write	the	<Ti:		commit>	record.)

� For	this	to	work,	must	constrain	that	a	table-page	cannot be	
flushed	from	the	Buffer	Manager	to	disk	until:

� All write-ahead	log	records	for	that	page	have	been	written	to	
the	log	file,	and sync’d to	disk

� (This	is	the	WAL	rule)

28

Logging Performance (3)
� General	rules:

� Before	a	transaction	is	reported	as	“committed”,	must	ensure	
that	all	logs	have	been	sync’d to	disk

� Before	a	dirty	table-page	is	flushed	to	disk,	must	ensure	that	
all	logs	pertaining	to	that	page	have	been	sync’d to	disk

� These	rules	specify	the	absolute	latest that	log	records	must	
be	written	and	sync’d to	disk
� If	current	log-page	is	only	partially	full	at	this	point,	write	it	
out	anyway!		Required	for	atomicity,	durability.

� Can	certainly	write	logs	to	disk	earlier,	if	we	need	to	free	up	
buffer	space
� Still	don’t	require	syncing	until	one	of	the	conditions	above

29

