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Database Limitations

Can create a pretty sophisticated database by now

e Can parse, plan, and execute SQL queries

e Provide faster access-paths to records using indexes

e Perform query-plan optimization
Our database still lacks an essential set of capabilities:
The database isn’'t reliable when failures occur!

e Logical failures — an operation against the database
violates some constraint and cannot be completed

e System failures - the hardware or OS suffers a failure
The database also cannot handle concurrent access



Transaction Processing

Databases provide transactions to properly handle
these situations

A transaction is a collection of one or more operations
that form a single logical unit of work

Clients must tell DB when a transaction begins or ends

e Start a transaction:

o Standard: START TRANSACTION
o Also: BEGIN [ TRANSACTION | WORK |

e Complete a transaction:

« Standard: COMMIT [ WORK |
o Also: COMMIT TRANSACTION, END [ TRANSACTION | WORK ]



Transaction Processing (2)

A transaction is a single logical unit of work

e Should be indivisible: either all operations affect the
database, or none of them do

Clients can abort an in-progress transaction:
e Client tells DB to undo all changes made by transaction
e Also called rolling back a transaction

e Commands:
« Standard: ROLLBACK [ WORK ]

. Also: ROLLBACK TRANSACTION,
ABORT [ TRANSACTION | WORK ]

The DB itself can also abort transactions, in some cases
e e.g.if a constraint is violated during a transaction



ACID Properties

Transaction processing systems should satisfy specific
properties, called the ACID properties
ACID properties were originally devised by Jim Gray

e A critical contribution to databases and transaction
processing systems

e Gray won a Turing award in 1998 for this work
e “ACID” acronym was later coined by other researchers



ACID Properties (2)

Atomicity

e Either all operations in the transaction are reflected in
the database, or none of them are

Consistency

e Execution of the transaction (in isolation from any other
transactions) preserves all database constraints

e Given: the database starts in a consistent state

e The completed transaction should also leave the
database in a consistent state



| ACID Properties (3)

[solation

e When multiple transactions are executed concurrently,
they must appear to execute in isolation of each other

e For every pair of transactions T; and T}, it appears that
either T; completes before T; starts, or that T; completes
before T; starts

Durability

e After a transaction completes successfully (i.e. after it is
reported as committed), all changes it made are
persistent, even if there are system failures



Example: Account Transfer

Classic transaction-processing example: transfer
money from one bank account to another account

Database transactions involve complex SQL statements
Model them as a sequence of read and write operations

Example: transfer $50 from account 4 to account B

T;: read(A);
A:=A-50;
write(4);
read(B);
B:=B+50;
write(B);



Example: Account Transfer (2)

Consistency: T readid)
e [f database was in a consistent state before the A:=A-50:

transaction, it will still be consistent afterward write(4);

Often involves constraints that aren’t read(B);
specifically modeled in the database B:= B+ 50;

Example: sum of account balances A + B write(B);

should be unchanged by this transaction

May have other constraints as well, such as:
e All accounts must have a non-NULL balance
e Account balance is not allowed to be negative

DB may be able to enforce some of these constraints, but
the application is also responsible for ensuring consistency!
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Example: Account Transfer (3)
Scenario 1: In the process of this T: read(4);
transaction, a failure occurs after A:=A-50;
write(4), but before write(B) write(A);

e e.g. perhaps account B doesn't exist, ;eidlgBj ;50;
or the system crashes, etc. write(B);
Atomicity:

e Either all of the transaction’s operations complete, or
none of them do

In this case, if atomicity is violated:
e The database loses $50! Consistency is also violated.

The database enters into an inconsistent state
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Example: Account Transfer (4)

Scenario 2: This time the transaction T: read(A);

completes, but then the system crashes A:=A-50;
e e.g. power failure, disk crash, r:;(tle(g?;
BSOD /kernel-panic, or database B.=B+E0
ftware crashes (least likely! ©) - :
20 X write(B);

Durability:
e [f the transaction is durable then the database will still
reflect the changes after recovery has been completed
e The client doesn’t need to repeat the transaction again

When DB responds that the transaction is committed,
this is a guarantee that the changes will persist
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Example: Account Transfer (5)

Most DBs allow concurrent access by multiple clients
e Multiple transactions can occur at the same time

Two account transfers occurring at the same time:

T: read(4); T: read(4);
A:=A-50; A:=A-30;
write(4); write(4);
read(B); read(C);
B:=B + 50; C:=C+30;
write(B); write(C);

Isolation:

e Txns must appear to execute in isolation of each other
e Either T; executes and then T; executes, or vice versa
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Example: Account Transfer (6)

Database could literally follow this rule:
e Either T; executes and then T; executes, or vice versa

e Execute only one transaction at a time
Called a serial execution schedule T: read(4);  T; read(4);

o A:=A-50; A:=A-30;
Problem: this is really slow write(A); write(A);
: S S . read(B); read(C);
e Doesn’t maximize utilization BBaico C:=C + 30;
of database server resources write(B); write(C);

e Transaction throughput will be really low

Most of the time, transactions work with completely
different records. Why slow things down?!
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Example: Account Transfer (7)

Most databases interleave transaction operations

e Simply must ensure that the transactions appear to
execute in isolation of each other

Example: whatif T; and T; rreadfd:
are executed like this? A:=A-50;
: : . : write(4);
This will properly maintain T: read(A)
transaction isolation A:=A-30;
: : _ write(4);
e Itis equivalent to a serial read(B);
execution schedule B:=B + 50;
write(B);
e Itis aserializable schedule (5) read(C);
C:=C+ 30;

write(C);
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Example: Account Transfer (8)

What if T; and T; were are executed like this instead?

This execution schedule will 7: read(4);
A:=A-50;

produce an inconsistent state! T: read(A)
e T, clobbers T}'s update of A ‘jv :;t‘:(;l)?’;o;
e [n this case, our database write(A);
creates $30 out of thin air... oy =
Transaction isolation is very gv::itg(z;o‘

important when a database B:= B+ 50:
supports concurrent access write(B);
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Implementing ACID Properties

Atomicity, Consistency and Durability are important
whether the database is single-user or multi-user

e Still need these transaction properties even when
database is only used by one client at a time!

[solation is only important when a database can be
used by multiple clients at the same time

e (And it's much more complicated...)

Will discuss Atomicity, Consistency and Durability first
Talk about Isolation afterward
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Transaction States

* Each transaction goes through a series of states

o Initially, transactions are in the Active state

e More operations can be performed in the context of this
transaction

* When last operation has been performed, transaction
enters the Partially Committed state

e e.g. client issues COMMIT .
@

 No more operations can be
performed in the transaction

e Database still has work to do!



Transaction States (2)

¢ Partially Committed state:

e (Client can’t do anything else, but database must now commit
the transaction

* Transaction’s state-changes may still reside in memory
e Database may still need to write data to disk

e DB may need to verify constraints that have been deferred to
the end of the transaction

* If these operations succeed, transaction
enters the Committed state —
e DB has recorded that the -~

transaction is committed
e Txn will be durable and atomic




Transaction States (3)

¢ If database cannot complete commit-operations, the
transaction enters the Failed state

* Transaction can also enter the Failed state while Active
e Will occur if an operation violates a database constraint
e Or, client may issue a ROLLBACK command

* At this point, the DB must ensure

that all state-changes have been . M .
rolled back to previous state ./'
v
9@
—

e Once this is done, the txn
enters the Aborted state
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Storage Characteristics

Ability to implement durable and atomic transactions
depends on characteristics of storage media

Previously discussed storage hierarchy
Primary storage - main memory, caches
e This storage is volatile: data won't survive a power loss
e Also usually doesn’t survive through a system crash
Secondary/tertiary storage - disks, SSD, tapes, optical

e This storage is nonvolatile: data survives loss of power

e Can still suffer data corruption or data loss, e.g. if a hard
disk crashes, or if the system crashes during a write
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Storage Characteristics (2)

Storage characteristics broken down by reliability:
e Volatile storage — doesn’t survive system failure

e Nonvolatile storage - survives a system failure, but still
susceptible to data loss

A third category of storage reliability:
e Stable storage - data is never lost or corrupted
Stable storage is an “ideal” to strive for

e Requires very careful engineering to achieve
(e.g. redundant storage devices, off-site backups, etc.)

e Most systems don't require that data is never lost; just
aim to ensure that data loss is extremely unlikely
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| Storage Characteristics (3)

Transacted operations are usually performed in
volatile memory

e Supports fast random access, use in computations
To make a transaction durable:

e Must ensure that all effects are properly recorded in
nonvolatile storage (or stable storage, ideally)

To make a transaction atomic:

e Must record transaction’s effects to nonvolatile storage
in such a way that all effects become “committed” at
once
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Platform Requirements

To make a transaction durable:

e Must ensure that all effects are properly recorded in
nonvolatile storage (or stable storage, ideally)

Most platforms provide caching between memory and disk

e Dramatically improves performance by avoiding [/0
operations that can be completed using data in memory

Platform/OS must provide a way to force all cached writes
to nonvolatile storage

e When operation completes, platform guarantees that all
modified data has been written to nonvolatile storage

e e.g. UNIX has fsync() operation - synchronizes a file to disk

e [f system crashes after fsync() completes, data is still there
(barring filesystem corruption, of course)
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Platform Requirements (2)

To make a transaction atomic:

e Must record transaction’s effects to nonvolatile storage
in such a way that all effects become “committed” at
once

Platform/OS must ensure that certain operations
against nonvolatile storage are also atomic

e The operation either completes successfully, or it doesn’t
complete at all (no partial failures!)

e e.g. most UNIX file-I0 operations are atomic, such as
write() (for certain data sizes), rename(), unlink(), ...

e Also atomic in the context of concurrent usage
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Platform Requirements (3)

Platform/OS can’t always guarantee that operations
against nonvolatile storage will be atomic in context of
operating system or hardware failures

e e.g. during a fsync() or write() operation, power fails

e File being written may sustain a limited amount of
data-loss or corruption

Can employ some strategies to mitigate this issue...
e (Aim to provide as much durability as possible)

Database server is really only as good as the operating
system and hardware that it's running on

e e.g. want journaling filesystem, RAID, reliable power; etc.
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Atomic, Durable Transactions

Tables usually live in different files...

e Multiple files may be written by a given transaction

e A transaction may write to multiple parts of a given file
Really isn’t a way to update or modify multiple files in a
single atomic operation
Example commit operation:

e Database writes each dirty page to disk, then calls fsync() on
each modified table file in order...

e ...butif the database or operating system crashes during this
process, the transaction will not be durable or atomic! ®

Instead, we must find a way to turn our “commit” operation
into a single atomic update against a single file



‘ Another Strategy

* For this strategy, require only one transaction at a time

* When a transaction modifies the database, the DB
server creates a complete copy of the database

o All table files, all indexes, etc.

* The DB server keeps track of the “current” database
with a single pointer to which copy is current

e [nitially points to the original set of files
e s g
‘ db-pointer o |




‘ Another Strategy (2)

* All reads and writes are performed against copy of DB
* At commit time, DB server performs this sequence:

e Write all dirty pages to disk, and fsync() each data file

e db-pointer is updated to point to new copy

« db-pointer is updated on disk, and then fsync()ed as well
« At this point, the transaction is considered “committed”

e Finally, old copy of DB is deleted

Commit! '

e s g
‘ db-pointer el ||
Copy of DB

NN




Another Strategy (3)

¢ If a transaction must be aborted, DB server simply
deletes the new copy of the database

e All changes were made against the copy
e Original version is still completely unchanged

* Satisfies our requirements for transaction atomicity

Abort! -

e T g

‘ db-pointer N | NS |

Original DB :ﬁﬁ of,Bi‘ﬁ
\———-—/

\_—-—/



Shadow Copies

* This approach is called shadow-copy
® Obviously very slow...

e Can be greatly improved by dividing data into pages, and
then employing a copy-on-write strategy with pages

e Called shadow-paging
® Main issue is it only allows one transaction at a time
e This strategy is rarely employed due to this limitation

e -

g
‘ db-pointer s ||
Copy of DB

\-__-/
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| Shadow Copies (2)

Too limited for general use, but still captures the
essential requirement:

e Committing a transaction must involve a single atomic
operation against non-volatile storage

e Made all changes into a copy of the database

e Final commit operation simply required updating the db-
pointer value, then syncing it to disk

If system crashes before db-pointer is sync'd to disk:

e Atrecovery, DB considers the transaction to be aborted

e (It has to, because there is no other record that the
transaction completed successfully.)




