B

Relational Database

S m Impleme ion

Database Limitations

Can create a pretty sophisticated database by now

e Can parse, plan, and execute SQL queries

e Provide faster access-paths to records using indexes

e Perform query-plan optimization
Our database still lacks an essential set of capabilities:
The database isn’'t reliable when failures occur!

e Logical failures — an operation against the database
violates some constraint and cannot be completed

e System failures - the hardware or OS suffers a failure
The database also cannot handle concurrent access

Transaction Processing

Databases provide transactions to properly handle
these situations

A transaction is a collection of one or more operations
that form a single logical unit of work

Clients must tell DB when a transaction begins or ends

e Start a transaction:

o Standard: START TRANSACTION
o Also: BEGIN [TRANSACTION | WORK |

e Complete a transaction:

« Standard: COMMIT [WORK |
o Also: COMMIT TRANSACTION, END [TRANSACTION | WORK]

Transaction Processing (2)

A transaction is a single logical unit of work

e Should be indivisible: either all operations affect the
database, or none of them do

Clients can abort an in-progress transaction:
e Client tells DB to undo all changes made by transaction
e Also called rolling back a transaction

e Commands:
« Standard: ROLLBACK [WORK]

. Also: ROLLBACK TRANSACTION,
ABORT [TRANSACTION | WORK]

The DB itself can also abort transactions, in some cases
e e.g.if a constraint is violated during a transaction

ACID Properties

Transaction processing systems should satisfy specific
properties, called the ACID properties
ACID properties were originally devised by Jim Gray

e A critical contribution to databases and transaction
processing systems

e Gray won a Turing award in 1998 for this work
e “ACID” acronym was later coined by other researchers

ACID Properties (2)

Atomicity

e Either all operations in the transaction are reflected in
the database, or none of them are

Consistency

e Execution of the transaction (in isolation from any other
transactions) preserves all database constraints

e Given: the database starts in a consistent state

e The completed transaction should also leave the
database in a consistent state

| ACID Properties (3)

[solation

e When multiple transactions are executed concurrently,
they must appear to execute in isolation of each other

e For every pair of transactions T; and T}, it appears that
either T; completes before T; starts, or that T; completes
before T; starts

Durability

e After a transaction completes successfully (i.e. after it is
reported as committed), all changes it made are
persistent, even if there are system failures

Example: Account Transfer

Classic transaction-processing example: transfer
money from one bank account to another account

Database transactions involve complex SQL statements
Model them as a sequence of read and write operations

Example: transfer $50 from account 4 to account B

T;: read(A);
A:=A-50;
write(4);
read(B);
B:=B+50;
write(B);

Example: Account Transfer (2)

Consistency: T readid)
e [f database was in a consistent state before the A:=A-50:

transaction, it will still be consistent afterward write(4);

Often involves constraints that aren’t read(B);
specifically modeled in the database B:= B+ 50;

Example: sum of account balances A + B write(B);

should be unchanged by this transaction

May have other constraints as well, such as:
e All accounts must have a non-NULL balance
e Account balance is not allowed to be negative

DB may be able to enforce some of these constraints, but
the application is also responsible for ensuring consistency!

10

Example: Account Transfer (3)
Scenario 1: In the process of this T: read(4);
transaction, a failure occurs after A:=A-50;
write(4), but before write(B) write(A);

e e.g. perhaps account B doesn't exist, ;eidlgBj ;50;
or the system crashes, etc. write(B);
Atomicity:

e Either all of the transaction’s operations complete, or
none of them do

In this case, if atomicity is violated:
e The database loses $50! Consistency is also violated.

The database enters into an inconsistent state

11

/—\

Example: Account Transfer (4)

Scenario 2: This time the transaction T: read(A);

completes, but then the system crashes A:=A-50;
e e.g. power failure, disk crash, r:;(tle(g?;
BSOD /kernel-panic, or database B.=B+E0
ftware crashes (least likely! ©) - :
20 X write(B);

Durability:
e [f the transaction is durable then the database will still
reflect the changes after recovery has been completed
e The client doesn’t need to repeat the transaction again

When DB responds that the transaction is committed,
this is a guarantee that the changes will persist

12

Example: Account Transfer (5)

Most DBs allow concurrent access by multiple clients
e Multiple transactions can occur at the same time

Two account transfers occurring at the same time:

T: read(4); T: read(4);
A:=A-50; A:=A-30;
write(4); write(4);
read(B); read(C);
B:=B + 50; C:=C+30;
write(B); write(C);

Isolation:

e Txns must appear to execute in isolation of each other
e Either T; executes and then T; executes, or vice versa

13

/—\

Example: Account Transfer (6)

Database could literally follow this rule:
e Either T; executes and then T; executes, or vice versa

e Execute only one transaction at a time
Called a serial execution schedule T: read(4); T; read(4);

o A:=A-50; A:=A-30;
Problem: this is really slow write(A); write(A);
: S S . read(B); read(C);
e Doesn’t maximize utilization BBaico C:=C + 30;
of database server resources write(B); write(C);

e Transaction throughput will be really low

Most of the time, transactions work with completely
different records. Why slow things down?!

14

Example: Account Transfer (7)

Most databases interleave transaction operations

e Simply must ensure that the transactions appear to
execute in isolation of each other

Example: whatif T; and T; rreadfd:
are executed like this? A:=A-50;
: : . : write(4);
This will properly maintain T: read(A)
transaction isolation A:=A-30;
: : _ write(4);
e Itis equivalent to a serial read(B);
execution schedule B:=B + 50;
write(B);
e Itis aserializable schedule (5) read(C);
C:=C+ 30;

write(C);

&

Example: Account Transfer (8)

What if T; and T; were are executed like this instead?

This execution schedule will 7: read(4);
A:=A-50;

produce an inconsistent state! T: read(A)
e T, clobbers T}'s update of A ‘jv :;t‘:(;l)?’;o;
e [n this case, our database write(A);
creates $30 out of thin air... oy =
Transaction isolation is very gv::itg(z;o‘

important when a database B:= B+ 50:
supports concurrent access write(B);

16

/—\

Implementing ACID Properties

Atomicity, Consistency and Durability are important
whether the database is single-user or multi-user

e Still need these transaction properties even when
database is only used by one client at a time!

[solation is only important when a database can be
used by multiple clients at the same time

e (And it's much more complicated...)

Will discuss Atomicity, Consistency and Durability first
Talk about Isolation afterward

e e B B R e B B e R B e B M B B e B A B e e B e B e A B e e e e e e e e e e e P

Transaction States

* Each transaction goes through a series of states

o Initially, transactions are in the Active state

e More operations can be performed in the context of this
transaction

* When last operation has been performed, transaction
enters the Partially Committed state

e e.g. client issues COMMIT .
@

 No more operations can be
performed in the transaction

e Database still has work to do!

Transaction States (2)

¢ Partially Committed state:

e (Client can’t do anything else, but database must now commit
the transaction

* Transaction’s state-changes may still reside in memory
e Database may still need to write data to disk

e DB may need to verify constraints that have been deferred to
the end of the transaction

* If these operations succeed, transaction
enters the Committed state —
e DB has recorded that the -~

transaction is committed
e Txn will be durable and atomic

Transaction States (3)

¢ If database cannot complete commit-operations, the
transaction enters the Failed state

* Transaction can also enter the Failed state while Active
e Will occur if an operation violates a database constraint
e Or, client may issue a ROLLBACK command

* At this point, the DB must ensure

that all state-changes have been . M .
rolled back to previous state ./'
v
9@
—

e Once this is done, the txn
enters the Aborted state

20

Storage Characteristics

Ability to implement durable and atomic transactions
depends on characteristics of storage media

Previously discussed storage hierarchy
Primary storage - main memory, caches
e This storage is volatile: data won't survive a power loss
e Also usually doesn’t survive through a system crash
Secondary/tertiary storage - disks, SSD, tapes, optical

e This storage is nonvolatile: data survives loss of power

e Can still suffer data corruption or data loss, e.g. if a hard
disk crashes, or if the system crashes during a write

21

Storage Characteristics (2)

Storage characteristics broken down by reliability:
e Volatile storage — doesn’t survive system failure

e Nonvolatile storage - survives a system failure, but still
susceptible to data loss

A third category of storage reliability:
e Stable storage - data is never lost or corrupted
Stable storage is an “ideal” to strive for

e Requires very careful engineering to achieve
(e.g. redundant storage devices, off-site backups, etc.)

e Most systems don't require that data is never lost; just
aim to ensure that data loss is extremely unlikely

22

| Storage Characteristics (3)

Transacted operations are usually performed in
volatile memory

e Supports fast random access, use in computations
To make a transaction durable:

e Must ensure that all effects are properly recorded in
nonvolatile storage (or stable storage, ideally)

To make a transaction atomic:

e Must record transaction’s effects to nonvolatile storage
in such a way that all effects become “committed” at
once

23

Platform Requirements

To make a transaction durable:

e Must ensure that all effects are properly recorded in
nonvolatile storage (or stable storage, ideally)

Most platforms provide caching between memory and disk

e Dramatically improves performance by avoiding [/0
operations that can be completed using data in memory

Platform/OS must provide a way to force all cached writes
to nonvolatile storage

e When operation completes, platform guarantees that all
modified data has been written to nonvolatile storage

e e.g. UNIX has fsync() operation - synchronizes a file to disk

e [f system crashes after fsync() completes, data is still there
(barring filesystem corruption, of course)

24

/—\

Platform Requirements (2)

To make a transaction atomic:

e Must record transaction’s effects to nonvolatile storage
in such a way that all effects become “committed” at
once

Platform/OS must ensure that certain operations
against nonvolatile storage are also atomic

e The operation either completes successfully, or it doesn’t
complete at all (no partial failures!)

e e.g. most UNIX file-I0 operations are atomic, such as
write() (for certain data sizes), rename(), unlink(), ...

e Also atomic in the context of concurrent usage

=5

Platform Requirements (3)

Platform/OS can’t always guarantee that operations
against nonvolatile storage will be atomic in context of
operating system or hardware failures

e e.g. during a fsync() or write() operation, power fails

e File being written may sustain a limited amount of
data-loss or corruption

Can employ some strategies to mitigate this issue...
e (Aim to provide as much durability as possible)

Database server is really only as good as the operating
system and hardware that it's running on

e e.g. want journaling filesystem, RAID, reliable power; etc.

26

Atomic, Durable Transactions

Tables usually live in different files...

e Multiple files may be written by a given transaction

e A transaction may write to multiple parts of a given file
Really isn’t a way to update or modify multiple files in a
single atomic operation
Example commit operation:

e Database writes each dirty page to disk, then calls fsync() on
each modified table file in order...

e ...butif the database or operating system crashes during this
process, the transaction will not be durable or atomic! ®

Instead, we must find a way to turn our “commit” operation
into a single atomic update against a single file

‘ Another Strategy

* For this strategy, require only one transaction at a time

* When a transaction modifies the database, the DB
server creates a complete copy of the database

o All table files, all indexes, etc.

* The DB server keeps track of the “current” database
with a single pointer to which copy is current

e [nitially points to the original set of files
e s g
‘ db-pointer o |

‘ Another Strategy (2)

* All reads and writes are performed against copy of DB
* At commit time, DB server performs this sequence:

e Write all dirty pages to disk, and fsync() each data file

e db-pointer is updated to point to new copy

« db-pointer is updated on disk, and then fsync()ed as well
« At this point, the transaction is considered “committed”

e Finally, old copy of DB is deleted

Commit! '

e s g
‘ db-pointer el ||
Copy of DB

NN

Another Strategy (3)

¢ If a transaction must be aborted, DB server simply
deletes the new copy of the database

e All changes were made against the copy
e Original version is still completely unchanged

* Satisfies our requirements for transaction atomicity

Abort! -

e T g

‘ db-pointer N | NS |

Original DB :ﬁﬁ of,Bi‘ﬁ
\———-—/

_—-—/

Shadow Copies

* This approach is called shadow-copy
® Obviously very slow...

e Can be greatly improved by dividing data into pages, and
then employing a copy-on-write strategy with pages

e Called shadow-paging
® Main issue is it only allows one transaction at a time
e This strategy is rarely employed due to this limitation

e -

g
‘ db-pointer s ||
Copy of DB

\-__-/

31

| Shadow Copies (2)

Too limited for general use, but still captures the
essential requirement:

e Committing a transaction must involve a single atomic
operation against non-volatile storage

e Made all changes into a copy of the database

e Final commit operation simply required updating the db-
pointer value, then syncing it to disk

If system crashes before db-pointer is sync'd to disk:

e Atrecovery, DB considers the transaction to be aborted

e (It has to, because there is no other record that the
transaction completed successfully.)

