Relational Database System Implementation CS122 - Lecture 11 Winter Term, 2018-2019

Indexes

- Many queries only need a small number of records
 - Records with a specific value
 - Records with a specific range of values
- Most queries involve join operations
 - Correlate values of a column across two or more tables
- So far we have used simple file scans
 - Prohibitively slow for large data sets
- Better databases use *indexes* to speed access to records with specific values

Indexes (2)

- An index is a separate access structure associated with a particular table
 - e.g. tables and their indexes are usually stored in separate files
 - Much smaller, and structured for faster lookups
- Each index has an associated search key
 - Attribute (or set of attributes) used to look up records
 - This kind of "key" is completely separate from primary keys, candidate keys, etc.
- A table can have multiple indexes
 - Each index will have its own search key

Indexes (3)

- Several kinds of indexes with different capabilities:
- Access patterns and access time
 - Types of access that are supported efficiently
 - Time it takes to access a particular item or set of items
- Indexes must be kept in sync with their table
 - Time it takes to insert a new data item
 - Time it takes to delete a data item
- Indexes also consume extra space!
 - Additional space overhead taken by the index
 - Usually, extra space taken by index is far outweighed by the performance improvement

Index Types

- Two main categories of indexes
- Ordered indexes maintain a sorted ordering based on search key values
 - Logarithmic time for finding a specific record, or a boundary of a range
 - Can retrieve values in search key order
- Hash indexes use a hash function to distribute search key values across buckets
 - Constant time for finding a specific record, or a group of records with same value
 - Very inefficient for retrieving a range of values

Sequential Files and Indexes

- Sequential files are also stored in search key order
- An index on the search key can still be useful!
 - An index lookup can be much faster than doing a binary search on the table itself
 - Index entries are much smaller than tuples
 - e.g. 2-3 block reads, vs. 10+ block reads
- Primary indexes:
 - Ordered indexes that are in the same search-key order as their associated tables
 - Also called *clustering indexes*
 - (Has nothing to do with primary keys!!!)
- Sequential file + primary index = index-sequential file

Dense and Sparse Indexes

7

- For a sequential file with a primary index, the index can be either dense or sparse
- Dense indexes store an entry for every distinct value in the search key
 - Easy to find any particular value; all are represented in index
 - Index can easily become very large, for large tables
- Sparse indexes only store entries for a subset of the values in the search key
 - To find a specific record, find index entry with largest value less than desired value
 - Then, scan through sequential file from that location, until the record is found

Secondary Indexes

- Secondary indexes don't share the same search key as their associated table
 - Table may have a different search key order
 - Table may be a heap file with no specific order!
- Secondary indexes *must* be dense
 - Must include an entry for every value of search key
 - Must include a pointer to every record in the table
 - Since table is in a different order from the index, the index won't be generally useful if it isn't dense

B-Tree Indexes

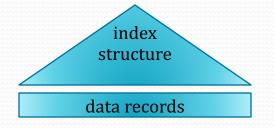
- Most widely used index structure is the *B-tree* family of index structures
 - A *multilevel* indexing structure built as a balanced tree
 - Supports <u>both</u> sequential access and direct access!
- Depth of tree grows automatically as required by the table being indexed
- Space within disk blocks is managed automatically; all blocks at least 50% full, no overflow needed (usually)
- Branching factor is *very* large (normally hundreds), producing an extremely broad, flat tree
 - Disk accesses required is proportional to *depth* of tree

B-Tree Indexes (2)

- Not clear what the "B" stands for in B-trees...
 - Definitely <u>not</u> "binary" these are multiway trees
 - "Balanced," "broad," "bushy" have all been suggested
 - Developed by "Bayer" (and McCreight) while at "Boeing"
 - Who knows... (Who cares?)
- Different versions vary in rather important ways:
 - How full are tree-nodes allowed to get before splitting?
 - Is indexing and storage kept together or separate?
- Of all B-tree variants, most widely used is B⁺-tree
 - When people say "B-tree", they usually mean B⁺-tree

B⁺-Tree Indexes

- B⁺-trees separate indexing structure and data records
 - Original B-tree structure mixes these!
- Main implication:



- Internal nodes have different structure than leaf nodes
- Internal nodes only store keys (plus structural data)
- Leaf nodes store keys and data records as well
- B⁺-trees (and other variants) can be used for storing sequential files as well as for indexes
 - In indexes, "records" are simply file-pointers into table

B⁺-Tree Indexes (2)

- Other relevant details:
 - All tree-nodes must be at least 50% full (except for root)
 - Every path from root to leaf is the same length
 - Key-values may be repeated in different tree-nodes (original B-tree eliminates this redundancy, but mixes the indexing and data records)
- B⁺-trees are often used for filesystems
 - Index built on top of sequential file laid out on disk
 - Allows rapid mapping of logical file-location to physical cylinder/sector on disk
 - Also facilitates sequential access of file contents

B⁺-Tree Nodes

Tree nodes have up to n children

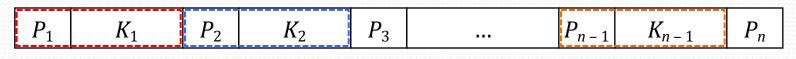
- A simplification, for now: *n* is fixed for an entire tree
 - Value of *n* depends on block size, key size, and pointer size
 - Can often be large, e.g. a few hundred!
- A node stores n pointers and n 1 values

P_1	<i>K</i> ₁	<i>P</i> ₂	<i>K</i> ₂	<i>P</i> ₃		<i>P</i> _{<i>n</i>-1}	<i>K</i> _{<i>n</i>-1}	P_n	222222222
-------	-----------------------	-----------------------	-----------------------	-----------------------	--	--------------------------------	--------------------------------	-------	-----------

- *K_i* are search-key values
- *P_i* are pointers that specify the tree's structure
- Key values are kept in sorted order: if i < j then $K_i \le K_j$
 - (In case of duplicate key values, may have neighboring $K_i = K_j$)

B⁺-Tree Leaf Nodes

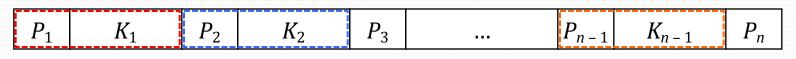
• For leaf nodes:



- Pointer *P_i* refers to a record with search-key value *K_i*
- If search key is a candidate key, only one record in the table will have the key-value K_i
 - A common case indexes built on primary keys for enforcing key and referential integrity constraints
 - *P_i* points to the record with key value *K_i*

B⁺-Tree Leaf Nodes (2)

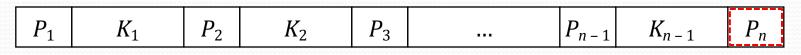
• For leaf nodes:



- Pointer *P_i* refers to a record with search-key value *K_i*
- If search key is <u>not</u> a candidate key, multiple records in the table will have the same key-value K_i
 - Unfortunately, also a common case...
- Two options:
 - Can simply repeat search-key value multiple times
 - Or, have P_i point to a bucket containing pointers for all records with key-value K_i (complicated; adds I/O costs)

B⁺-Tree Leaf Nodes (3)

• For leaf nodes:



- Pointer P_n points to the next leaf-node in the sequence
- Within a node, key values are kept in sorted order
 - (if i < j then $K_i \le K_j$)
- Leaves contain non-overlapping ranges of key/record associations
- B⁺-tree orders leaves in increasing sequential order
 - Allows *very* easy traversal of dataset in search-key order

B⁺-Tree Non-Leaf Nodes

• For non-leaf nodes:

<i>P</i> ₁	<i>K</i> ₁	<i>P</i> ₂	<i>K</i> ₂	<i>P</i> ₃		P_{n-1}	<i>K</i> _{<i>n</i>-1}	P_n	
-----------------------	-----------------------	-----------------------	-----------------------	-----------------------	--	-----------	--------------------------------	-------	--

• All pointers *P_i* refer to other B⁺-tree nodes

• For 1 < *i* < *n*:

- Pointer P_i points to subtree containing search-key values of at least K_{i-1} , but less than K_i
- For *i* = 1 or *i* = *n*:
 - Pointer P_1 points to subtree with search-key values less than K_1
 - Pointer P_n points to subtree containing search-key values of at least K_{n-1}

B⁺-Tree Non-Leaf Nodes (2)

• For non-leaf nodes:

P_1	<i>K</i> ₁	<i>P</i> ₂	<i>K</i> ₂	<i>P</i> ₃		P_{n-1}	<i>K</i> _{<i>n</i>-1}	P_n	
-------	-----------------------	-----------------------	-----------------------	-----------------------	--	-----------	--------------------------------	-------	--

• All pointers *P_i* refer to other B⁺-tree nodes

In other words:

- P_1 points to subtree with search-keys in range [- ∞ , K_1]
- P_2 points to subtree with search-keys in range $[K_1, K_2]$
- P_3 points to subtree with search-keys in range $[K_2, K_3]$
- ...
- P_{n-1} points to subtree with search-keys in range $[K_{n-2}, K_{n-1}]$
- P_n points to subtree with search-keys in range $[K_{n-1}, +\infty)$

Non-Full B⁺-Tree Nodes

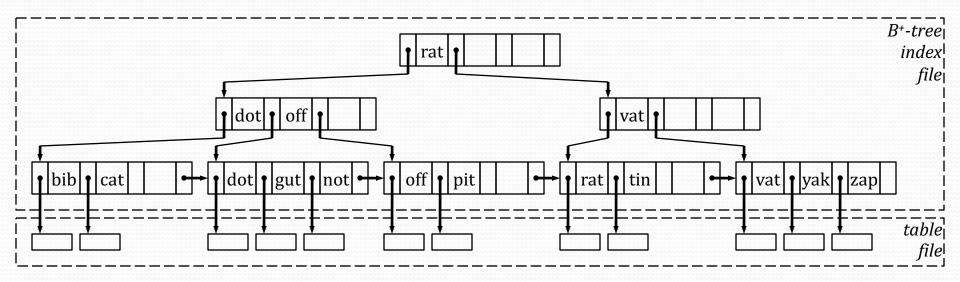
- B⁺-tree nodes must be at least 50% full
 - Specified in terms of *n*, number of pointers in each node
 - (Can also state this constraint as number of bytes used)
- The root node is not required to be at least 50% full
 - (Often simply don't have enough data to enforce this.)
- Non-leaf nodes must have at least $\lceil n/2 \rceil$ pointers
 - Must contain at least $\lceil n/2 \rceil 1$ keys
 - e.g. for tree with *n* = 5:
 - $\lceil n/2 \rceil$ = 3 ptrs and 2 keys, minimum

Non-Full B⁺-Tree Nodes (2)

- Leaf nodes always use P_n to point to next leaf-node...
- Don't count this "next leaf-node" pointer in the measure of whether a leaf is half-full
 - Each *P_i* points to a row with value *K_i*
 - Must have at least $\lceil (n-1)/2 \rceil$ pointers and keys
 - e.g. tree with *n* = 4:
 - $\lceil (n-1)/2 \rceil = 2$ ptrs and 2 keys, minimum

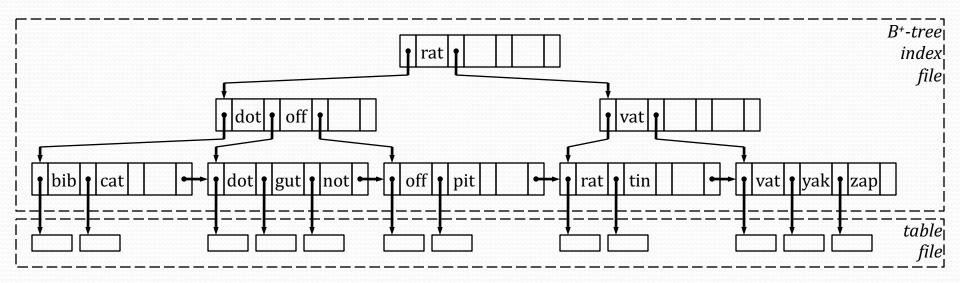
Example B⁺-Tree

- Will use a tree with low *n* for sake of simplicity
 - Easy to comprehend
 - Will provoke frequent need to split and join nodes
- A simple tree with *n* = 4:
 - Non-leaf nodes must have at least 2 pointers and 1 key
 - Leaf nodes must have at least 2 pointers and 2 keys



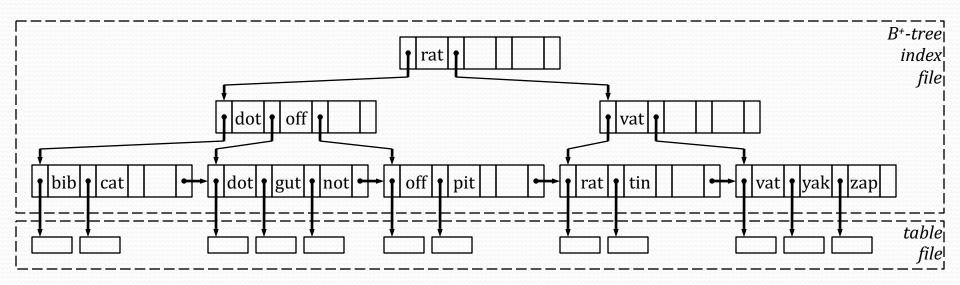
Example B⁺-Tree (2)

- Also specify that search-key values are unique
 - Don't need to worry about runs of entries with the same search-key value. (We'll handle this later.)
- Finally, specify that this is a dense index
 - Every single value in table also appears in the index
 - No additional search needed once we reach leaf record



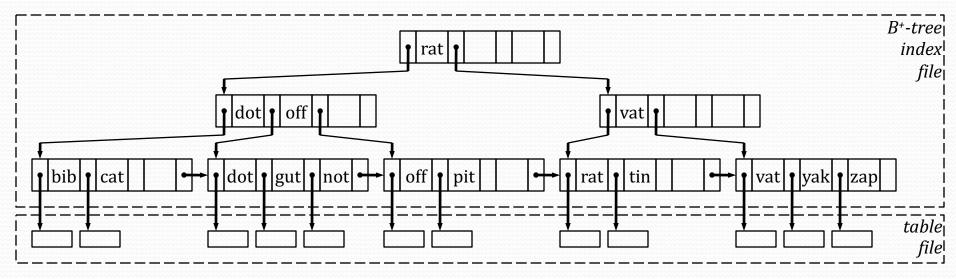
B⁺-Trees: Querying

- Look up the record with the search-key value V
- Given the value *V*, can follow tree structure to find the exact leaf-node where *V* should be stored
 - If *V* isn't in that leaf node, then *V* isn't in the index



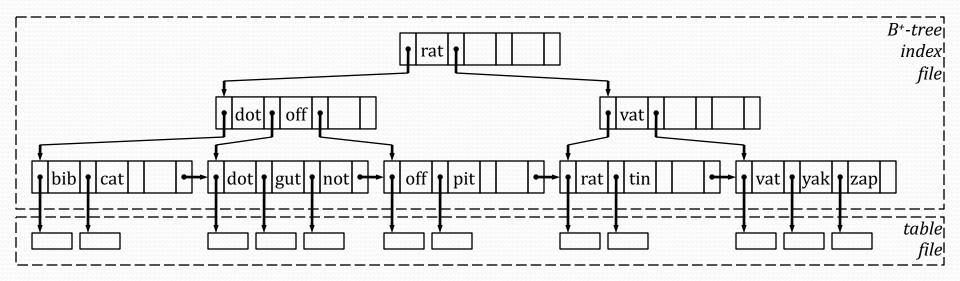
B⁺-Trees: Querying (2)

- Navigate non-leaf nodes separately from leaf-node
- Each non-leaf node has m pointers, $P_1 \dots P_m$ $(1 < m \le n)$
- For a given non-leaf node, start with *i* = 1:
 - If $V < K_i$, follow pointer P_i
 - If $V = K_i$, follow pointer P_{i+1}
 - If i + 1 < m, increment *i* and repeat; otherwise follow P_m



B⁺-Trees: Querying (3)

- Once we reach a leaf node, it's easy
- Find *K_i* that equals *V*; *P_i* points to record with value *V*
- If node doesn't contain any K_i that equals V, then the table simply doesn't contain a record with value V
 - Don't need to go to next leaf-node, or anything like that



B⁺-Trees: Querying (4)

```
Algorithm to find record with search-key value V:

C = root node

while C is a non-leaf node:

m = number of pointers in C; i = 1

SearchNode:

if V < K<sub>i</sub> then set C = C.P<sub>i</sub>

else if V = K<sub>i</sub> then set C = C.P<sub>i+1</sub>

else if i + 1 < m then i++; goto SearchNode

else set C = C.P<sub>m</sub>
```

/* Now, C is a leaf node */
Iterate over all K_i in leaf-node C:
 if V = K_i then return P_i
If no K_i found then return null

"Go Right On Equality!"

• For non-leaf nodes:

P_1	<i>K</i> ₁	<i>P</i> ₂	<i>K</i> ₂	<i>P</i> ₃		P_{n-1}	<i>K</i> _{<i>n</i>-1}	P_n	
-------	-----------------------	-----------------------	-----------------------	-----------------------	--	-----------	--------------------------------	-------	--

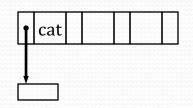
• All pointers P_i refer to other B⁺-tree nodes

Structural rules:

- P_1 points to subtree with search-keys in range $[-\infty, K_1]$
- P_2 points to subtree with search-keys in range $[K_1, K_2]$
- ...
- Specifically, if we are looking for search-key value *V*:
 - If $K_i = V$, follow pointer to the <u>right</u> of K_i
 - Some B⁺-tree impls. handle this case by going left
 - (Always pay attention to the implementation details...)

B⁺-Trees: Insertion

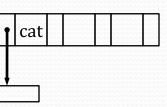
- Insertion is easy, except when a node overflows
 - Since *n* is generally large, overflows occur infrequently
- Simplest case: inserting into an empty B⁺-tree index
 - In this case, the root node will also be a leaf node
- Example: Insert "cat" into empty index



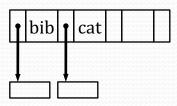
- Note that the leaf-node is < 50% full
 - Simply don't have enough data to satisfy requirement
 - Since it's also the root node, we don't mind

B⁺-Trees: Insertion (2)

- Similarly, inserting other records into a single-node B⁺-tree is easy, as long as there is room in the node
- Example: Insert "bib" into our index
 - B⁺-tree before insertion:

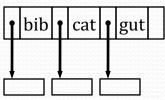


- Must keep K_i values in increasing order...
 - Slide "cat" over in the node, to make room for "bib"

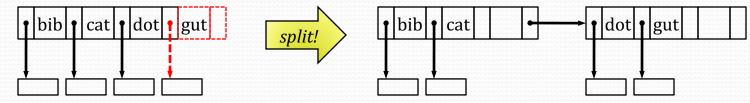


Splitting the Leaf-Node

- If a leaf node overflows, must split it into two nodes!
- Our index after also inserting a "gut" record:



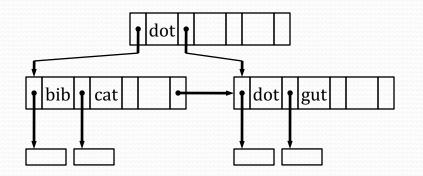
- Next we want to insert "dot", but there isn't room
 - Split the node into two nodes
 - Approx. half of the values remain in left node, and the rest are moved to the right node
 - The two leaf-nodes are chained together



Splitting the Leaf-Node (2)

We aren't done yet...

- We need a new parent node to reference the two leaves
- Will contain one key: "dot"
- General principle:

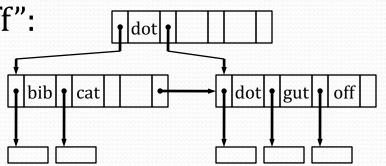


- When a node is split into two, need to promote the new node's first key-value up to the parent-node's table
- <u>Note</u>: New node is always to right of the node being split
- If there isn't a parent-node:
 - The root node is being split!
 - Create a new root node, and increase tree's depth by 1

Insertion Example, Cont.

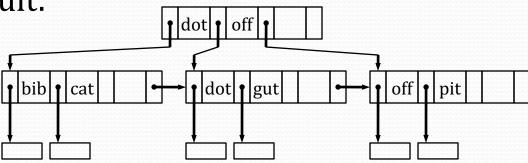
Our tree after also inserting "off":

Now, want to insert "pit"



- Again, split leaf node in two, and divide the leaf's values across the two nodes
- Promote new node's first key-value to the parent

• Result:



B⁺-Tree Insertion Algorithm

- Algorithm is generally straightforward to implement
- When splitting a leaf node, simplify process by using a temp memory area *T* that can hold overflowed node's contents
- Example: *L* is a full leaf-node
 - Want to add key *K* and associated record-pointer *P* to node *L*

• Implementation:

- Copy contents of *L* into temporary memory block *T*
- Insert new pair *K*, *P* into *T* (*it can hold the extra record*)
- Create new empty leaf-node L'
- Set $L'.P_n = L.P_n$, and set $L.P_n = L'$ (chain leaves together)
- Clear *L*, and copy P_1 , K_1 thru $P_{\lceil n/2 \rceil}$, $K_{\lceil n/2 \rceil}$ from *T* into *L*
- Copy $P_{\lceil n/2 \rceil+1}$, $K_{\lceil n/2 \rceil+1}$ thru P_n , K_n from T into L'

B⁺-Tree Insertion Algorithm

insert(value K, pointer P):
 if tree is empty:

L = new empty leaf node else:

L = find leaf where K should go, using earlier search algorithm if L has less than n - 1 keys: insert_in_leaf(L, K, P) else:

split node L into L, L' using mechanism on prev. slide K' = smallest key in L' insert_in_parent(L, K', L')

insert_in_leaf(node L, value K, pointer P):
 if K < L.K₁:

insert *P*, *K* into *L* before *L*.*P*₁ else:

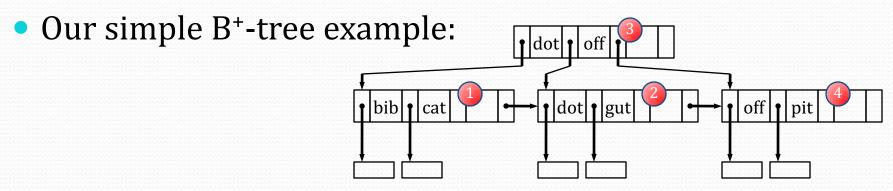
find largest *K_i* in *L* less than *K* insert *P*, *K* into *L* after *L*.*K_i*

insert_in_parent(node *N*, value *K'*, node *N'*): if *N* is root of tree: R = new empty non-leaf node set *R* contents to (*N*, *K*', *N*') make *R* the new root else: P = parent(N)if *P* has less than *n* pointers: insert (K', N') into P, just after N else: copy *P* to temporary block *T* insert (K', N') into T, just after N create new node P'; clear P copy P_1 , K_1 thru $P_{\lceil n/2 \rceil}$, $K_{\lceil n/2 \rceil}$ from T into P copy $P_{\lceil n/2 \rceil}$, $K_{\lceil n/2 \rceil}$ thru P_n , K_n from T into P' $K'' = P'.K_1$ insert_in_parent(P, K", P')

B⁺-Tree Implementation Details

- Several additional details need to be maintained
 - e.g. type of node stored in each page (leaf/non-leaf/empty)
- Additionally, need to keep track of which node is B⁺-tree's root node
 - As with table files, can store such details in page 0, and start the actual index pages with page 1
- Seems appealing to store additional structural details in B⁺-tree nodes
 - The node's parent, siblings, etc.
 - Unfortunately, dramatically increases number of nodes that must be modified when manipulating the tree
 - Added complexity of using this simple structure is less costly than the additional IOs that would be required (!!!)

Implementation Details (2)



- Index file is still a linear sequence of pages
 - Pages in data file are in order of addition to the B⁺-tree...
 - Over time, physical page order in data file will deviate widely from logical page order specified by the index
 - (particularly the sequential traversal part)
 - Periodically need to reorganize index pages to minimize number of disk seeks incurred by access/traversal