
CS122	– Lecture	9
Winter	Term,	2018-2019

2

Last Time: Plan Costing
� Introduced	the	notion	of	plan	costing
� Goal:		Faster	plans	end	up	with	lower	cost	than	slower	ones
� Need	to	collect	statistics	on	tables	in	order	to	make	cost	
estimates

� A	basic,	minimal	set	of	statistics:
� nr – the	number	of	tuples	in	table	r
� br – the	number	of	blocks	containing	tuples	in	r
� lr – the	average	size	of	a	tuple	in	r,	in	bytes
� V(A,	r)	– number	of	distinct	values	of	A in	table	r
� min(A,	r)	– minimum	value	of	A in	table	r
� max(A,	r)	– maximum	value	of	A in	table	r

3

Select Costs
� σθ(r)
� Estimate	number	of	rows	produced	nσ =	nr × P(θ)

� P(θ)	is	the	selectivity of	the	predicate
� i.e.	the	likelihood	that	a	tuple	will	satisfy	the	predicate

� Simply	need	to	estimate	the	selectivity	of	the	predicate,	
then	we	can	estimate	the	number	of	rows	produced

� For	now,	assume	that	r is	a	heap	file
� Select	operation	will	[almost]	always	read	all	blocks	in	r
� (Other	file	organizations	and	indexes	change	this…)

4

Selectivity of Simple Predicates
� σA≤v(r)

� Without	a	histogram,	use	minimum/maximum	values	for	
A to	estimate	selectivity

� If	v <	min(A,	r):
� P(A≤v)	=	0

� If	v >	max(A,	r):
� P(A≤v)	=	1

� If	min(A,	r)	≤	v ≤	max(A,	r):
� P(A≤v)	=	(v – min(A,	r))	/	(max(A,	r)	– min(A,	r))

� σA≥v(r)	is	similar

5

Selectivity of Simple Predicates (2)
� σA=v(r)

� Assume	uniform	distribution	of	different	values	of	A
� Estimate	P(A=v)	to	be	1	/	V(A,	r)
� Estimate	nσ =	nr /	V(A,	r)

� What	if	A is	a	primary	key	for	r ?
� In	that	case,	V(A,	r)	will	be	nr
� P(A=v)	will	be	1	/	nr,	and	nσ will	be	1

6

Selectivity of Simple Predicates (3)
� σA=v(r)

� If	A is	a	primary	key	for	r,	can	also	improve	file-scan	
performance:
� Each	value	of	A can	only	appear	once…
� Stop	scanning	rwhen	we	find	the	specified	row
� Average-case	block-reads	=	br /	2;	worst-case	=	br

7

Selectivity of Simple Predicates (4)
� For	inverse	of	these	predicates:		σA>v(r),	σA≠v(r)

� Simply	compute	selectivity	as	1	– P(A≤v)	or	1	– P(A=v)
� Boolean	negation	can	be	handled	in	similar	way:

� σ¬θ(r)
� Simple:		P(¬θ)	=	1	– P(θ)

8

Complex Selects
� If	a	predicate	includes	multiple	conditions,	estimate	
selectivities	of	the	components,	then	combine

� Conjunctive	selections:		σθ1	∧	θ2	∧	…(r)
� Assumption:		conditions	are	independent	of	each	other
� P(θ1	∧	θ2	∧	…)	=	P(θ1)	× P(θ2)	× P(…)

� Disjunctive	selections:		σθ1	∨	θ2	∨	…(r)
� Again,	compute	selectivities	of	components
� P(θ1	∨	θ2	∨	…)	=	probability	that	a	tuple	satisfies	at	least	
one	condition	=	1	– probability	it	satisfies	none of	them

� P(θ1	∨	θ2	∨	…)	=	1	– (1	– P(θ1))	× (1	– P(θ2))	× …

9

Estimating Selectivity
� One	major	assumption	here:

� Conditions	involve	simple	comparisons	between	an	attribute	
and	a	constant

� Frequently	not	true!
� SELECT	*	FROM	employees	WHERE	salary	*	1.05	>	100000;
� DELETE	FROM	employees
WHERE	compute_popularity(emp_id)	<	20;

� In	simpler	cases,	can	analyze	expression	to	make	estimate
� For	more	difficult	situations,	use	default	selectivities,	e.g.

� 1/2	when	it’s	expected	to	be	“common”	for	tuples	to	satisfy	
the	condition

� 1/3	or	1/4	when	it’s	expected	to	be	“uncommon”	or	“rare”

10

Selection Against Subplans
� Previous	examples	were	all	against	a	relation	r

� We	had	statistics	for	r!
� Plans	often	contain	selections	against	subplans
� Need	to	estimate	the	statistics	of	a	plan-node’s	result	
as	well,	if	higher-level	cost	estimates	will	be	useful

� Most	difficult	are	V(A,	r),	min(A,	r),	and	max(A,	r)
� If	selection	involves	an	equality:		σA=v(r)

� V(A,	σA=v)	=	1
� min(A,	σA=v)	=	max(A,	σA=v)	=	v

11

Selection Against Subplans (2)
� If	selection	involves	a	comparison:		σA≤v(r)

� Assume	min(A,	r)	≤	v ≤	max(A,	r)
� min(A,	σA≤v)	=	min(A,	r)
� max(A,	σA≤v)	=	v
� Estimate	V(A,	σA≤v)
=	V(A,	r)	× (v – min(A,	r))	/	(max(A,	r)	– min(A,	r))
=	V(A,	r)	× P(A≤v)

� In	general,	if	θ is	A op v:
� op is	some	inequality	comparison:		<	>	≤	≥	≠
� Estimate	V(A,	σθ)	=	V(A,	r)	× P(θ)

12

Selection Against Subplans (3)
� If	predicate	θ forces	A to	take	on	a	set	of	values:

� SELECT	*	FROM	schedule	WHERE	hour	=	3	OR	hour	=	4;
� SELECT	*	FROM	shapes
WHERE	color	IN	('red',	'orange',	'yellow');

� V(A,	σθ)	=	number	of	values	in	the	predicate
� Can	compute	min(A,	σθ),	max(A,	σθ)	from	these	as	well

� If	none	of	these	situations	occur:
� Assume	V(A,	σθ),	min(A,	σθ),	max(A,	σθ)	are	independent	
of	selection	criteria!

� Set	V(A,	σθ)	to	min(V(A,	r),	nσ)
� #	of	distinct	values	for	A is	capped	by	#	of	rows	produced	by	σ

13

Join Costs
� Several	important	costs	to	estimate	for	joins

� Number	of	rows	produced	by	the	join	operation
� Number	of	disk	IOs	performed	by	the	join	operation

� Second	value	is	harder	to	estimate,	primarily	due	to	the	
buffer	manager,	but	still	critical	to	estimate

� Example:		nested	loop	join	(no	optimizations)
� Worst	case	(unlikely):		br +	nr × bs block	reads
� Best	case	(inner	table	fits	in	memory):		br +	bs reads

� Disk	IO	estimate	is	very	approximate,	and	depends	on	
the	specific	join	implementation	being	used

14

Join Costs (2)
� For	now,	focus	on	the	number	of	rows	produced
� Cartesian	product:		r × s

� Every	row	in	table	r is	joined	to	every	row	in	table	s
� nr×s =	nr × ns
� Average	tuple	length	lr×s =	lr +	ls

� Theta	join:		r θ s
� Can	model	as	σθ(r × s);	compute	estimates	as	for	σθ(…)
� Big	problem:		our	cost	estimates	are	most	accurate	when	
comparing	attributes	to	constants!

� Join	predicates	usually	compare	attributes	to	attributes

15

Join Costs (3)
� To	compute	proper	join	estimates,	need	to	look	at	the	
attributes	being	compared

� For	theta-join	r r.A=s.A s:
� If	r.A is	a	key	for	r:

� Each	tuple	in	swill	join	with	at	most	one	tuple	in	r
� Estimate	number	of	tuples	in	result	nr s =	ns

� Similarly,	if	s.A is	a	key	for	s:
� Each	tuple	in	rwill	join	with	at	most	one	tuple	in	s
� Estimate	nr s =	nr

� If	both	are	keys	for	their	respective	tables:
� nr s =	min(nr,	ns)

16

Join Costs (4)
� For	theta-join	r	 r.A=s.A s:

� If	neither	r.A nor	s.A is	a	key	for	its	respective	table:
� Assume	that	A is	uniformly	distributed	in	both	r and	s
� (Note:		ignoring	min/max	stats	for	these	estimates)

� Given	a	specific	tuple	tr in	r,	estimate	that	ns /	V(A,	s)	
tuples	in	swill	join	with	that	tuple
� ns × probability	that	a	given	tuple	ts in	swill	have	value	tr.A
� Suggests	that	nr s =	nr × ns /	V(A,	s)

� But,	given	a	specific	tuple	ts in	s,	estimate	nr /	V(A,	r)	
tuples	in	rwill	join	with	that	tuple
� Suggests	that	nr s =	ns × nr /	V(A,	r)

17

Join Costs (5)
� For	theta-join	r r.A=s.A s:

� Two	estimates	for	number	of	rows	produced:
� nr s =	nr × ns /	V(A,	s) (from	perspective	of	tuples	in	r)
� nr s =	ns × nr /	V(A,	r)	 (from	perspective	of	tuples	in	s)

� If	V(A,	r)	<	V(A,	s):
� Expect	that	more	tuples	in	swill	not	join	with	any	tuple	in	r
� Use	estimate	based	on	r:		nr s =	nr × ns /	V(A,	s)
� Similarly,	if	V(A,	r)	>	V(A,	s),	more	tuples	in	rwill	be	left	out

� If	V(A,	r)	≠	V(A,	s),	choose	the	larger	of	V(A,	r),	V(A,	s)
� Estimate	nr s =	nr × ns /	max(V(A,	r),	V(A,	s))

18

Join Costs (6)
� Can	extend	these	estimates	to	joins	with	multiple	conjuncts
� For	theta-join	r r.A=s.A ∧	r.B=s.B s:

� Check	if	(r.A,	r.B)	or	any	proper	subset	is	a	key	for	r
� Check	if	(s.A,	s.B)	or	any	proper	subset	is	a	key	for	s
� If	so,	compute	estimates	as	before

� If	attributes	are	not keys	for	r or	s:
� Again,	assume	the	conditions	are	independent	of	each	other
� P(r.A=s.A ∧	r.B=s.B)	=	P(r.A=s.A)	× P(r.B=s.B)
=	1	/	(max(V(A,	r),	V(A,	s))	× max(V(B,	r),	V(B,	s)))

� nr s =	nr × ns /	(max(V(A,	r),	V(A,	s))	× max(V(B,	r),	V(B,	s)))

19

Outer Join Costs
� Can	use	very	simple	estimates	for	outer	joins

� Again,	only	using	number	of	distinct	values;	not	using	
min/max	to	further	refine	statistics

� Left	outer	join: nr s =	nr s +	nr
� Right	outer	join: nr s =	nr s +	ns
� Full	outer	join: nr s =	nr s +	nr +	ns
� These	estimates	are	almost	certainly	much	higher	than	
actual	row-counts	will	be,	but	they	are	an	upper	bound
� …and	they	are	fast	to	compute.
� Could	devise	a	better	estimate,	but	really	want	to	move	to	
better	stats	(e.g.	storing	histograms)	to	make	it	worthwhile

20

Other Plan Nodes
� Project:		Π…(r)
� ΠA(r),	where	A	is	a	simple	column-reference

� nΠ =	nr (no	duplicate-elimination	in	SQL)
� V(A,	ΠA)	=	V(A,	r)
� Similarly,	min/max	don’t	change

� ΠE(r),	where	E	is	an	expression	possibly	with	functions
� Again,	nΠ =	nr
� For	V(E,	ΠE)/min(E,	ΠE)/max(E,	ΠE),	no	idea!		Either	
need	to	guess,	or	we	need	more	knowledge	about	E.
� E.g.	just	guess	V(E,	ΠE)	=	nΠ

21

Other Plan Nodes (2)
� Grouping/aggregation:		G1,G2,…GE1,E2,…(r)

� Gi can	be	either	column-references	or	expressions
� Ei can	be	simple	aggregate	function	calls,	or	more	
advanced	expressions	involving	aggregate	functions
� SELECT	SUM(CASE	WHEN	a	<	b	THEN	1	ELSE	0	END)	FROM	t;
� SELECT	MIN(a)	+	MAX(b)	FROM	t;

� For	simple	column-references	in	grouping	attributes:
� nG =	V(G1,	r)	× V(G2,	r)	× …
� V(G1,	G)	=	V(G1,	r),	etc.

22

Other Plan Nodes (3)
� Grouping/aggregation:		G1,G2,…GE1,E2,…(r)

� For	simple	column-references	and	simple	aggregates:

� Guess	COUNT(A),	SUM(A),	AVG(A)	will	produce	different	
values	for	each	group.		e.g.	V(COUNT(A),	G)	=	nG

� Can	be	a	bit	more	clever	with	MIN(A)	and	MAX(A)

� Could	guess	V(MIN(A),	G)	=	nG as	before
� Note	that	MIN(A)/MAX(A)	will	always	select	an	existing
value	of	A	from	input	relation

� A	better	guess:		V(MIN(A),	G)	=	min(V(A,	r),	nG)

23

Summary – Plan Costing
� Plan	costing	is	a	very imprecise	process

� Almost	certainly	inaccurate,	except	in	very simple	cases
� Hopefully	estimates	are	“good	enough”	to	guide	plan	selection
� (Most	databases	provide	ways	to	give	the	optimizer	hints	about	
plan	optimization)

� These	estimates	are	simply	one	way	of	estimating	costs
� Different	assumptions,	or	different	kinds	of	statistics,	will	
produce	different	costing	estimates

� Still, an essential part of query planning!
� Collecting	useful	table	stats,	then	making	reasonably	accurate	
estimates	from	them,	greatly	improves	DB	query	performance

� (Becomes	very	obvious	when	table	stats	are	inaccurate)

24

Equivalent Plans?
� Previously	had	this	query:

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� How	do	we	know	these	plans	are	actually	equivalent?

σ
t2.b	>	5

t1 t2

θ t1.a	=	t2.a

t1 t2

θ t1.a	=	t2.a

t2.b	>	5

σ
t1.a	=	t2.a	� t2.b	>	5

t1 t2

θ
true

25

Equivalent Plans
� Two	plans	are	equivalent if	they	produce	the	same	
results	for	every	legal	database	instance
� A	“legal”	database	instance	satisfies	all	constraints

� Generally,	the	order	of	tuples	is	irrelevant
� If	sorting	is	not	specified	on	results,	two	equivalent	plans	
may	generate	results	in	different	orders

� Equivalence	rules specify	different	forms	of	an	
expression	that	are	equivalent
� Can	prove	that	these	rules	hold	for	all	legal	databases
� Can	use	them	to	transform	query	plans	into	equivalent	
(but	hopefully	faster)	plans

26

Simple Equivalence Rules
� Cascade	of	σ:

� σθ1∧θ2(E)	=	σθ1(σθ2(E))
� σ is	commutative:

� σθ1(σθ2(E))	=	σθ2(σθ1(E))
� Selections,	Cartesian	products,	and	theta-joins:

� σθ(E1	× E2)	=	E1				θ E2
� σθ1(E1				θ2 E2)	=	E1				θ1∧θ2 E2

� Theta-joins	are	commutative:
� E1				θ E2	=	E2				θ E1

27

Theta Join Equivalence Rules
� Natural	joins	are	associative:

� (E1				E2)				E3	=	E1				(E2				E3)

� Theta-joins	are	also	associative,	but	it’s	a	bit	trickier:
� (E1				θ1 E2)				θ2∧θ3 E3	=	E1				θ1∧θ3 (E2				θ2 E3)

� θ1	only	refers	to	attributes	in	E1	and/or	E2
� θ2	only	refers	to	attributes	in	E2	and/or	E3

� θ3	only	refers	to	attributes	in	E1	and/or	E3

� Any	of	these	conditions	might	also	simply	be	true

28

Theta Join Equivalence Rules (2)
� Can	sometimes	distribute	selects	over	theta-joins:

� σθ1(E1				θ E2)	=	σθ1(E1)				θ E2
� θ1	only	refers	to	attributes	in	E1

� σθ1∧θ2(E1				θ E2)	=	σθ1(E1)				θ σθ2(E2)
� θ1	only	refers	to	attributes	in	E1
� θ2	only	refers	to	attributes	in	E2

29

Equivalence Rules
� Many other	equivalence	rules	besides	these

� Cover	grouping,	projects,	outer	joins,	set	operations,	
duplicate	elimination,	sorting,	etc.

� Grouping:		σθ(AGF(E))	is	equivalent	to	AGF(σθ(E))
� …as	long	as	θ only	involves	attributes	in	A!

� Outer	joins:		σθ(E1					E2)	is	equivalent	to	σθ(E1)					E2
� θ only	involves	attributes	in	E1

30

Equivalence Rules
� Equivalence	rules	allow	us	to	transform	plans,	and	
know	the	results	will	not	change:

t1 t2

θ t1.a	=	t2.a

t2.b	>	5

σ
t1.a	=	t2.a	� t2.b	>	5

t1 t2

θ
true

σθ(E1	× E2)	=	E1				θ E2

σθ2(E1				θ E2)	=	E1				θ (σθ2(E2))

σ
t2.b	>	5

t1 t2

θ t1.a	=	t2.a

31

Outer Join Transformations
� Need	to	be	very	careful	transforming	outer	joins:

� Obviously	correct	equivalences	for	natural	joins	/	theta	
joins	don’t	necessarily	hold	for	outer	joins!

� Is	σθ(E1					E2)	equivalent	to	E1					σθ(E2)?
� θ only	uses	attributes	in	E2

� These	are	not equivalent.		Example:
� r(A,	B)	with	one	row	{	(1,	2)	}
� s(B,	C)	with	one	row	{	(2,	3)	}
� θ is	C	=	1
� σC=1(r					s)	=	{	}	(empty	relation),	but	r					σC=1(s)	=	{	(1,	2,	null)	}

32

Outer Join Transformations (2)
� Need	to	be	very	careful	transforming	outer	joins:

� Obviously	correct	equivalences	for	natural	joins	/	theta	
joins	don’t	necessarily	hold	for	outer	joins!

� Is	(E1					E2)					E3	equivalent	to	E1					(E2					E3)?
� These	are	not equivalent.		Example:

� r(A,	B)	with	one	row	{	(1,	2)	}
� s(A,	C)	with	one	row	{	(2,	3)	}

� t(A,	D)	with	one	row	{	(1,	4)	}
� (r					s)					t	=	{	(1,	2,	null)	}					t	=	{	(1,	2,	null,	4)	}
� r					(s					t)	=	r					{	(2,	3,	null)	}	=	{	(1,	2,	null,	null)	}

33

Query Plan Optimization
� Generally	understand	how	to	map	SQL	queries	to	plans

� Ignoring	subqueries	in	SELECT	and	WHERE	clauses	for	
the	time	being…

� Understand	how	to	implement	basic	plan	nodes
� Still	a	lot	of	optimizations	to	cover	though…

� A	query	can	be	evaluated	by	many	different	plans…
� How	do	we	find	an	optimal plan	to	evaluate	a	query?

� Many	different	approaches
� All depend	on	equivalence	rules	to	guide	generation	of	
equivalent	plans

