Relational Database System Implementation CS122 - Lecture 9 Winter Term, 2018-2019

Last Time: Plan Costing

- Introduced the notion of plan costing
- Goal: Faster plans end up with lower cost than slower ones
- Need to collect statistics on tables in order to make cost estimates
- A basic, minimal set of statistics:
 - n_r the number of tuples in table r
 - b_r the number of blocks containing tuples in r
 - l_r the average size of a tuple in r, in bytes
 - V(A, r) number of distinct values of A in table r
 - min(*A*, *r*) minimum value of *A* in table *r*
 - max(A, r) maximum value of A in table r

Select Costs

- $\sigma_{\theta}(r)$
- Estimate number of rows produced $n_{\sigma} = n_r \times P(\theta)$
 - $P(\theta)$ is the *selectivity* of the predicate
 - i.e. the likelihood that a tuple will satisfy the predicate
- Simply need to estimate the selectivity of the predicate, then we can estimate the number of rows produced
- For now, assume that *r* is a heap file
 - Select operation will [almost] always read all blocks in r
 - (Other file organizations and indexes change this...)

Selectivity of Simple Predicates

- $\sigma_{A \leq v}(r)$
 - Without a histogram, use minimum/maximum values for *A* to estimate selectivity
- If $v < \min(A, r)$:
 - $P(A \le v) = 0$
- If *v* > max(*A*, *r*):
 - $P(A \le v) = 1$
- If $\min(A, r) \le v \le \max(A, r)$:
 - $P(A \le v) = (v \min(A, r)) / (\max(A, r) \min(A, r))$
- $\sigma_{A \ge v}(r)$ is similar

Selectivity of Simple Predicates (2)

- $\sigma_{A=v}(r)$
 - Assume uniform distribution of different values of *A*
 - Estimate P(A=v) to be 1 / V(A, r)
 - Estimate $n_{\sigma} = n_r / V(A, r)$
- What if *A* is a primary key for *r* ?
 - In that case, V(A, r) will be n_r
 - P(A=v) will be 1 / n_r , and n_σ will be 1

Selectivity of Simple Predicates (3)

- $\sigma_{A=v}(r)$
- If *A* is a primary key for *r*, can also improve file-scan performance:
 - Each value of A can only appear once...
 - Stop scanning *r* when we find the specified row
 - Average-case block-reads = b_r / 2; worst-case = b_r

Selectivity of Simple Predicates (4)

- For inverse of these predicates: $\sigma_{A>v}(r)$, $\sigma_{A\neq v}(r)$
 - Simply compute selectivity as $1 P(A \le v)$ or 1 P(A = v)
- Boolean negation can be handled in similar way:
 - σ_{¬θ}(r)

7

• Simple: $P(\neg \theta) = 1 - P(\theta)$

Complex Selects

- If a predicate includes multiple conditions, estimate selectivities of the components, then combine
- Conjunctive selections: $\sigma_{\theta_1 \wedge \theta_2 \wedge \dots}(r)$
 - Assumption: conditions are independent of each other
 - $P(\theta 1 \land \theta 2 \land ...) = P(\theta 1) \times P(\theta 2) \times P(...)$
- Disjunctive selections: $\sigma_{\theta 1 \vee \theta 2 \vee ...}(r)$
 - Again, compute selectivities of components
 - P(θ1 ∨ θ2 ∨ ...) = probability that a tuple satisfies at least one condition = 1 – probability it satisfies *none* of them
 - $P(\theta 1 \lor \theta 2 \lor ...) = 1 (1 P(\theta 1)) \times (1 P(\theta 2)) \times ...$

Estimating Selectivity

- One major assumption here:
 - Conditions involve simple comparisons between an attribute and a constant
- Frequently not true!
 - SELECT * FROM employees WHERE salary * 1.05 > 100000;
 - DELETE FROM employees WHERE compute_popularity(emp_id) < 20;
- In simpler cases, can analyze expression to make estimate
- For more difficult situations, use default selectivities, e.g.
 - 1/2 when it's expected to be "common" for tuples to satisfy the condition
 - 1/3 or 1/4 when it's expected to be "uncommon" or "rare"

Selection Against Subplans

- Previous examples were all against a relation r
 - We had statistics for r!
- Plans often contain selections against subplans
- Need to estimate the statistics of a plan-node's result as well, if higher-level cost estimates will be useful
- Most difficult are V(A, r), min(A, r), and max(A, r)
- If selection involves an equality: $\sigma_{A=v}(r)$
 - $V(A, \sigma_{A=v}) = 1$
 - min($A, \sigma_{A=v}$) = max($A, \sigma_{A=v}$) = v

Selection Against Subplans (2)

- If selection involves a comparison: $\sigma_{A \le v}(r)$
 - Assume $\min(A, r) \le v \le \max(A, r)$
 - $\min(A, \sigma_{A \leq v}) = \min(A, r)$
 - $\max(A, \sigma_{A \leq v}) = v$
 - Estimate $V(A, \sigma_{A \le v})$ = $V(A, r) \times (v - \min(A, r)) / (\max(A, r) - \min(A, r))$ = $V(A, r) \times P(A \le v)$
- In general, if θ is A op v:
 - *op* is some inequality comparison: < > ≤ ≥ ≠
 - Estimate $V(A, \sigma_{\theta}) = V(A, r) \times P(\theta)$

Selection Against Subplans (3)

- If predicate θ forces *A* to take on a set of values:
 - SELECT * FROM schedule WHERE hour = 3 OR hour = 4;
 - SELECT * FROM shapes WHERE color IN ('red', 'orange', 'yellow');
 - $V(A, \sigma_{\theta})$ = number of values in the predicate
 - Can compute min(A, σ_{θ}), max(A, σ_{θ}) from these as well
- If none of these situations occur:
 - Assume V(A, σ_θ), min(A, σ_θ), max(A, σ_θ) are independent of selection criteria!
 - Set V(A, σ_{θ}) to min(V(A, r), n_{σ})
 - # of distinct values for A is capped by # of rows produced by σ

Join Costs

- Several important costs to estimate for joins
 - Number of rows produced by the join operation
 - Number of disk IOs performed by the join operation
- Second value is harder to estimate, primarily due to the buffer manager, but still critical to estimate
- Example: nested loop join (no optimizations)
 - Worst case (unlikely): $b_r + n_r \times b_s$ block reads
 - Best case (inner table fits in memory): $b_r + b_s$ reads
- Disk IO estimate is very approximate, and depends on the specific join implementation being used

Join Costs (2)

- For now, focus on the number of rows produced
- Cartesian product: r × s
 - Every row in table *r* is joined to every row in table *s*
 - $n_{r \times s} = n_r \times n_s$
 - Average tuple length $l_{r \times s} = l_r + l_s$
- Theta join: $r \bowtie_{\theta} s$
 - Can model as $\sigma_{\theta}(r \times s)$; compute estimates as for $\sigma_{\theta}(...)$
 - Big problem: our cost estimates are most accurate when comparing attributes to constants!
 - Join predicates usually compare attributes to attributes

Join Costs (3)

- To compute proper join estimates, need to look at the attributes being compared
- For theta-join $r \bowtie_{r:A=s:A} s$:
 - If *r*.*A* is a key for *r*:
 - Each tuple in *s* will join with at most one tuple in *r*
 - Estimate number of tuples in result $n_{r \bowtie s} = n_s$
 - Similarly, if *s*.*A* is a key for *s*:
 - Each tuple in *r* will join with at most one tuple in *s*
 - Estimate $n_{r \bowtie s} = n_r$
 - If both are keys for their respective tables:
 - $n_{r \bowtie s} = \min(n_r, n_s)$

Join Costs (4)

- For theta-join $r \bowtie_{r:A=s:A} s$:
 - If neither *r*.*A* nor *s*.*A* is a key for its respective table:
 - Assume that *A* is uniformly distributed in both *r* and *s*
 - (Note: ignoring min/max stats for these estimates)
 - Given a specific tuple t_r in r, estimate that n_s / V(A, s) tuples in s will join with that tuple
 - $n_s \times \text{probability that a given tuple } t_s \text{ in } s \text{ will have value } t_r A$
 - Suggests that $n_{r \bowtie s} = n_r \times n_s / V(A, s)$
 - But, given a specific tuple t_s in s, estimate n_r / V(A, r) tuples in r will join with that tuple
 - Suggests that $n_{r \bowtie s} = n_s \times n_r / V(A, r)$

Join Costs (5)

- For theta-join $r \bowtie_{r,A=s,A} s$:
 - Two estimates for number of rows produced:
 - $n_{r\bowtie s} = n_r \times n_s / V(A, s)$
 - $n_{r\bowtie s} = n_s \times n_r / V(A, r)$

(from perspective of tuples in r)

(from perspective of tuples in s)

- If V(A, r) < V(A, s):
 - Expect that more tuples in *s* will not join with any tuple in *r*
 - Use estimate based on *r*: $n_{r \bowtie s} = n_r \times n_s / V(A, s)$
 - Similarly, if V(A, r) > V(A, s), more tuples in r will be left out
- If $V(A, r) \neq V(A, s)$, choose the larger of V(A, r), V(A, s)
- Estimate $n_{r \bowtie s} = n_r \times n_s / \max(V(A, r), V(A, s))$

Join Costs (6)

- Can extend these estimates to joins with multiple conjuncts
- For theta-join $r \bowtie_{r.A=s.A \land r.B=s.B} s$:
 - Check if (*r*.*A*, *r*.*B*) or any proper subset is a key for *r*
 - Check if (s.A, s.B) or any proper subset is a key for s
 - If so, compute estimates as before
- If attributes are *not* keys for *r* or *s*:
 - Again, assume the conditions are independent of each other
 - $P(r.A=s.A \land r.B=s.B) = P(r.A=s.A) \times P(r.B=s.B)$ = 1 / (max(V(A, r), V(A, s)) × max(V(B, r), V(B, s)))
 - $n_{r \bowtie s} = n_r \times n_s / (\max(V(A, r), V(A, s)) \times \max(V(B, r), V(B, s)))$

Outer Join Costs

- Can use very simple estimates for outer joins
 - Again, only using number of distinct values; not using min/max to further refine statistics
- Left outer join: $n_{r \bowtie s} = n_{r \bowtie s} + n_r$
- Right outer join: $n_{r \bowtie s} = n_{r \bowtie s} + n_s$
- Full outer join: $n_{r \bowtie s} = n_{r \bowtie s} + n_r + n_s$
- These estimates are almost certainly much higher than actual row-counts will be, but they are an upper bound
 - ...and they are fast to compute.
 - Could devise a better estimate, but really want to move to better stats (e.g. storing histograms) to make it worthwhile

Other Plan Nodes

- Project: Π_{...}(r)
- Π_A(r), where A is a simple column-reference
 - $n_{\Pi} = n_r$ (no duplicate-elimination in SQL)
 - $V(A, \Pi_A) = V(A, r)$
 - Similarly, min/max don't change
- $\Pi_{\rm E}(r)$, where E is an expression possibly with functions
 - Again, $n_{\Pi} = n_{r}$
 - For V(E, Π_E)/min(E, Π_E)/max(E, Π_E), no idea! Either need to guess, or we need more knowledge about E.
 - E.g. just guess V(E, Π_E) = n_{Π}

Other Plan Nodes (2)

- Grouping/aggregation: $_{G1,G2,...}G_{E1,E2,...}(r)$
 - Gi can be either column-references or expressions
 - Ei can be simple aggregate function calls, or more advanced expressions involving aggregate functions
 - SELECT SUM(CASE WHEN a < b THEN 1 ELSE 0 END) FROM t;
 - SELECT MIN(a) + MAX(b) FROM t;
- For simple column-references in grouping attributes:
 - $n_G = V(G1, r) \times V(G2, r) \times ...$
 - V(G1, G) = V(G1, r), etc.

Other Plan Nodes (3)

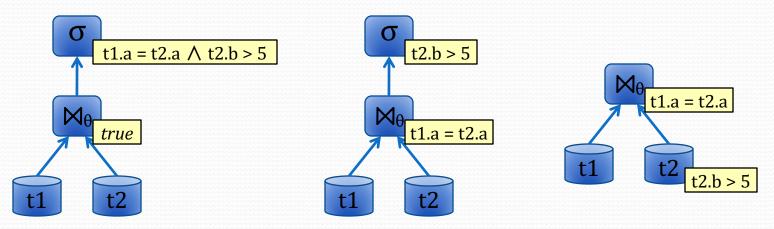
- Grouping/aggregation: $_{G1,G2,...}G_{E1,E2,...}(r)$
- For simple column-references and simple aggregates:
 - Guess COUNT(A), SUM(A), AVG(A) will produce different values for each group. e.g. V(COUNT(A), G) = n_G
- Can be a bit more clever with MIN(A) and MAX(A)
 - Could guess V(MIN(A), G) = n_G as before
 - Note that MIN(A)/MAX(A) will always select an *existing* value of A from input relation
 - A better guess: $V(MIN(A), G) = min(V(A, r), n_G)$

Summary – Plan Costing

- Plan costing is a <u>very</u> imprecise process
 - Almost certainly inaccurate, except in *very* simple cases
 - Hopefully estimates are "good enough" to guide plan selection
 - (Most databases provide ways to give the optimizer hints about plan optimization)
- These estimates are simply one way of estimating costs
 - Different assumptions, or different kinds of statistics, will produce different costing estimates
- Still, an <u>essential</u> part of query planning!
 - Collecting useful table stats, then making reasonably accurate estimates from them, greatly improves DB query performance
 - (Becomes very obvious when table stats are inaccurate)

Equivalent Plans?

- Previously had this query:
 - SELECT * FROM t1, t2 WHERE t1.a = t2.a AND t2.b > 5;



• How do we know these plans are actually equivalent?

Equivalent Plans

- Two plans are *equivalent* if they produce the same results for every legal database instance
 - A "legal" database instance satisfies all constraints
- Generally, the order of tuples is irrelevant
 - If sorting is not specified on results, two equivalent plans may generate results in different orders
- Equivalence rules specify different forms of an expression that are equivalent
 - Can prove that these rules hold for all legal databases
 - Can use them to transform query plans into equivalent (but hopefully faster) plans

Simple Equivalence Rules

- Cascade of σ:
 - $\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$
- σ is commutative:
 - $\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$
- Selections, Cartesian products, and theta-joins:
 - $\sigma_{\theta}(E1 \times E2) = E1 \Join_{\theta} E2$
 - $\sigma_{\theta 1}(E1 \Join_{\theta 2} E2) = E1 \Join_{\theta 1 \land \theta 2} E2$
- Theta-joins are commutative:
 - $E1 \bowtie_{\theta} E2 = E2 \bowtie_{\theta} E1$

Theta Join Equivalence Rules

- Natural joins are associative:
 - $(E1 \bowtie E2) \bowtie E3 = E1 \bowtie (E2 \bowtie E3)$
- Theta-joins are also associative, but it's a bit trickier:
 - $(E1 \bowtie_{\theta_1} E2) \bowtie_{\theta_2 \land \theta_3} E3 = E1 \bowtie_{\theta_1 \land \theta_3} (E2 \bowtie_{\theta_2} E3)$
 - θ 1 only refers to attributes in E1 and/or E2
 - $\theta 2$ only refers to attributes in E2 and/or E3
 - θ3 only refers to attributes in E1 and/or E3
 - Any of these conditions might also simply be *true*

Theta Join Equivalence Rules (2)

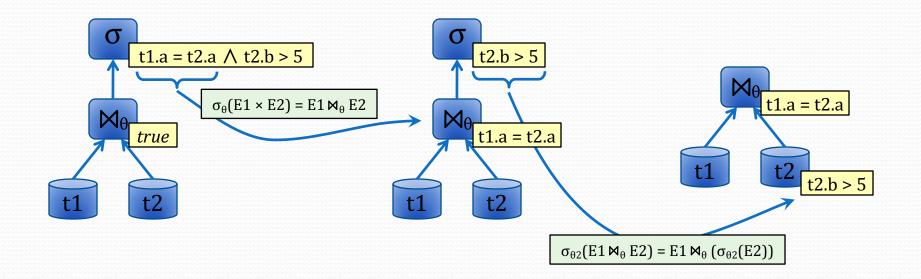
- Can sometimes distribute selects over theta-joins:
 - $\sigma_{\theta 1}(E1 \Join_{\theta} E2) = \sigma_{\theta 1}(E1) \Join_{\theta} E2$
 - θ1 only refers to attributes in E1
 - $\sigma_{\theta_{1} \wedge \theta_{2}}(E1 \Join_{\theta} E2) = \sigma_{\theta_{1}}(E1) \Join_{\theta} \sigma_{\theta_{2}}(E2)$
 - $\theta 1$ only refers to attributes in E1
 - $\theta 2$ only refers to attributes in E2

Equivalence Rules

- <u>Many</u> other equivalence rules besides these
 - Cover grouping, projects, outer joins, set operations, duplicate elimination, sorting, etc.
- Grouping: $\sigma_{\theta}({}_{A}G_{F}(E))$ is equivalent to ${}_{A}G_{F}(\sigma_{\theta}(E))$
 - ...as long as θ only involves attributes in A!
- Outer joins: $\sigma_{\theta}(E1 \bowtie E2)$ is equivalent to $\sigma_{\theta}(E1 \bowtie E2)$
 - θ only involves attributes in E1

Equivalence Rules

 Equivalence rules allow us to transform plans, and know the results will not change:



Outer Join Transformations

- Need to be very careful transforming outer joins:
 - Obviously correct equivalences for natural joins / theta joins don't necessarily hold for outer joins!
- Is $\sigma_{\theta}(E1 \bowtie E2)$ equivalent to $E1 \bowtie \sigma_{\theta}(E2)$?
 - θ only uses attributes in E2
 - These are <u>not</u> equivalent. Example:
 - r(A, B) with one row { (1, 2) }
 - s(B, C) with one row { (2, 3) }
 - θ is C = 1
 - $\sigma_{C=1}(r \bowtie s) = \{ \} (empty relation), but r \bowtie \sigma_{C=1}(s) = \{ (1, 2, null) \}$

Outer Join Transformations (2)

- Need to be very careful transforming outer joins:
 - Obviously correct equivalences for natural joins / theta joins don't necessarily hold for outer joins!
- Is $(E1 \bowtie E2) \bowtie E3$ equivalent to $E1 \bowtie (E2 \bowtie E3)$?
 - These are <u>not</u> equivalent. Example:
 - r(A, B) with one row { (1, 2) }
 - s(A, C) with one row { (2, 3) }
 - t(A, D) with one row { (1, 4) }
 - $(r \bowtie s) \bowtie t = \{ (1, 2, null) \} \bowtie t = \{ (1, 2, null, 4) \}$
 - $r \bowtie (s \bowtie t) = r \bowtie \{ (2, 3, null) \} = \{ (1, 2, null, null) \}$

Query Plan Optimization

- Generally understand how to map SQL queries to plans
 - Ignoring subqueries in SELECT and WHERE clauses for the time being...
- Understand how to implement basic plan nodes
 - Still a lot of optimizations to cover though...
- A query can be evaluated by many different plans...
- How do we find an *optimal* plan to evaluate a query?
 - Many different approaches
 - <u>All</u> depend on equivalence rules to guide generation of equivalent plans