
CS122	– Lecture	8
Winter	Term,	2018-2019

2

Last Time: Other Join Algorithms
� Started	looking	at	other	join	algorithms	for	evaluating	
equijoins
� Are	often	much faster	than	nested-loops	join
� Can	only	be	used	in	specific	situations	(but	these	
situations	are	extremely	common…)

3

Sort-Merge Join
� If	relations	being	joined	are	ordered	on	join-attributes,	can	
use	sort-merge	join to	compute	the	result

� Maintain	two	positions	into	the	input	relations
� If	left	relation’s	values	for
join-attributes	are	smaller,
move	left	pointer	forward

� If	right	relation’s	values	for
join-attributes	are	smaller,
move	right	pointer	forward

� If	join-attribute	values	are
identical	then	join	the	runs
of	tuples	with	equal	values

A B

9 cat
11 dog
11 horse
15 pig
15 frog
19 cow

A C

7 green
9 yellow
11 pink
14 orange
15 blue
15 red
19 mauve
23 puce

r: s:

4

Sort-Merge Join with Marking
� Implement	sort-merge	join	to	only	
require	marking	on	right	subplan

SortMergeJoin {
leftTup =	initial	left	tuple
rightTup =	initial	right	tuple
while	(true)	{
while	(leftTup !=	rightTup)	{
if	(leftTup <	rightTup)
advance	left	subplan

else
advance	right	subplan

}

//	Now	left	and	right	tuples
//	have	the	same	values.

mark	right	subplan	position
markedValue =	rightTup
while	(true)	{
while	(leftTup ==	rightTup)	{
add	joined	tuples	to	result
advance	right	subplan

}
advance	left	subplan
if	(leftTup ==	markedValue)
reset	right	subplan	to	mark

else
//	return	to	top	of	outer	loop
break

}
}

}

From	PostgreSQL:		nodeMergejoin.c

5

Sort-Merge Join Costs
� Assume	that	input	relations	are	already	sorted…		J
� Also,	assume	join-attributes	are	a	primary	key	in	both	
input	relations
� Each	row	on	left	will	join	with	at	most	one	row	on	right	
(i.e.	no	marking	or	resetting	required	on	right	table)

� For	r s,	results	in	br +	bs blocks	read

� How	many	disk	seeks,	if	buffer	manager	can	only	hold	
one	block	from	each	of	r and	s?
� Would	generally	expect	br +	bs disk	seeks	as	well.		SLOW.

6

Sort-Merge Join Costs (2)
� Sort-merge	join	really	requires buffering	for	input	
relations,	to	avoid	disk	seek	issues
� Allocate	bb blocks	of	buffering	for	each	input	relation
� Use	read-ahead	on	input	tables	(always	read	bb blocks!)
� Reduces	seeks	to	ceiling(br/bb)	+	ceiling(bs/bb)

� What	if	all	rows	in	r and	s have	the	same	join	value?
� Algorithm	will	mark	first	tuple	in	s,	then	scan	through	s
for	each	row	in	r

� If	buffer	manager	can	only	hold	one	page	from	each	file:
� Blocks	read	will	be	br +	nr × bs
� Disk	seeks	will	be	br +	nr
� Worst	case,	sort-merge	join	behaves	just	like	nested-loops	join

7

Sort-Merge Join Costs (3)
� Apply	same	strategies	to	sort-merge	join	as	with	
nested-loops	join
� Table	on	right	side	of	join	should	fit	within	memory,
if	possible

� If	not,	allocate	plenty	of	buffer	space	for	processing	join
� If	right	subplan	is	more	complex	than	a	table	scan,
use	a	materialize	node	to	allow	results	to	be	traversed	
multiple	times

� Our	cost	estimates	assumed	that	the	inputs	are	sorted
� Usually	not	the	case
� Need	to	include	cost	of	sorting	in	costing	estimates	too

8

Outer Joins with Sort-Merge?
� Can	we	modify	this	algorithm	to	
produce	left/right/full	outer	joins?

SortMergeJoin {
leftTup =	initial	left	tuple
rightTup =	initial	right	tuple
while	(true)	{
while	(leftTup !=	rightTup)	{
if	(leftTup <	rightTup)
advance	left	subplan

else
advance	right	subplan

}

//	Now	left	and	right	tuples
//	have	the	same	values.

mark	right	subplan	position
markedValue =	rightTup
while	(true)	{
while	(leftTup ==	rightTup)	{
add	joined	tuples	to	result
advance	right	subplan

}
advance	left	subplan
if	(leftTup ==	markedValue)
reset	right	subplan	to	mark

else
//	return	to	top	of	outer	loop
break

}
}

}

From	PostgreSQL:		nodeMergejoin.c

Can	generate
outer-join
results	here!

9

Hash Join
� Can	also	use	hashing	to	perform	equijoins	efficiently
� For	r s,	performing	equijoin	on	JoinAttrs

� Apply	a	hash	function	hp(JoinAttrs)	to	partition	tuples	in	
r and	s into	n partitions

� Tuples	in	partition	Hriwill	only	join	with	tuples	in	Hsi
r s

Hrn-1

Hr0

Hr1

Hr2
…

Hsn-1

Hs0

Hs1

Hs2
…

10

Hash Join (2)
� Once	input	relations	are	partitioned,	join	each	pair	of	
partitions	Hri and	Hsi in	sequence:
� Load	Hsi into	memory,	and	build	a	hash	index	against	it

� Use	a	different hash	function	hi()	for	this	hash-index
� Just	reusing	previous	hash	function	hp()	won’t	provide	a	
uniform	random	distribution	of	input	tuples

� For	each	tuple	tr in	Hri,	probe	the	hash	index	to	find	all	
tuples	in	Hsi that	join	with	tr

� Only	require	that	entirety	of	Hsi fits	into	memory
(plus	its	corresponding	hash-index)
� Partitions	are	stored	on	disk	until	they	are	needed

11

Hash Join (3)
� s is	called	the	build	relation (a.k.a.	the	build	input)

� The	hash	index	is	built	against	partitions	of	s
� Partitions	of	the	build	relation	must fit	in	memory

� r is	called	the	probe	relation (a.k.a.	the	probe	input)
� The	join	algorithm	probes	the	hash	index	using	tuples	
from	partitions	of	r

� Partitions	of	probe	relation	don’t	need	to	fit	in	memory
� Generally,	smaller	relation	should	be	the	build	relation

System	Memory

Hsi
probe

hash
index

build

Hri

(disk	file)

Hsi

(disk	file)

12

Hash Join Costing
� Partitioning	the	relations	requires	a	complete	pass	
over	both	r and	s,	and	the	partitions	are	written	to	disk
� Requires	2(br +	bs)	disk	transfers
� Could	also	result	in	partially	full	blocks,	since	a	partition	
won’t	necessarily	be	completely	full
� Adds	a	small	overhead	based	on	the	number	of	partitions

� The	join	process	itself	must	read	each	partition	once
� Requires	br +	bs disk	transfers

� Total	disk	access	cost	is	approximately	3(br +	bs)

13

Hash Join Issues
� Biggest	issue	is	if	a	partition	Hsi doesn’t	fit	into	memory

� e.g.	perhaps	distribution	of	join-attribute	values	isn’t	friendly	
to	hash	function	

� Overflow	resolution:
� If	a	hash	overflow	is	detected,	apply	a	second,	different	hash-
function	to	large	partition

� Overflow	avoidance:
� Partition	input	relations	into	many	smaller	partitions,	then	
combine	partitions	into	units	that	fit	into	memory

� If	data	distribution	isn’t	suitable	to	hash	join,	may	simply	
need	to	use	a	different	join	algorithm!
� Good	statistics	(e.g.	histograms)	essential	to	determine	this

14

Hash Join Issues (2)
� Another	issue	with	large	tables	is	if	number	of	partitions	
required	by	table	size	is	too	large	to	fit	in	memory
� e.g.	since	partitions	are	written	to	disk,	database	must	be	able	
to	hold	at	least	one	disk	block	per	partition	in	its	buffers

� Requires	recursive	partitioning:
� On	first	pass,	split	table	into	as	many	partitions	as	possible
� Repeat	this	process	on	previously	generated	partitions	(using	
a	different	hash-function)	until	all	partitions	of	build	relation	
fit	in	memory

� Generally	not	required	until	tables	are	many	TBs	in	size

15

Hash Join Algorithm
� Hash	join	algorithm:

#	Partition	s

for	each	tuple	ts in	s:

i =	h(ts[JoinAttrs]);

Add	ts to	partition	Hsi;

#	Partition	r

for	each	tuple	tr in	r:

i =	h(tr[JoinAttrs]);

Add	tr to	partition	Hri;

/*	Perform	hash-join	*/

for	i =	0	to	nh:

read	Hsi and	build

in-memory	hash	index

for	each	tuple	tr in	Hri:

probe	hash-index	to	find	all

tuples	ts that	join	with	tr

for	each	matching	tuple	ts:

add	join(tr,	ts)	to	result

16

Hash Join Algorithm (2)
� Hash	join	algorithm:

#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

� s	is	partitioned	before	r	to	
allow	an	optimization:

� If	enough	memory	is	available,	
partition	Hs0 is	kept	in	memory	
from	the	“partition	s”	phase
� A	hash	index	also	built	on	Hs0

� During	partitioning	of	r,	tuples	
that	hash	into	Hr0 are	tested	
against	in-memory	Hs0 index

� Reduces	disk	IOs	by	a	small	but	
significant	amount

� This	is	called	hybrid	hash-join

17

Outer Joins with Hash Join? (1)
� Can	we	alter	this	to	
perform	left-outer	joins?
#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

18

Outer Joins with Hash Join? (2)
� Change	probe	logic	to	
perform	left-outer	joins
#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

if	tr has	matching	tuples:
for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

else:
add	join(tr,	nulls)	to	result

19

Outer Joins with Hash Join? (3)
� What	about	full-outer	
joins?
#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

Need	to	alter	hash-index	to	record	
which	tuples	in	Hsi were	joined.

Then	we	can	compute	full-outer	joins.

20

Alternative Plans
� Earlier,	saw	three	plans	for	a	query:

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� Two	questions:
� How	do	we	know	which	plan	is	best?

� How	do	we	know	the	plans	are	actually	equivalent?

σ
t2.b >	5

t1 t2

θ
t1.a =	t2.a

t1 t2

θ
t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a� t2.b >	5

t1 t2

θ
true

21

Plan Costing
� Can	devise	ways	of	measuring	costs	of	different	plans

� Basic	measurements:
� Number	of	rows	generated	by	each	plan-node

� Number	of	disk-accesses	performed	by	each	plan-node

� More	advanced	measures:
� CPU/memory	usage,	avg size	of	each	row	in	bytes,	etc.

σ
t2.b >	5

t1 t2

θ
t1.a =	t2.a

t1 t2

θ
t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a� t2.b >	5

t1 t2

θ
true

22

Plan Costing (2)
� Example:		σb>5(t2)

� Given:		t2	is	a	heap	file,	with	no	indexes	on	b
� How	many	disk	blocks	are	accessed?

� Every	disk	block	in	t2
� How	many	rows	will	be	produced?

� ???
� If	we	knew	the	minimum	and	maximum	values	for	t2.b:

� Assume:		b is	uniformly	distributed
� Guess:		#	rows	in	t2	× (bmax – 5)	/	(bmax – bmin)

� If	we	had	a	histogram	for	t2.b’s	values,	could	make	a	much
better	guess!

t1 t2

θ
t1.a =	t2.a

t2.b >	5

23

Plan Costing Goals (Ideal)
� Estimates	should	be	as	accurate	as	possible
� Estimates	should	be	easy	to	compute
� Estimates	are	logically	consistent

� Estimated	statistics	for	a	query	shouldn’t	vary	in	
abnormal	ways,	based	on	how	the	query	is	computed

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;
� Ideally,	estimates	of	how	many	tuples	are	produced	by	each	

plan	will	be	roughly	the	same

σ
t2.b >	5

t1 t2

θ
t1.a =	t2.a

t1 t2

θ
t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a� t2.b >	5

t1 t2

θ
true

24

Plan Costing Goals (Reality)
� Goals	of	plan	costing:

� Estimates	should	be	as	accurate	as	possible
� Estimates	should	be	easy	to	compute
� Estimates	are	logically	consistent

� Unfortunately,	very	hard	to	achieve	in	practice

� All	we	really require:
� Faster	plans	end	up	with	lower	cost	than	slower	ones

25

Plan Costing and Statistics
� To	make	effective	cost	estimates,	the	database	must	
keep	statistics	on	values	that	appear	in	each	table

� Generally,	statistics	are	very	expensive	to	compute…
� Databases	generally	don’t	keep	these	stats	up	to	date
� Some	update	stats	when	#	of	rows	in	a	table	changes	
substantially;	others	require	manual	updating	of	stats

� The	statistics	don’t	need	to	be	perfect!
� Just	need	to	be	good	enough	to	guide	optimization	phase

� But,	if	stats	are	very	different	from	actual	table	data,	
generated	plans	are	likely	to	be	horrible.

26

Table Statistics
� Some	useful	statistics	to	keep	per	table:

� nr – the	number	of	tuples	in	table	r
� br – the	number	of	blocks	containing	tuples	in	r

� For	heap	files,	will	be	very	close	to	total	#	of	blocks	in	file
� For	sequential	and	hashing	files,	may	be	very	different

� lr – the	average	size	of	a	tuple	in	r,	in	bytes
� fr – the	blocking	factor	of	table	r

� The	average	number	of	tuples	in	r that	fit	in	one	block
� Generally,	br ≈	ceiling(nr /	fr)

27

Table Statistics (2)
� More	useful	statistics:

� V(A,	r)	– the	number	of	distinct	values	of	attribute	A that	
appear	in	table	r

� min(A,	r)	– the	minimum	value	of	attribute	A in	table	r
� max(A,	r)	– the	maximum	value	of	attribute	A in	table	r

� Provide	an	operation	to	compute/update	these	stats	
for	a	given	table
� Expose	it	as	a	command,	and/or	update	automatically
� e.g. ANALYZE TABLE t;

