
CS122	– Lecture	7
Winter	Term,	2018-2019



2

Plan-Node Implementations
� Last	time,	began	discussing	how	to	implement	all	of	
our	relational-algebra	plan	nodes

� Discussed selection, projection,	and	
grouping/aggregation



3

Sorting Implementations
� Sorting	is	very	straightforward	to	implement
� Biggest	challenge	is	when	input	data-set	doesn’t	fit	
entirely	into	memory

� In	these	cases,	use	external-memory	sorting	algorithm
� Read	in	runs	of	tuples	that	use	up	to	M blocks	of	buffer	
space

� Sort	each	run	in	memory,	and	write	it	out	to	a	run-file
� Once	all	runs	are	sorted,	perform	an	N-way	merge-sort	
on	the	runs	of	data	to	generate	the	result



4

External Sort Algorithm
� Stage	1:		Create	N sorted	runs	from	an	input	tuple	file,	
using	a	max	of	M buffer	pages
i :=	0
while	input	file	has	more	blocks:
read	up	to	M blocks	of	the	input	into	memory
sort	the	in-memory	portion	of	the	input
write	sorted	results	to	run-file	Ri
i :=	i +	1

� If	entire	input	can	be	loaded	in	one	shot,	we’re	done!



5

External Sort Algorithm (2)
� Stage	2:		Merge	the	N sorted	runs
Open	all	N files	and	read	the	first	block	from	each	file
do:
choose	the	first	tuple	(in	sort	order)	from	all	blocks,

write	it	to	the	output,	and	advance	past	that	tuple
if	that	file’s	block	has	no	more	tuples,	read	the	next

block	from	that	file	(if	more	blocks	exist)
while	a	non-empty	block	remains	for	at	least	one	file



6

External Sort Algorithm (3)
� If	input	relation	is	extremely large,	may	not	be	able	to	
perform	merge-sort	step	in	one	pass
� e.g.	if	there	aren’t	N buffer	pages	to	open	all	N run-files

� Simply	merge	a	subset	of	the	run-files	into	a	new	larger	
run-file	(and	delete	the	merged	run-files)
� Repeat	this	process	until	all	remaining	run-files	can	be	
opened	at	the	same	time

� Final	merge-sort	pass	can	produce	the	output	of	the	sort	
operation	by	traversing	these	run-files



7

External Sort Algorithm (4)
� Can	be	other	benefits	from	creating	fewer	sorted	runs
� Example:

� Could	easily	sort	a	file	that	requires	500	sorted	runs…
� Merging	500	run-files	means	jumping	back	and	forth	
between	all	of	these	files…

� Disk	seeks	can	become	costly	when	merging	the	data!
� Using	fewer,	larger	runs	can	greatly	reduce	disk	seeks

� Load	more	than	1	block	of	each	run-file	into	memory
� Rely	on	read-ahead	optimization	to	pull	data	from	disk



8

Theta-Join Implementation
� Theta-join	plan	node	is	a	bit	more	complicated
� Most	simple	implementation	is	nested-loop	join
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Benefits:		works	for	arbitrary predicates!
� Drawbacks:		it’s	very slow



9

Nested-Loop Join (2)
� How	do	we	extend	this	to	
compute	r θ s?
� Left	outer	join
� tr is	included	if	it	doesn’t	
match	any	rows	in	s

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Updated	algorithm:
for	tr in	r:
matched =	false
for	ts in	s:
if	pred(tr,	ts):
matched =	true
add	join(tr,	ts)	to	result

if	not	matched:
add	padnulls(tr)	to	result



10

Nested-Loop Join (3)
� What	about	r θ s?

� Right	outer	join
� ts is	included	if	it	doesn’t	
match	any	rows	in	r

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Can’t	easily	extend	
nested-loop	algorithm	to	
do	right	outer	join

� But,	r θ s =	ΠR,S(s θ r)
� (Must	take	care	to	adjust	
result	schema	properly)

� Unfortunately,	r θ s is	
similarly	out	of	reach	
with	nested-loop	join



11

Nested-Loop Join (4)
� What	about	r θ s?

� Left	semijoin
� tr is	included	once,	if	it	
matches	any	row	in	s

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Updated	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	tr to	result
break

� A	very	simple	variant	of	
inner	join!



12

Nested-Loop Join (5)
� What	about	r θ s?

� Left	antijoin
� tr is	included	once,	if	it	
matches	no rows	in	s

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Updated	algorithm:
for	tr in	r:
matched =	false
for	ts in	s:
if	pred(tr,	ts):
matched =	true
break

if	not	matched:
add	tr to	result

� Again,	very	similar	to	
left-outer	join



13

Nested-Loop Join IO Cost
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Assume	that	both	r and	s fit	entirely	within	memory
� br is	number	of	blocks	in	r,	bs is	number	of	blocks	in	s

� How	many	“large”	disk	seeks	are	required?
� How	many	block-reads	will	this	operation	perform?



14

Nested-Loop Join IO Cost (2)
� Nested-loop	join:

for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

1. (Probably)	one	large	seek	to	read	first	tuple in	r
2. Another	large	seek	when	first	tuple in	s is	read
3. All	of	s is	scanned	the	first	time	through	the	inner	loop,	and	

the	entire	table	s is	cached	in	the	Buffer	Manager
4. A	third	large	seek	when	second	block	of	r is	read
5. After	this,	all	seeks	will	be	small	as	r is	scanned.

(Inner	loop	always	reads	s out	of	the	Buffer	Manager.)
� Performs	br +	bs reads,	and	2-3	large	seeks	total

r :

s :



15

Nested-Loop Join IO Cost (3)
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Worst	case:		Database	can	only	hold	one	block	of	each	
table	in	memory.		How	many	block	reads	are	required?
� Outer	loop	performs	br block-reads
� Inner	loop	traverses	s once	per	tuple in	r:		nr × bs

� Performs	br +	nr × bs block	reads

s : s scanned once per tuple in r

r :



16

Nested-Loop Join IO Cost (4)
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Worst	case:		Database	can	only	hold	one	block	of	each	
table	in	memory.		How	many	large	seeks	are	required?
� Inner	loop	traverses	s sequentially:		once	per	loop	=	nr
� Outer	loop	traverses	r in	br blocks:		br total	seeks

� Performs	br +	nr large	seeks

s : s scanned once per tuple in r

r :



17

Nested-Loop Join IO Cost (5)
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� How	many	reads	and	seeks	if	only	s fits	in	memory?
� s is	loaded	once,	in	sequence:		1	seek,	bs reads
� Outer	loop	traverses	r in	br blocks:		1-2	seeks,	br reads

� Performs	br +	bs reads,	and	2-3	seeks	total
� …just	like	optimal	case	when	both	tables	fit	in	memory!

� If	smaller	table	fits	in	memory,	put	it	on	inner	loop.

r :

s :



18

Improving Nested-Loop?
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� If	DB	can	only	hold	one	block	of	each	table	in	memory:
� Inner	loop	traverses	s once	per	tuple in	r:		nr × bs reads

� What	if	the	outer	loop	traverses	r by	blocks,	not	tuples?
� Try	to	join	all	tuples	from	a	block	in	r against	a	block	in	s



19

Block Nested-Loop Join
� Traversing	r and	s by	blocks	instead	of	tuples:

for	Br in	r:
for	Bs in	s:
for	tr in	Br:
for	ts in	Bs:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Improves	worst-case	read-behavior	of	nested-loop	join
� Outer	loop	performs	br block-reads
� Inner	loop	traverses	s once	per	block in	r:		br × bs reads

� Performs	br × (bs +	1)	block	reads



20

Block Nested-Loop Join (2)
� Traversing	r and	s by	blocks	instead	of	tuples:

for	Br in	r:
for	Bs in	s:
for	tr in	Br:
for	ts in	Bs:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Worst-case	performance	– large	disk	seeks:
� Inner	loop	still	traverses	s sequentially:		once	per	loop	=	br
� Outer	loop	traverses	r in	br blocks:		br total	seeks

� Performs	2br large	seeks



21

Block Nested-Loops Join (3)
� Best-case	scenario:		at	least	one	table	fits	in	memory

� Performs	br +	bs reads,	and	2-3	seeks	total
� Put	smaller	table	on	inner	loop	of	join

� Worst-case	scenario:		only	two	blocks	fit	in	memory
� Performs	br × (bs +	1)	block	reads,	and	2br large	seeks
� Put	smaller	table	on	outer	loop	of	join	(minimize	seeks)

� Similarly,	if	neither	table	fits	entirely	in	memory,
put	smaller	table	on	outer	loop	of	join



22

Block Nested-Loop Optimizations
� Several	other	optimizations	to	block	nested-loop	join,	
most	notably:

� Instead	of	reading	outer	table	in	blocks,	read	as	much	
as	will	fit	into	memory
� For	M total	blocks,	read	in	M – 1	blocks	from	r,	1	from	s
� Reduces	total	number	of	large	disk	seeks	to	br /	(M – 1)

� For	inner	loop,	scan	table	forward	and	then	backward
� Alternate	direction	of	file-scan	on	subsequent	iterations
� Data	pages	from	previous	iteration	will	still	be	in	the	
buffer	manager’s	memory



23

Other Join Algorithms
� Nested-loops	join	is	generally	useful,	but	slow

� Compares	every	tuple	in	rwith	every	tuple	in	s
� Performs	nr × ns iterations	through	loops

� Most	joins	involve	equality	tests	against	attributes
� Such	joins	are	called	equijoins

� Two	other	join	algorithms	for	evaluating	equijoins
� Are	often	much faster	than	nested-loops	join
� Can	only	be	used	in	specific	situations	(but	these	
situations	are	extremely	common…)



24

Sort-Merge Join
� If	relations	being	joined	are	ordered	on	join-attributes,	can	
use	sort-merge	join to	compute	the	result

� Maintain	two	positions	into	the	input	relations
� If	left	relation’s	values	for
join-attributes	are	smaller,
move	left	pointer	forward

� If	right	relation’s	values	for
join-attributes	are	smaller,
move	right	pointer	forward

� If	join-attribute	values	are
identical	then	join	the	runs
of	tuples	with	equal	values

A B

9 cat
11 dog
11 horse
15 pig
15 frog
19 cow

A C

7 green
9 yellow
11 pink
14 orange
15 blue
15 red
19 mauve
23 puce

r: s:



25

Sort-Merge Join (2)
� Most	difficult	part	of	sort-merge	join	implementation	is	
handling	runs	of	tuples	with	the	same	value

� Example:		given	r and	s contents,	should	end	up	with:
� four rows	with	A	=	15
� (15,	pig,	blue)
� (15,	pig,	red)
� (15,	frog,	blue)
� (15,	frog,	red)

� Clearly	need	a	way	to	go
back	in	the	tuple-stream

A B

9 cat

11 dog

11 horse

15 pig

15 frog

19 cow

A C

7 green

9 yellow

11 pink

14 orange

15 blue

15 red

19 mauve

23 puce

r: s:



26

Sort-Merge Join (3)
� In	some	cases,	a	plan-node	might	need	to	go	back	to	an	
earlier	point	in	its	child’s	tuple-stream
� e.g.	when	r’s pointer	moves	forward,	if	join-attributes	
don’t	change	then	need	to	go	back	to	start	of	the	
corresponding	values	in	s

� Plan	nodes	can	support
marking,	and	resetting
to	last	marked	position

� Alternative:
� Store	all	rows	in	swith
same	values	in	memory…

� But,	can’t	always	guarantee	they’ll	fit!

A B

9 cat

11 dog

11 horse

15 pig

15 frog

19 cow

A C

7 green

9 yellow

11 pink

14 orange

15 blue

15 red

19 mauve

23 puce

r: s:

marked



27

Materialized Results
� Not	every	kind	of	plan-node	can	provide	marking

� (nor	should	it,	necessarily…)
� Similarly,	not	every	kind	of	plan-node	can	be	reset	to	the	
beginning	of	its	tuple-stream

� In	cases	where	a	plan-node	requires	marking	from	one	
of	its	children,	but	the	child	doesn’t	support	marking:
� Insert	a	materialize plan-node	above	the	child
� The	materialize	plan-node	buffers	every	row	the	child	
plan-node	produces,	allowing	marking	and	resetting

� If	the	materialize	node’s	memory	usage	grows	beyond	a	
set	limit,	it	can	use	a	temporary	file	to	store	the	results



28

Nested-Loops and Materialize
� Nested-loop	joins	evaluate	right	subplan	once	for	each	
tuple	(or	block)	produced	by	left	subplan
� Anything	more	complex	than	a	simple	file-scan	on	right	
of	nested-loops	join	will	be	very	expensive	to	evaluate

� Instead,	insert	a	materialize
plan-node	above	complex
sub-plans	on	right	side

t1 t2

t4t3

Π

t1 t2 t4t3

Π



29

Sort-Merge Join with Marking
� Implement	sort-merge	join	to	only	
require	marking	on	right	subplan

SortMergeJoin {
leftTup =	initial	left	tuple
rightTup =	initial	right	tuple
while	(true)	{
while	(leftTup !=	rightTup)	{
if	(leftTup <	rightTup)
advance	left	subplan

else
advance	right	subplan

}

//	Now	left	and	right	tuples
//	have	the	same	values.

mark	right	subplan	position
markedValue =	rightTup
while	(true)	{
while	(leftTup ==	rightTup)	{
add	joined	tuples	to	result
advance	right	subplan

}
advance	left	subplan
if	(leftTup ==	markedValue)
reset	right	subplan	to	mark

else
//	return	to	top	of	outer	loop
break

}
}

}

From	PostgreSQL:		nodeMergejoin.c


