
CS122	– Lecture	6
Winter	Term,	2018-2019

2

Last Time: Subqueries
� Began	discussing	translation	of	SQL	subqueries
� FROM	subqueries	are	the	easiest	to	deal	with
� To	generate	execution	plan	for	full	query:

� Simply	generate	execution	plan	for	the	derived	relation
(e.g.	recursive	call	to	planner	with	subquery’s	AST)

� Use	the	subquery’s	plan	as	an	input	into	the	outer	query	
(as	if	it	were	another	table	in	the	FROM	clause)

2

3

Subqueries in FROM Clause (2)
� Our	example:

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;

� Subquery	plan:

game_scores

G username
MAX(score)

users

θ

Π
u.username,	u.email,	s.max_score

u.username =	s.username

game_scores

G username
MAX(score)

� Full	plan:

3

4

Subqueries in SELECT Clause
� Subqueries	in	the	SELECT	clause	must	be	scalar	subqueries:

� SELECT	customer_id,
(SELECT	SUM(balance)	FROM	loan	JOIN	borrower	b
WHERE	b.customer_id =	c.customer_id)	tot_bal

FROM	customer	c;
� Must	produce	exactly	one	row	and	one	column

� An	easy,	generally	useful	approach:
� Represent	scalar	subquery as	special	kind	of	expression
� During	query	planning,	generate	a	plan	for	the	subquery
� When	select-expression	is	evaluated,	recursively	invoke	the	
query	executor	to	evaluate	the	subquery to	generate	a	result

� (Report	an	error	if	doesn’t	produce	exactly	one	row/column!)

4

5

Subqueries in SELECT Clause (2)
� Subqueries	in	the	SELECT	clause	must	be	scalar	subqueries:

� SELECT	customer_id,
(SELECT	SUM(balance)	FROM	loan	JOIN	borrower	b
WHERE	b.customer_id =	c.customer_id)	tot_bal

FROM	customer	c;
� Must	produce	exactly	one	row	and	one	column

� If	scalar	subquery is	correlated:
� Must	reevaluate	the	subquery for	each	row	in	outer	query

� If	scalar	subquery isn’t	correlated:
� Can	evaluate	subquery	once	and	cache	the	result
� (This	is	an	optimization;	correlated	evaluation	will	also	work,	
although	it	is	obviously	unnecessarily	slow.)

5

6

Subqueries in SELECT Clause (3)
� Correlated	scalar	subqueries in	the	SELECT	clause	can	
frequently	be	restated	as	a	decorrelated outer	join:
� SELECT	customer_id,

(SELECT	SUM(balance)	FROM	loan	JOIN	borrower	b
WHERE	b.customer_id =	c.customer_id)	tot_bal

FROM	customer	c;
� Equivalent	to:

� SELECT	c.customer_id,	tot_bal
FROM	customer	c	LEFT	OUTER	JOIN

(SELECT	b.customer_id,	SUM(balance)	tot_bal
FROM	loan	JOIN	borrower	b	GROUP	BY	b.customer_id)	t
ON	t.customer_id =	c.customer_id);

� Usually,	outer	join	is	cheaper	than	correlated	evaluation

6

7

Scalar Subqueries in Other Clauses
� Scalar	subqueries can	also	appear	in	other	predicates,	
e.g.	WHERE	clauses,	HAVING	clauses,	ON	clauses,	etc.

� These	cases	are	more	likely	to	be	uncorrelated,	which	
means	they	can	be	evaluated	once	and	then	cached

� If	they	are	correlated,	they	can	also	often	be	restated	as	
a	join	in	an	appropriate	part	of	the	execution	plan
� But,	it	can	get	significantly	more	complicated…

7

8

Subqueries in WHERE Clause
� IN/NOT	IN	clauses	and	EXISTS/NOT	EXISTS	predicates	
can	also	appear	in	WHERE	and	HAVING	clauses

� Example:		Find	bank	customers	with	accounts	at	any	
bank	branch	in	Los	Angeles
� SELECT	*	FROM	customer	c
WHERE	customer_id IN

(SELECT	customer_id FROM	depositor
NATURAL	JOIN	account	NATURAL	JOIN	branch
WHERE	branch_city =	'Los	Angeles');

� Is	this	query	correlated?
� No;	inner	query	doesn’t	reference	enclosing	query	values

8

9

Subqueries in WHERE Clause (2)
� Again,	can	implement	IN/EXISTS	in	a	simple	and	
generally	useful	way:
� Create	special	IN	and	EXISTS	expression	operators	that	
include	a	subquery

� During	planning,	an	execution	plan	is	generated	for	each	
subquery in	an	IN	or	EXISTS	expression

� When	IN	or	EXISTS	expression	is	evaluated,	recursively	
invoke	the	executor	to	evaluate	subquery and	test	
required	condition
� e.g.	IN	scans	the	generated	results	for	the	LHS	value
� e.g.	EXISTS	returns	true	if	a	row	is	generated	by	subquery,	or	
false	if	no	rows	are	generated	by	the	subquery

9

10

Subqueries in WHERE Clause (3)
� IN/NOT	IN	clauses	and	EXISTS/NOT	EXISTS	predicates	can	
also	be	correlated
� EXISTS/NOT	EXISTS	subqueries are	almost	always	correlated

� If	subquery is	not	correlated,	can	materialize	subquery
results	and	reuse	them
� …but	they	may	be	large;	we	may	still	end	up	being	verrry slow

� Previous	approach	isn’t	anywhere	near	ideal
� IN	operator	effectively	implements	a	join	operation,	but	
without	any	optimizations

� EXISTS	is	a	bit	faster,	but	subquery is	frequently	correlated
� Would	greatly	prefer	to	evaluate	subquery using	joins,	
particularly	if	we	can	eliminate	correlated	evaluation!

10

11

Semijoin and Antijoin
� Two	useful	relational	algebra	operations	in	the	context	of	
IN/NOT	IN	and	EXISTS/NOT	EXISTS	queries

� Relations	r(R)	and	s(S)
� The	semijoin r s is	the	collection	of	all	rows	in	r that	can	
join	with	some	corresponding	row	in	s
� {	tr |	tr Î r Ù $ ts Î s (join(tr,	ts))	}
� join(tr,	ts)	is	the	join	condition

� r s equivalent	to	ΠR(r s),	but	only	with	sets of	tuples
� If	r and	s are	multisets,	these	expressions	are	not	equivalent,	
since	a	tuple	in	r that	matches	multiple	tuples	in	swill	become	
duplicated	in	the	natural	join’s	result

11

12

Semijoin and Antijoin (2)
� The	antijoin r s is	the	collection	of	all	rows	in	r that	
don’t	join	with	some	corresponding	row	in	s
� {	tr |	tr Î r Ù ¬$ ts Î s (join(tr,	ts))	}

� Also	called	anti-semijoin,	since	r s is	equivalent	to
r – r s (is	the	complement	of)

� Both	semijoin and	antijoin operations	are	easy	to	
compute	with	our	various	join	algorithms
� Can	incorporate	into	theta-join	implementations	easily

� Can	use	these	operations	to	restate	many	IN/NOT	IN	
and	EXISTS/NOT	EXISTS	queries

12

13

Example IN Subquery
� Find	all	bank	customers	who	have	an	account	at	any	
bank	branch	in	the	city	they	live	in
� SELECT	*	FROM	customer	c	WHERE	c.customer_city IN

(SELECT	b.branch_city
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
WHERE	d.customer_id =	c.customer_id);

� Recall:		branches	have	a	branch_name and	a	branch_city
� Inner	query	is	clearly	correlated	with	outer	query
� Naïve	correlated	evaluation	would	be	very slow	L

� Join	three	tables	in	inner	query	for	every	bank	customer!

13

14

Example IN Subquery (2)
� Example	query:

� SELECT	*	FROM	customer	c	WHERE	c.customer_city IN
(SELECT	b.branch_city
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
WHERE	d.customer_id =	c.customer_id);

� Can	decorrelate by	extracting	inner	query,	modifying	it	to	
find	all	branches	for	all	customers,	in	one	shot:
� SELECT	branch_city,	customer_id
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
� Includes	tuples	for	each	branch	that	each	customer	has	
accounts	at

14

15

Example IN Subquery (3)
� Could	take	our	inner	query	and	join	it	against	customer

� SELECT	c.*	FROM	customer	c	JOIN
(SELECT	branch_city,	customer_id
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d)	AS	t
ON	(t.customer_id =	c.customer_id AND

c.customer_city =	t.branch_city);
� Problems?

� If	a	customer	has	multiple	accounts	at	local	branches,	the	
customer	will	appear	multiple	times	in	the	result

� Cause:		the	outermost	join	will	duplicate	customer	rows	for	
each	matching	row	in	nested	query

� Solution:		use	a	semijoin to	join	customers	to	the	subquery

15

16

Example IN Subquery (4)
� Our	original	correlated	query:

� SELECT	*	FROM	customer	c	WHERE	c.customer_city IN
(SELECT	b.branch_city
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
WHERE	d.customer_id =	c.customer_id);

� The	decorrelated query:
� SELECT	*	FROM	customer	c	SEMIJOIN

(SELECT	branch_city,	customer_id
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d)	AS	t
ON	(t.customer_id =	c.customer_id AND

c.customer_city =	t.branch_city);
� (Note:		writing	a	semijoin in	SQL	isn’t	widely	supported…)

16

17

Example NOT EXISTS Subquery
� A	simpler	query:		find	customers	who	have	no	bank	
branches	in	their	home	city
� SELECT	*	FROM	customer	c
WHERE	NOT	EXISTS	(SELECT	*	FROM	branch	b

WHERE	b.branch_city =	c.customer_city);
� Again,	this	query	requires	correlated	evaluation

� Not	as	bad	as	previous	query,	since	NOT	EXISTS	only	has	
to	produce	one	row	from	inner	query,	not	all	the	rows…

� If	there’s	an	index	on	branch_city,	this	won’t	be	horribly	
slow,	but	again,	we	are	implementing	a	join	here

� (We	have	fast	equijoin	algorithms;	why	not	use	them?)

17

18

Example NOT EXISTS Subquery (2)
� Example	query:

� SELECT	*	FROM	customer	c
WHERE	NOT	EXISTS	(SELECT	*	FROM	branch	b

WHERE	b.branch_city =	c.customer_city);
� This	query	is	very	easy	to	write	with	an	antijoin:

� SELECT	*	FROM	customer	c	ANTIJOIN branch	b
ON	branch_city =	customer_city;

� Could	also	write	with	an	outer	join:
� SELECT	c.*	FROM	customer	c	LEFT	JOIN	branch	b

ON	branch_city =	customer_city
WHERE	branch_city IS	NULL;

� This	approach	won’t	create	duplicates	of	customers,	like	our	
previous	IN	example	would	have…

18

19

Summary: Nested Subqueries
� Only	scratched	the	surface	of	subquery translation	and	
optimization
� An	incredibly	rich	topic	– tons	of	interesting	research!

� Can	use	basic	tools	we	discussed	today	to	decorrelate
and	optimize	a	pretty	broad	range	of	subqueries
� Outer	joins,	sometimes	against	group/aggregate	results
� Semijoins and	antijoins for	set-membership	subqueries

� An	important	question,	not	considered	for	now:
� Is	the	translated	version	actually	faster?
(Or	when	multiple	options,	which	option	is	fastest?)

� A	planner/optimizer	must	make	that	decision

19

20

Plan-Node Implementations
� Previously:		To	evaluate	SQL	queries,	we	must…
1. Implement	relational	algebra	operations	in	some	way
2. Translate	the	SQL	abstract	syntax	tree	(AST)	into	a	

corresponding	relational	algebra	plan
� Covered	a	variety	of	naïve	translations	that	will	work

3. Figure	out	how	to	evaluate	plan	and	generate	results
� We	will	use	a	pull-based,	pipelined	evaluation	of	query	
plans

� Still	need	implementations	of	our	plan	nodes

21

Select Implementations
� Select	σ plan-nodes	are	easy	to	implement

� Retrieve	tuples	from	child	plan-node	(or	from	a	table)	
until	predicate	is	true,	then	pass	the	tuple	to	parent
� An	unspecified	predicate	is	treated	as	true

� Several	different	kinds,	based	on	source	of	tuples
� File-scan	through	a	table	– no	children;	reads	from	table
� Simple	filter	plan-node	– one	child	plan-node
� (Also	index-scans	– will	discuss	in	a	later	lecture…)

� If	select	predicate	has	an	equality	condition	on	a	key,	it	
can	stop	once	it	returns	its	first	row
� Halves	the	expected	cost	of	the	select	operation

22

Project Implementations
� Project	Π plan-nodes	are	also	easy	to	implement

� Retrieve	next	tuple	from	child	plan-node,	and	compute	an	
output	tuple	based	on	the	project	criteria

� Project	expressions	are	evaluated	in	the	context	of	the	child	
node’s	schema	and	tuple	data
� Child	schema	specifies	variable	names;	tuples	specify	values

� Both	selects	and	projects	can	have	a	“hidden”	cost:
� If	planner/optimizer	is	not	able	to	rewrite	subqueries in	the	
SELECT	clause,	or	in	a	WHERE/HAVING	clause,	either	of	these	
plan-nodes	could	end	up	doing	correlated	evaluation

23

Group/Aggr. Implementations
� Implementing	grouping	and	aggregation	is	similarly	
straightforward

� If	input	tuples	are	sorted	on	grouping	attributes,	can	
implement	a	sort-based	grouping/aggregation	node

� For	each	input	tuple:
� If	grouping-attribute	values	changed	from	previous	input	(or	
child	plan-node	finishes	producing	tuples)	then	the	current	
group	is	completed

� Output	a	tuple	containing	grouping-attribute	values,	and	also	
aggregate	function	values

� Reset	aggregates,	store	new	group-attribute	values,	and	begin	
calculating	the	new	group’s	aggregates

24

Group/Aggr. Implementations (2)
� Sketch	of	sort-based	implementation:		g1,g2,…Ge1,e2,…(E)

current_group =	[]
current_aggregates =	[]
do:
t :=	next	tuple	from	E
if	t !=	null:
group :=	compute	g1,	g2,	…	using	t

if	t ==	null or	group !=	current_group: //	Current	group	is	done
add	join(current_group,	current_aggregates)	to	result
current_group :=	group
reset	current_aggregates

update	current_aggregates using	t
while	t !=	null

25

Group/Aggr. Implementations (3)
� Aggregate	functions	work	differently	from	simple	
scalar	functions
� Simple	functions	take	inputs	and	return	an	output

� Aggregate	functions	are	fed	a	sequence	of	input	values,	
and	update	their	aggregate	state	with	each	input

� Example:		MIN(x)	aggregate	function
� As	a	group	of	input	tuples	is	being	consumed,	MIN(x)	
function	is	handed	each	input	value	in	sequence

� When	group	of	input	tuples	is	completed,	MIN(x)	
function	can	be	queried	for	its	aggregate	result

26

Group/Aggr. Implementations (4)
� If	input	tuples	aren’t	sorted	on	grouping	attributes	
then	a	hash-based	implementation	must	be	used

� Plan-node	maintains	a	hash-table	that	maps	distinct	
values	of	ág1,	g2,	…ñ to	aggregate	functions	áe1,	e2,	…ñ

� No	way	of	knowing	when	all	tuples	for	a	given	group	
have	been	seen…
� Hash-based	implementation	can’t	output	any	results	
until	all	input	tuples	have	been	seen

� This	can	have	serious	memory	implications	for	large	
data	sets	with	large	numbers	of	distinct	groups
� Must	use	external	memory	if	internal	memory	overflows

27

Group/Aggr. Implementations (5)
� Sketch	of	hash-based	implementation:		g1,g2,…Ge1,e2,…(E)

//	Compute	all	groups,	and	their	corresponding	aggregates

group_aggregates =	{}
while	E has	more	tuples:
t :=	next	tuple	from	E
group :=	compute	g1,	g2,	…	using	t
aggregates :=	group_aggregates[group] //	Add	entry	if	missing
update	aggregates using	t

//	Output	all	of	our	computed	groups	and	aggregates	as	tuples

for	group,	aggregates in	group_aggregates:
add	join(group,	aggregates)	to	result

