
CS122	– Lecture	5
Winter	Term,	2018-2019

Last Time: SQL Query Translation
� Began	discussing	SQL	query	translation
� Basic SQL	syntax	maps	easily	to	relational	algebra

� Explored	this	in	CS121
� SELECT	*	FROM	t1,	t2,	…

� t1	× t2	× …
� SELECT	*	FROM	t1,	t2,	…	WHERE	P

� σP(t1	× t2	× …)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P

� Πe1	as	a1,e2	as	a2,…(σP(t1	× t2	× …))

2

SQL Grouping/Aggregation
� Grouping	and	aggregation	are	significantly	more	difficult

� SELECT	g1,	g2,	…,	e1,	e2,	…	FROM	t1,	t2,	…	WHERE	Pw
GROUP	BY	g1,	g2,	…	HAVING	Ph

� g1,	g2,	…	are	expressions	whose	values	are	grouped	on
� e1,	e2,	…	are	expressions	involving	aggregate	functions

� e.g.	MIN(),	MAX(),	COUNT(),	SUM(),	AVG()

� Approximately maps	to:		σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� What	makes	this	challenging:

� g1,	g2,	…	are	not	required	to	be	simple	column	refs
� e1,	e2,	…	are	not	required	to	be	single	aggregate	fns
� Ph can	also	contain	aggregate	function	calls	not	in	ei

3

SQL Grouping/Aggregation (2)
� This	is	an	acceptable	grouping/aggregate	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� Clearly	can’t	use	our	mapping	from	last	slide:
� σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� e.g.	Ph is	SUM(f)	<	20,	but	we	don’t	compute	SUM(f)	in	G step

� Problem:		SQL	mixes	grouping/aggregation,	projection	
and	selection	parts	of	the	query	together

� Need	to	rewrite	query	to	separate	these	different	parts
� Makes	translation	into	relational	algebra	straightforward

4

SQL Grouping/Aggregation (3)
� Our	initial	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� Step	1:		Identify	and	extract	all	aggregate	functions
� Replace	with	auto-generated	column	references
� (Use	names	that	users	can’t	enter,	e.g.	starting	with	“#”)

� Rewrite	the	query:
� SELECT	a	- b	AS	g,	3	*	"#A1"	+	"#A2"	FROM	t
GROUP	BY	a	- b	HAVING	"#A3"	<	20
� #A1	=	MIN(c)										#A2	=	MAX(d	*	e)										#A3	=	SUM(f)

� Now	we	know	what	aggregates	we	need	to	compute

5

SQL Grouping/Aggregation (4)
� Rewritten	query:

� SELECT	a	- b	AS	g,	3	*	"#A1"	+	"#A2"	FROM	t
GROUP	BY	a	- b	HAVING	"#A3"	<	20
� #A1	=	MIN(c)										#A2	=	MAX(d	*	e)										#A3	=	SUM(f)

� Now	we	can	translate	grouping/aggregation	and	HAVING	
clause	into	relational	algebra:
� σ#A3	<	20(a	- bGMIN(c) as	#A1,	MAX(d *	e) as	#A2,	SUM(f) as	#A3(t))

� Finally,	wrap	this	with	a	suitable	project,	based	on	SELECT	
clause	contents
� Πa - b as	g,	3	*	#A1	+	#A2	as	“3	*	MIN(c)	+	MAX(d	*	e)”	(…)
� Note:		second	expression’s	name	is	implementation-specific
� Can	assign	a	placeholder	name,	e.g.	“unnamed1”,	…
� Or,	can	generate	a	name	based	on	expression	being	computed

6

SQL Grouping/Aggregation (5)
� Unfortunately,	we	still	have	a	problem…
� Our	translation:		Πa - b as	g,	…	(σ#A3	<	20(a	- bG…(t)))
� The	project	operation	can’t	compute	expression	a	- b

� a	- b is	already	computed	in	grouping/aggregation	phase
� Before	attempting	to	project,	we	really	also	need	to	
substitute	in	placeholders	for	grouping	expressions
� SELECT	a	- b	AS	g,	3	*	"#A1"	+	"#A2"	FROM	t
GROUP	BY	a	- b	HAVING	"#A3"	<	20
� #A1	=	MIN(c)										#A2	=	MAX(d	*	e)										#A3	=	SUM(f)
� #G1	=	a	- b

7

SQL Grouping/Aggregation (6)
� Finally,	replace	instances	of	grouping	expressions	in	
the	SELECT	clause	with	the	corresponding	names

� Translated:
� SELECT	"#G1"	AS	g,	3	*	"#A1"	+	"#A2"	FROM	t
GROUP	BY	a	- b	[AS	"#G1"]	HAVING	"#A3"	<	20
� #A1	=	MIN(c)										#A2	=	MAX(d	*	e)										#A3	=	SUM(f)
� #G1	=	a	- b

� Now	we	can	carry	on	with	our	project,	as	before
� Π#G1 as	g,	…	(σ#A3<20(a-b as	#G1G…(t)))

� Aside:		this	also	allows	us	to	handle	crazy	SQL	like	
SELECT	3	*	(a	- b)	AS	g,	…	GROUP	BY	a	- b …

8

SQL Grouping/Aggregation (7)
� Finally,	this	is	an	ANSI	SQL	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� GROUP	BY	and	HAVING	clauses	cannot	use	SELECT	aliases
� Some	databases	allow	the	nonstandard	“GROUP	BY	g”	
instead	of	requiring	the	ANSI-standard	“GROUP	BY	a	- b”
� Similarly,	HAVING	can	refer	to	renamed	aggregate	expressions

� Can	use	our	alias	techniques	from	earlier
� e.g.	traverse	SELECT,	record	alias:		g =	a - b
� If	query	says	“GROUP	BY	g”,	substitute	in	definition	of	g
� (Apply	similar	techniques	to	HAVING	clause)

9

Join Expressions
� Original	SQL	form:

� SELECT	…	FROM	t1,	t2,	…	WHERE	P

� List	of	relations	in	FROM	clause

� Any	join	conditions	specified	in	WHERE	clause

� Can’t	specify	outer	joins

� SQL-92	introduced	several	new	forms:
� SELECT	…	FROM	t1	JOIN	t2	ON	t1.a	=	t2.a

� SELECT	…	FROM	t1	JOIN	t2	USING	(a1,	a2,	…)

� SELECT	…	FROM	t1	NATURAL	JOIN	t2

� Can	specify	INNER,	[LEFT|RIGHT|FULL]	OUTER	JOIN

� Also	CROSS	JOIN,	but	cannot	specify	ON,	USING,	or	NATURAL

10

Join Expressions (2)
� SQL	FROM	clauses	can	be	much	more	complex:

� SELECT	*	FROM	t1,	t2	LEFT	JOIN	t3	ON	(t2.a	=	t3.a)
WHERE	t1.b	>	t2.b;

� FROM	clause	is	comma-separated	list	of	join	expressions
� JOIN	expressions	are	binary	operations…

� Operate	on	two	relations;	left-associative
� Similarly,	interpret	FROM	join_expr,	join_expr as	a	
binary	operation
� A	Cartesian	product	between	two	join	expressions
� Expressions	themselves	may	involve	JOIN	operations	
(the	“,”	operator	is	lower	precedence	than	JOIN	keyword)

11

Join Expressions (3)
� FROM	clause	is	parsed	into	a	binary	tree	of	join	exprs

� Can	use	parentheses	to	override	precedence,	where	
necessary

� This	binary	tree	is	straightforward	to	translate
� Translate	left	subtree into	relational	algebra	plan
� Translate	right	subtree into	relational	algebra	plan
� Create	a	new	plan	from	these	subtrees based	on	the	kind	
of	join	being	performed

� Note:		This	is	a	naïve	translation	of	the	join	expression,	
and	probably	horribly	inefficient
� Will	discuss	solutions	for	this	in	the	future

12

Join Expression Details
� Original	SQL	form:

� SELECT	…	FROM	t1,	t2,	…	WHERE	P
� Any	join	conditions	are	specified	in	WHERE	clause

� FROM	clause	produces	a	Cartesian	product	of	t1,	t2,	…
� t1	× t2	× …
� Schema	produced	by	FROM	clause	is	t1.*	È t2.*	È…

� ANSI-standard	SQL:		WHERE	clause	may	only	refer	to	
the	columns	generated	by	the	FROM	clause
� Aliases	in	SELECT	clause	shouldn’t	be	visible	(although	
many	databases	make	them	visible	in	WHERE	clause)

13

Join Expression Details (2)
� SELECT	…	FROM	t1,	t2,	…	WHERE	P

� t1	× t2	× …
� Schema	of	FROM	clause	is	t1.*	È t2.*	È…	(in	that	order)

� To	avoid	ambiguity,	column	names	in	schema	also	include	
corresponding	table	names,	e.g.	t1.a,	t1.b,	t2.a,	t2.c,	etc.
� If	column	name	is	unambiguous,	predicate	can	just	use	
column	name	by	itself

� If	column	name	is	ambiguous,	predicate	must	specify	both	
table	name	and	column	name

� Example:		SELECT	*	FROM	t1,	t2	WHERE	a	>	5	AND	c =	20;
� Not	valid:		column	name	a	is	ambiguous	(given	above	schema)

� Valid:		SELECT	*	FROM	t1,	t2	WHERE	t1.a	>	5	AND	c =	20;

14

Join Expression Details (3)
� SQL-92	join	syntax:

� SELECT	…	FROM	t1	JOIN	t2	ON	t1.a	=	t2.a
� SELECT	…	FROM	t1	JOIN	t2	USING	(a1,	a2,	…)
� SELECT	…	FROM	t1	NATURAL	JOIN	t2
� Can	specify	INNER,	[LEFT|RIGHT|FULL]	OUTER	JOIN

� Also	CROSS	JOIN,	but	cannot	specify	ON,	USING,	or	NATURAL

� ON	clause	is	not	that	challenging
� Similar	to	original	syntax,	but	allows	inner/outer	joins
� Schema	of	“FROM	t1	JOIN	t2	ON	…”	is	t1.*	È t2.*

15

Join Expression Details (4)
� USING	and	NATURAL	joins	are	more	complicated

� SELECT	…	FROM	t1	JOIN	t2	USING	(a1,	a2,	…)

� SELECT	…	FROM	t1	NATURAL	JOIN	t2

� Join	condition	is	inferred	from	the	common	column	names	
(NATURAL	JOIN),	or	generated	from	the	USING	clause

� Also	includes	a	project	to	eliminate	duplicate	column	names	
(project	is	part	of	the	FROM	clause;	affects	WHERE	predicate)

� For	SELECT	*	FROM	t1	NATURAL	JOIN	t2,	or
SELECT	*	FROM	t1	JOIN	t2	USING	(a1,	a2,	…):

� Denote	the	join	columns	as	JC.		These	have	no	table	name.

� For	natural	join,	JC	=	t1	Ç t2;	otherwise,	JC	=	attrs in	USING	clause
� FROM	clause’s	schema	is	JC	È (t1	– JC)	È (t2	– JC)

16

Join Expression Details (5)
� For	SELECT	*	FROM	t1	NATURAL	[???] JOIN	t2:

� Schemas:		t1(a,	b)	and	t2(a,	c)
� FROM	schema:		(a,	t1.b,	t2.c)

� For	natural	inner	join:
� Project	can	use	either	t1.a or	t2.a to	generate	values	of	a

� For	natural	left	outer	join:
� Project	should	use	t1.a;	t2.amay	be	NULL	for	some	rows
� (Similar	for	natural	right	outer	join,	except	t2.a is	used)

� For	natural	full	outer	join:
� Project	should	use	COALESCE(t1.a,	t2.a),	since	either	t1.a
or	t2.a could	be	NULL

17

Join Expression Details (6)
� SELECT	t1.a	FROM	t1	NATURAL	JOIN	t2

� Schemas:		t1(a,	b)	and	t2(a,	c)
� FROM	schema:		(a,	t1.b,	t2.c)

� This	query	is	not	valid	under	the	ANSI	standard,	
because	there	is	no	t1.a	outside	the	FROM	clause
� Some	databases	(e.g.	MySQL)	will	allow	this	query

� This	query	is	valid:
� SELECT	a,	t2.c	FROM	t1	NATURAL	JOIN	t2
� (Technically,	can	also	say	“SELECT	a,	c”	because	cwon’t	
be	ambiguous)

18

Join Expression Details (7)
� SELECT	*	FROM	t1	NATURAL	JOIN	t2	NATURAL	JOIN	t3

� Schemas:		t1(a,	b),	t2(a,	c),	t3(a,	d)
� FROM	schema:		(a,	t1.b,	t2.c,	t3.d)

� This	query	presents	another	challenge
� Step	1:		t1	NATURAL	JOIN	t2

� Join	condition	is:		t1.a =	t2.a
� Result	schema	is	(a,	t1.b,	t2.c)

� Step	2:		natural-join	this	result	with	t3
� Join	condition	is:		a =	t3.a
� Problem:		column-reference	a is	ambiguous

19

Join Expression Details (8)
� SELECT	*	FROM	t1	NATURAL	JOIN	t2	NATURAL	JOIN	t3

� Schemas:		t1(a,	b),	t2(a,	c),	t3(a,	d)
� FROM	schema:		(a,	t1.b,	t2.c,	t3.d)

� Generate	placeholder	table	names	to	avoid	ambiguities

� Step	1	(revised):		t1	NATURAL	JOIN	t2
� Join	condition	is:		t1.a =	t2.a
� Result	schema	is	#R1(a,	t1.b,	t2.c)

� Step	2	(revised):		natural-join	this	result	with	t3
� Join	condition	is:		#R1.a =	t3.a
� Result	schema	is	#R2(a,	t1.b,	t2.c,	t3.d)

20

Mapping SQL Joins into Plans
� Summary:		translating	SQL	joins	has	its	own	challenges
� Primarily	center	around	natural	joins,	and	joins	with	
the	USING	clause:
� Must	generate	an	appropriate	schema	to	eliminate	
duplicate	columns

� Must	use	COALESCE()	operations	on	join-columns	used	
in	full	outer	joins

� May	need	to	deal	with	ambiguous	column	names	when	
more	than	two	tables	are	natural-joined	together

� (All	surmountable;	just	annoying…)

21

Nested Subqueries
� SQL	queries	can	also	include	nested	subqueries
� Subqueries	can	appear	in	the	SELECT	clause:

� SELECT	customer_id,
(SELECT	SUM(balance)
FROM	loan	JOIN	borrower	b
WHERE	b.customer_id	=	c.customer_id)	tot_bal

FROM	customer	c;
� (Compute	total	of	each	customer’s	loan	balances)

� Must	be	a	scalar	subquery
� Must	produce	exactly	one	row	and	one	column

� This	is	almost	always	a	correlated	subquery
� Inner	query	refers	to	an	enclosing	query’s	values
� Requires	correlated	evaluation	to	compute	the	results

22

Nested Subqueries (2)
� Subqueries	can	also	appear	in	the	FROM	clause:

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;
� Called	a	derived	relation

� The	table	is	produced	by	a	subquery,	instead	of	being	read	
from	a	file	(a.k.a.	a	base	relation)

� Cannot	be	a	correlated	subquery
� …at	least,	not	with	respect	to	the	immediately	enclosing	query
� Could	still	be	correlated	with	a	query	further	out,	if	parent	
appears	in	a	SELECT	expression,	or	a	WHERE	predicate,	etc.

23

Nested Subqueries (3)
� Subqueries	can	also	appear	in	the	WHERE	clause:

� SELECT	employee_id,	last_name,	first_name
FROM	employees	e	WHERE	e.is_manager	=	0	AND
EXISTS	(SELECT	*	FROM	employees	m

WHERE	m.department	=	e.department	AND
m.is_manager	=	1	AND	m.salary	<	e.salary);

� (Find	non-manager	employees	who	make	more	money	
than	some	manager	in	the	same	department)

� Also,	IN/NOT	IN	operators,	ANY/SOME/ALL	queries,	
and	scalar	subqueries	as	well

� Again,	could	be	a	correlated	subquery,	and	often	is.		L

24

Subqueries in FROM Clause
� FROM	subqueries are	the	easiest	to	deal	with!		J

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;
� To	generate	execution	plan	for	full	query:

� Simply	generate	execution	plan	for	the	derived	relation
(e.g.	recursive	call	to	planner	with	subquery’s	AST)

� Use	the	subquery’s	plan	as	an	input	into	the	outer	query	
(as	if	it	were	another	table	in	the	FROM	clause)

26

Subqueries in FROM Clause (2)
� Our	example:

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;

� Subquery	plan:

game_scores

G username
MAX(score)

users

θ

Π
u.username,	u.email,	s.max_score

u.username =	s.username

game_scores

G username
MAX(score)

� Full	plan:

27

FROM Subqueries and Views
� Views	will	also	create	subqueries in	the	FROM	clause

� CREATE	VIEW	top_scores	AS
SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username;

� SELECT	u.username,	email,	max_score
FROM	users	u,	top_scores	s
WHERE	u.username	=	s.username;

� Simple	substitution	of	view’s	definition	creates	a	nested	
subquery in	the	FROM	clause:
� SELECT	u.username,	email,	max_score
FROM	users	u,	(SELECT	username,	MAX(score)	AS	max_score

FROM	game_scores GROUP	BY	username)	s
WHERE	u.username =	s.username;

28

FROM Subqueries and Views (2)
� Two	options	as	to	how	this	is	done
� Option	1:

� When	view	is	created,	database	can	construct	a	relational	
algebra	plan	for	the	view,	and	save	it.

� When	a	query	references	the	view,	simply	use	the	view’s	plan	
as	a	subplan	in	the	referencing	query.

� Option	2:
� When	view	is	created,	database	parses	and	verifies	the	SQL,	
but	doesn’t	generate	a	relational	algebra	plan.

� When	a	query	references	the	view,	modify	the	query’s	SQL	to	
use	the	view’s	definition,	then	generate	a	plan.

� Second	option	requires	more	work	during	planning,	but	
potentially	allows	for	greater	optimizations	to	be	applied

29

