
CS122	– Lecture	4
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SQL Query Translation
� Last	time,	introduced	query	evaluation	pipeline

� Queries	translated	into	an	abstract	syntax	tree	(AST),	
then	into	a	plan	based	on	relational	algebra	primitives

� Optimizations	can	be	applied	at	AST	and/or	plan	levels
� Evaluation	engine	executes	the	plan	to	produce	results
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SQL Data Manipulation
� Can	handle	SELECT,	INSERT,	UPDATE,	DELETE	all	with	
same	evaluation	pipeline

� A	good	idea	anyway,	since	INSERT,	UPDATE,	DELETE	can	all	
have	subqueries	in	them!
INSERT	INTO	t1	(a,	b,	c)
SELECT	a,	b +	2,	c – 5	FROM	t2	WHERE	d >	5;

UPDATE	t1	SET	a	=	a	+	5
WHERE	c IN	(SELECT	c FROM	t2);

UPDATE	t1	SET	a	=	(SELECT	a	FROM	t2	WHERE	t1.b	=	t2.b);
DELETE	FROM	t1
WHERE	a	=	(SELECT	MAX(a)	FROM	t2	WHERE	t1.b	=	t2.b);
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SQL Data Manipulation (2)
� All	four	statements	generate	a	set	of	tuples…

� Only	difference	is	what	we	do	with	them.
� SELECT	selects	tuples	for	display/transmission	to	client
� INSERT	selects	tuples	for	insertion	into	a	table
� UPDATE	selects	tuples	for	modification
� DELETE	selects	tuples	for	removal

� NanoDB query	evaluator	takes	an	execution	plan,	and	a	
tuple-processor	that	handles	the	results
� For	each	tuple	produced	by	the	execution	plan,	the	tuple-
processor	does	something	with	the	tuple

� e.g.	the	TupleUpdater modifies	the	tuple	based	on	the	
UPDATE	statement	issued	to	the	database
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SQL Data Manipulation (3)
EvalStats QueryEvaluator.executePlan(
PlanNode plan,	TupleProcessor processor)

� Evaluator	also	returns	statistics	about	the	evaluation
� Databases	generally	tell	you	how	many	rows	were	
selected/inserted/updated/deleted,	and	how	long	the	
operation	took

� Not	all	tuples	are	created	equal!
� Some	tuples	can	simply	be	displayed	or	sent	to	client
� Some	tuples	must	support	modification	or	deletion
� Databases	also	have	a	notion	of	“l-values”	and	“r-values”
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L-Values and R-Values
� Only	certain	expressions	can	be	used	on	the	left-hand	side	
of	an	assignment	operation

� Example:		a = 5 + b * 3;
� a,	b,	5 and	3 are	all	values
� Only	some	of	these	can	be	the	target	of	an	assignment

� L-values	are	values	with	an	associated	location/address
� Knowing	the	location	allows	us	to	modify	the	value
� “L”	indicates	it	can	appear	on	left-hand	side	of	an	assignment

� R-values	don’t	have	a	location
� i.e.	the	value	cannot	be	a	target	of	an	assignment	operation
� “R”	indicates	it	must	be	on	right-hand	side	of	the	assignment
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Kinds of Tuples
� Different	flavors	of	tuples	in	a	database	engine
� Some	tuples	are	backed	by	a	page	in	a	database	table

� Reading	values	from	tuple	come	straight	from	data	page
� Writing	to	the	tuple	modifies	the	data	page	in	memory
� (page	must	then	be	flushed	back	to	disk)
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data: …
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Kinds of Tuples (2)
� Other	tuples	contain	computed	values,	and	are	stored	
in	memory	only
� This	query	generates	computed	results:
SELECT	username,	SUM(score)	AS	total_score
FROM	game_scores GROUP	BY	username;

� NanoDB represents	these	as	TupleLiteral objects

� Many	database	implementations	represent	all	tuples	in	
the	same	format,	in	memory	buffers
� Allows	them	to	be	written	to	disk	very	easily,	if	needed
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Kinds of Tuples (3)
� SELECT	and	INSERT…SELECT	statements	don’t	require	
lvalue tuples
� Results	are	either	displayed,	or	added	to	a	data	file

� UPDATE	and	DELETE	require lvalue tuples
� Selected	tuples	are	modified	or	removed!

� Actually	modifies	a	data	file
� Plans	generated	for	UPDATE	and	DELETE	must	take	this	
into	account

� Constrains	the	optimizations	that	may	be	employed
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SQL Query Translation
� The	query	evaluation	pipeline:

� To	evaluate	SQL	queries,	must	solve	several	problems:
1. Implement	relational	algebra	operations	in	some	way
2. Translate	the	SQL	abstract	syntax	tree	(AST)	into	a	

corresponding	relational	algebra	plan
3. Figure	out	how	to	evaluate	plan	and	generate	results
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Plan Creation and Optimization
� Some	databases	use	slightly	different	representations	
between	initial	query	plan	and	optimized	plan
� e.g.	initial	plan	uses	abstract	relational	algebra	
expressions	without	any	implementation	details	at	all

� Query	optimizer	adds	in	these	details	as	annotations
� Annotated	plan	nodes	are	called	evaluation	primitives

� They	can	be	directly	used	to	evaluate	the	query	plan
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Plan Creation and Optimization
� Other	databases	use	the	same	representation	for	both

� All generated	plans	contain	implementation	details
� Initial	query	plans	may	be	very	unoptimized	and	use
the	slowest,	most	general	implementations

� Optimizations	can	replace	slow	implementations	with	
faster	ones,	and/or	apply	other	transformations

� (NanoDB	uses	this	approach)
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Evaluation Primitives
� Implementations	of	relational	algebra	operations	are	
called	evaluation	primitives

� Don’t	always	correspond	directly	to	relational	algebra

� Example:

� SELECT	*	FROM	t WHERE	a	=	15

� σa=15(t)
� If	t is	a	heap	file:

� Could	create	two	components,	a	select

node,	and	another	file-scan	node	that
always	produces	all	tuples	in	t
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Evaluation Primitives (2)
� Example:

� SELECT	*	FROM	t WHERE	a	=	15

� σa=15(t)
� What	if	t is	ordered	or	hashed	on	attribute	a?
What	if	t has	an	(ordered	or	hashed)	index	on	a?
� Can’t	really	take	advantage	of	file	organization	or	other	access	
paths	if	select-predicate	is	applied	separately

� Can	also	create	a	file-scan	node	with	a	predicate

� Evaluation	primitives	are	often	more	powerful	than	their	
corresponding	relational	algebra	operations

� Allows	us	to	optimize	the	implementations,	then
use	the	optimizations	when	constructing	our	plans
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Evaluation Primitives (3)
� Example:

� SELECT	*	FROM	t AS	t1,	t AS	t2
WHERE	t1.a	<	t2.a

� Table	t is	accessed	twice,	and	is
renamed	in	query	plan

� Insert	extra	rename	nodes	into	plan?
� Sole	operation	is	to	rename	table
in	node’s	output	schema…

� (This	is	NanoDB’s approach.)
� Or,	give	plan	nodes	ability	to	handle	simple	renaming	ops?

� When	plan	nodes	produce	their	schemas,	can	easily	apply	
renaming	at	that	point
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Evaluation Primitives (4)
� Join	operations	usually	implemented	with	theta-join

� More	advanced/flexible	than	simple	translation	using	
Cartesian	product,	or	simple	natural-join	operator

� Implementation	can	also	be	configured	to	produce	inner	
join,	or	left/right/full	outer	join,	where	supported

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;
� Can	evaluate	in	multiple	ways:
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Evaluation Primitives (5)
� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� Ideally,	can	implement	theta-join	to	take	advantage	of	
join	condition	when	possible
� Perform	equijoins	more	quickly
� Take	advantage	of	ordered	data,	or	indexes	on	inputs
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Evaluation Primitives (6)
� Many	join	implementations	can	do	several	kinds	of	join

� Implement	inner	join,	left	outer	join,	full	outer	join
� Implement	semijoin and	antijoin operations	as	well
(will	discuss	more	in	a	future	lecture)

� Configure	plan	node	to	do	the	required	operation	in	plan
� By	combining	multiple	operations	in	plan	nodes:

� Can	implement	wide	range	of	queries	without	needing	
large,	complicated	plans,	or	many	kinds	of	plan	nodes

� Can	take	advantage	of	certain	cases	to	implement	the	
operation	in	a	much	faster	way
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Plan Evaluation
� Previous	example,	slightly	altered:

� SELECT	c FROM	t1,	t2
WHERE	t1.a	=	t2.a	AND	t2.b	>	5

� One	evaluation	approach:
� Each	node	is	evaluated	completely,	and	its	results	are	
saved	in	a	temporary	table	(postorder tree	traversal)
� “Evaluate”	t1	à t1 (no-op)
� Evaluate	σb>5(t2)	à temp1
� Evaluate					t1.a=t2.a(t1,	temp1)	à temp2
� Evaluate	Πt2.c(temp2)	à result

19

t1 t2

θ
t1.a =	t2.a

t2.b >	5

Π
t2.c



Plan Evaluation (2)
� Called	materialized	evaluation

� Each	node’s	results	are	materialized into
a	temporary	table	(possibly	onto	disk)

� Issues	with	this	approach?
� For	large	tables,	causes	many	additional disk	accesses	on	
top	of	ones	already	required	for	plan-node	evaluation!

� (Small	temporary	results	can	be	held	in	memory.)
� Another	evaluation	approach:		pipelined	evaluation

� Evaluate	multiple	plan	nodes	simultaneously
� Results	are	passed	tuple-by-tuple	to	the	next	plan	node
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Plan Evaluation (3)
� Several	ways	to	implement	pipelined	evaluation
� Demand-driven pipeline:

� Rows	are	requested	(pulled)	from	top	of	plan
� When	a	plan-node	must	produce	a	row,	it
requests	rows	from	its	child	nodes	until	it
can	produce	one

� Example:
� Top-level	output	loop	requests	a	row	from	Πt2.c node
� Πt2.c node	requests	the	next	row	from					t1.a=t2.a node
� t1.a=t2.a node	requests	rows	from	its	children	until	it	can	
produce	a	joined	row

� σt2.b>5 node	scans	through	t2	until	it	finds	a	row	with	b >	5
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Plan Evaluation (4)
� Producer-driven pipeline:

� Each	plan-node	independently	generates
rows	and	pushes	them	up	the	plan

� Plan	nodes	communicate	via	queues
� Primarily	used	in	parallel	databases

� Planner	hands	subplans (or	individual	plan	nodes)	to	
different	processors	to	compute

� Processors	independently	evaluate	plan	components	and	
push	tuples	to	the	next	stage	in	the	plan

� Sequential	databases	generally	use	demand-driven	
pipelines	for	query	evaluation
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Blocking Operations
� Not	all	operations	can	be	pipelined

� An	obvious	one:		sorting
� SELECT	*	FROM	t WHERE	a	<	25	ORDER	BY	b;

� Sort	plan-node	must	completely	consume
its	input	before	it	can	produce	any	rows

� These	are	called	blocking	operations
� Some	databases	take	blocking	operations	into	account

� e.g.	PostgreSQL’s planner	computes	two	estimates	for	each	
plan	node:

� the	cost	to	produce	all	rows

� the	cost	to	produce	the	first	row

� For	e.g.	EXISTS	subquery,	want	to	minimize	time	to	first	row
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Blocking Operations (2)
� Some	operations	can	be	implemented	in	blocking	or	in	
pipelined	ways

� Grouping/aggregation	operation
� SELECT	username,	SUM(score)	AS	total_score
FROM	game_scores GROUP	BY	username;

usernameGsum(score)	as total_score(game_scores)

� If	incoming	tuples	are	already	sorted	on	username:
� Can	apply	aggregate	function	to	runs	of	tuples	with	same	
username value,	and	produce	output	rows	along	the	way

� If	incoming	tuples	are	not	sorted	on	username:
� Must	either	use	a	hash-table,	or	must	sort	internally

� Either	way,	the	operation	will	be	blocking
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SQL Query Translation (2)
� For	now,	ignore	the	question	of	how	to	implement	
specific	relational	algebra	operations
� (Most	are	straightforward	anyway)

� SQL	doesn’t	map	directly	to	the	relational	algebra
� Nested	subqueries!!!!		Correlated	evaluation!!!!
� Grouping	and	aggregation	is	also	complicated

� Basic SQL	syntax	maps	easily	to	relational	algebra
� Explored	this	in	CS121
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Mapping Basic SQL Queries
� SELECT	*	FROM	t1,	t2,	…

� t1	× t2	× …
� SELECT	*	FROM	t1,	t2,	…	WHERE	P

� σP(t1	× t2	× …)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…

� e1,	e2,	…	are	expressions	using	columns	in	t1,	t2,	…
� a1,	a2,	…	are	aliases	(alternate	names)	for	e1,	e2,	…
� Πe1	as	a1,e2	as	a2,…(t1	× t2	× …)

� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P
� Πe1	as	a1,e2	as	a2,…(σP(t1	× t2	× …))
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Mapping Basic SQL Queries (2)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P

� Πe1,e2,…(σP(t1	× t2	× …))
� This	mapping	is	somewhat	confusing,	because	many	DBs	
accept	queries	that	don’t	work	with	this	translation

� Example:		SELECT	a	+	c	AS	v FROM	t	WHERE	v <	25;
� Following	the	above	mapping:		Πa+c as	v(σv<25(t))
� Doesn’t	make	sense;	v isn’t	defined	in	select	predicate!

� The	SQL	standard	is	very	clear	(and	simple!):
� P	is	only	allowed	to	refer	to	columns	in	the	FROM	clause
� (ignoring	correlated	evaluation	for	the	time	being)
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Mapping Basic SQL Queries (3)
� Can	easily	support	non-standard	syntax	by	recording	
select-clause	aliases	in	the	AST	representation

� Example:		SELECT	a	+	c	AS	v	FROM	t	WHERE	v	<	25;
� Traverse	SELECT	clause;	record	alias:		v =	a +	c
� In	the	WHERE	predicate:		anytime	v is	used,	replace	it	
with	expression	a +	c
� Also	do	this	with	ON	clauses	in	joins,	HAVING	clauses,	etc.

� Allows	us	to	follow	previous	mapping:		Πa+c as	v(σa+c<25(t))

� Other	techniques	as	well,	but	same	idea
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SQL Grouping/Aggregation
� Grouping	and	aggregation	are	significantly	more	difficult

� SELECT	g1,	g2,	…,	e1,	e2,	…	FROM	t1,	t2,	…	WHERE	Pw
GROUP	BY	g1,	g2,	…	HAVING	Ph

� g1,	g2,	…	are	expressions	whose	values	are	grouped	on
� e1,	e2,	…	are	expressions	involving	aggregate	functions

� e.g.	MIN(),	MAX(),	COUNT(),	SUM(),	AVG()

� Approximately maps	to:		σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� What	makes	this	challenging:

� g1,	g2,	…	are	not	required	to	be	simple	column	refs
� e1,	e2,	…	are	not	required	to	be	single	aggregate	fns
� Ph can	also	contain	aggregate	function	calls	not	in	ei
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SQL Grouping/Aggregation (2)
� This	is	an	acceptable	grouping/aggregate	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� Clearly	can’t	use	our	mapping	from	last	slide:
� σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� e.g.	Ph is	SUM(f)	<	20,	but	we	don’t	compute	SUM(f)	in	G step

� Problem:		SQL	mixes	grouping/aggregation,	projection	
and	selection	parts	of	the	query	together

� Need	to	rewrite	query	to	separate	these	different	parts
� Makes	translation	into	relational	algebra	straightforward
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