
CS122	– Lecture	4
Winter	Term,	2018-2019



SQL Query Translation
� Last	time,	introduced	query	evaluation	pipeline

� Queries	translated	into	an	abstract	syntax	tree	(AST),	
then	into	a	plan	based	on	relational	algebra	primitives

� Optimizations	can	be	applied	at	AST	and/or	plan	levels
� Evaluation	engine	executes	the	plan	to	produce	results

2

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan
SQL

translator

relational
algebra

plan



SQL Data Manipulation
� Can	handle	SELECT,	INSERT,	UPDATE,	DELETE	all	with	
same	evaluation	pipeline

� A	good	idea	anyway,	since	INSERT,	UPDATE,	DELETE	can	all	
have	subqueries	in	them!
INSERT	INTO	t1	(a,	b,	c)
SELECT	a,	b +	2,	c – 5	FROM	t2	WHERE	d >	5;

UPDATE	t1	SET	a	=	a	+	5
WHERE	c IN	(SELECT	c FROM	t2);

UPDATE	t1	SET	a	=	(SELECT	a	FROM	t2	WHERE	t1.b	=	t2.b);
DELETE	FROM	t1
WHERE	a	=	(SELECT	MAX(a)	FROM	t2	WHERE	t1.b	=	t2.b);

3



SQL Data Manipulation (2)
� All	four	statements	generate	a	set	of	tuples…

� Only	difference	is	what	we	do	with	them.
� SELECT	selects	tuples	for	display/transmission	to	client
� INSERT	selects	tuples	for	insertion	into	a	table
� UPDATE	selects	tuples	for	modification
� DELETE	selects	tuples	for	removal

� NanoDB query	evaluator	takes	an	execution	plan,	and	a	
tuple-processor	that	handles	the	results
� For	each	tuple	produced	by	the	execution	plan,	the	tuple-
processor	does	something	with	the	tuple

� e.g.	the	TupleUpdater modifies	the	tuple	based	on	the	
UPDATE	statement	issued	to	the	database

4



SQL Data Manipulation (3)
EvalStats QueryEvaluator.executePlan(
PlanNode plan,	TupleProcessor processor)

� Evaluator	also	returns	statistics	about	the	evaluation
� Databases	generally	tell	you	how	many	rows	were	
selected/inserted/updated/deleted,	and	how	long	the	
operation	took

� Not	all	tuples	are	created	equal!
� Some	tuples	can	simply	be	displayed	or	sent	to	client
� Some	tuples	must	support	modification	or	deletion
� Databases	also	have	a	notion	of	“l-values”	and	“r-values”

5



L-Values and R-Values
� Only	certain	expressions	can	be	used	on	the	left-hand	side	
of	an	assignment	operation

� Example:		a = 5 + b * 3;
� a,	b,	5 and	3 are	all	values
� Only	some	of	these	can	be	the	target	of	an	assignment

� L-values	are	values	with	an	associated	location/address
� Knowing	the	location	allows	us	to	modify	the	value
� “L”	indicates	it	can	appear	on	left-hand	side	of	an	assignment

� R-values	don’t	have	a	location
� i.e.	the	value	cannot	be	a	target	of	an	assignment	operation
� “R”	indicates	it	must	be	on	right-hand	side	of	the	assignment

6



Kinds of Tuples
� Different	flavors	of	tuples	in	a	database	engine
� Some	tuples	are	backed	by	a	page	in	a	database	table

� Reading	values	from	tuple	come	straight	from	data	page
� Writing	to	the	tuple	modifies	the	data	page	in	memory
� (page	must	then	be	flushed	back	to	disk)

3

Block	353

Block	352

Block	354

PageTuple Object

file: t1.dat
block: 353
offset: 1
data: …

7



Kinds of Tuples (2)
� Other	tuples	contain	computed	values,	and	are	stored	
in	memory	only
� This	query	generates	computed	results:
SELECT	username,	SUM(score)	AS	total_score
FROM	game_scores GROUP	BY	username;

� NanoDB represents	these	as	TupleLiteral objects

� Many	database	implementations	represent	all	tuples	in	
the	same	format,	in	memory	buffers
� Allows	them	to	be	written	to	disk	very	easily,	if	needed

8



Kinds of Tuples (3)
� SELECT	and	INSERT…SELECT	statements	don’t	require	
lvalue tuples
� Results	are	either	displayed,	or	added	to	a	data	file

� UPDATE	and	DELETE	require lvalue tuples
� Selected	tuples	are	modified	or	removed!

� Actually	modifies	a	data	file
� Plans	generated	for	UPDATE	and	DELETE	must	take	this	
into	account

� Constrains	the	optimizations	that	may	be	employed

9



SQL Query Translation
� The	query	evaluation	pipeline:

� To	evaluate	SQL	queries,	must	solve	several	problems:
1. Implement	relational	algebra	operations	in	some	way
2. Translate	the	SQL	abstract	syntax	tree	(AST)	into	a	

corresponding	relational	algebra	plan
3. Figure	out	how	to	evaluate	plan	and	generate	results

10

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan
SQL

translator

relational
algebra

plan



Plan Creation and Optimization
� Some	databases	use	slightly	different	representations	
between	initial	query	plan	and	optimized	plan
� e.g.	initial	plan	uses	abstract	relational	algebra	
expressions	without	any	implementation	details	at	all

� Query	optimizer	adds	in	these	details	as	annotations
� Annotated	plan	nodes	are	called	evaluation	primitives

� They	can	be	directly	used	to	evaluate	the	query	plan

11

query plan
optimizer

annotated
execution

plan

table statistics

SQL
translator

relational
algebra

plan



Plan Creation and Optimization
� Other	databases	use	the	same	representation	for	both

� All generated	plans	contain	implementation	details
� Initial	query	plans	may	be	very	unoptimized	and	use
the	slowest,	most	general	implementations

� Optimizations	can	replace	slow	implementations	with	
faster	ones,	and/or	apply	other	transformations

� (NanoDB	uses	this	approach)

12

query plan
optimizer

annotated
execution

plan

table statistics

SQL
translator

relational
algebra

plan



Evaluation Primitives
� Implementations	of	relational	algebra	operations	are	
called	evaluation	primitives

� Don’t	always	correspond	directly	to	relational	algebra

� Example:

� SELECT	*	FROM	t WHERE	a	=	15

� σa=15(t)
� If	t is	a	heap	file:

� Could	create	two	components,	a	select

node,	and	another	file-scan	node	that
always	produces	all	tuples	in	t

13

σ
a=15

t



Evaluation Primitives (2)
� Example:

� SELECT	*	FROM	t WHERE	a	=	15

� σa=15(t)
� What	if	t is	ordered	or	hashed	on	attribute	a?
What	if	t has	an	(ordered	or	hashed)	index	on	a?
� Can’t	really	take	advantage	of	file	organization	or	other	access	
paths	if	select-predicate	is	applied	separately

� Can	also	create	a	file-scan	node	with	a	predicate

� Evaluation	primitives	are	often	more	powerful	than	their	
corresponding	relational	algebra	operations

� Allows	us	to	optimize	the	implementations,	then
use	the	optimizations	when	constructing	our	plans

14

σ
a=15

t

t a=15



Evaluation Primitives (3)
� Example:

� SELECT	*	FROM	t AS	t1,	t AS	t2
WHERE	t1.a	<	t2.a

� Table	t is	accessed	twice,	and	is
renamed	in	query	plan

� Insert	extra	rename	nodes	into	plan?
� Sole	operation	is	to	rename	table
in	node’s	output	schema…

� (This	is	NanoDB’s approach.)
� Or,	give	plan	nodes	ability	to	handle	simple	renaming	ops?

� When	plan	nodes	produce	their	schemas,	can	easily	apply	
renaming	at	that	point

15

σ
t1.a <	t2.a

t

ρ
t1

t

ρ
t2

×



Evaluation Primitives (4)
� Join	operations	usually	implemented	with	theta-join

� More	advanced/flexible	than	simple	translation	using	
Cartesian	product,	or	simple	natural-join	operator

� Implementation	can	also	be	configured	to	produce	inner	
join,	or	left/right/full	outer	join,	where	supported

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;
� Can	evaluate	in	multiple	ways:

16

σ
t2.b >	5

t1 t2

θ
t1.a =	t2.a

t1 t2

θ
t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a� t2.b >	5

t1 t2

θ
true



Evaluation Primitives (5)
� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� Ideally,	can	implement	theta-join	to	take	advantage	of	
join	condition	when	possible
� Perform	equijoins	more	quickly
� Take	advantage	of	ordered	data,	or	indexes	on	inputs

17

σ
t2.b >	5

t1 t2

θ
t1.a =	t2.a

t1 t2

θ
t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a� t2.b >	5

t1 t2

θ
true



Evaluation Primitives (6)
� Many	join	implementations	can	do	several	kinds	of	join

� Implement	inner	join,	left	outer	join,	full	outer	join
� Implement	semijoin and	antijoin operations	as	well
(will	discuss	more	in	a	future	lecture)

� Configure	plan	node	to	do	the	required	operation	in	plan
� By	combining	multiple	operations	in	plan	nodes:

� Can	implement	wide	range	of	queries	without	needing	
large,	complicated	plans,	or	many	kinds	of	plan	nodes

� Can	take	advantage	of	certain	cases	to	implement	the	
operation	in	a	much	faster	way

18



Plan Evaluation
� Previous	example,	slightly	altered:

� SELECT	c FROM	t1,	t2
WHERE	t1.a	=	t2.a	AND	t2.b	>	5

� One	evaluation	approach:
� Each	node	is	evaluated	completely,	and	its	results	are	
saved	in	a	temporary	table	(postorder tree	traversal)
� “Evaluate”	t1	à t1 (no-op)
� Evaluate	σb>5(t2)	à temp1
� Evaluate					t1.a=t2.a(t1,	temp1)	à temp2
� Evaluate	Πt2.c(temp2)	à result

19

t1 t2

θ
t1.a =	t2.a

t2.b >	5

Π
t2.c



Plan Evaluation (2)
� Called	materialized	evaluation

� Each	node’s	results	are	materialized into
a	temporary	table	(possibly	onto	disk)

� Issues	with	this	approach?
� For	large	tables,	causes	many	additional disk	accesses	on	
top	of	ones	already	required	for	plan-node	evaluation!

� (Small	temporary	results	can	be	held	in	memory.)
� Another	evaluation	approach:		pipelined	evaluation

� Evaluate	multiple	plan	nodes	simultaneously
� Results	are	passed	tuple-by-tuple	to	the	next	plan	node

20

t1 t2

θ
t1.a =	t2.a

t2.b >	5

Π
t2.c



Plan Evaluation (3)
� Several	ways	to	implement	pipelined	evaluation
� Demand-driven pipeline:

� Rows	are	requested	(pulled)	from	top	of	plan
� When	a	plan-node	must	produce	a	row,	it
requests	rows	from	its	child	nodes	until	it
can	produce	one

� Example:
� Top-level	output	loop	requests	a	row	from	Πt2.c node
� Πt2.c node	requests	the	next	row	from					t1.a=t2.a node
� t1.a=t2.a node	requests	rows	from	its	children	until	it	can	
produce	a	joined	row

� σt2.b>5 node	scans	through	t2	until	it	finds	a	row	with	b >	5

21

t1 t2

θ
t1.a =	t2.a

t2.b >	5

Π
t2.c



Plan Evaluation (4)
� Producer-driven pipeline:

� Each	plan-node	independently	generates
rows	and	pushes	them	up	the	plan

� Plan	nodes	communicate	via	queues
� Primarily	used	in	parallel	databases

� Planner	hands	subplans (or	individual	plan	nodes)	to	
different	processors	to	compute

� Processors	independently	evaluate	plan	components	and	
push	tuples	to	the	next	stage	in	the	plan

� Sequential	databases	generally	use	demand-driven	
pipelines	for	query	evaluation

22

t1 t2

θ
t1.a =	t2.a

t2.b >	5

Π
t2.c



Blocking Operations
� Not	all	operations	can	be	pipelined

� An	obvious	one:		sorting
� SELECT	*	FROM	t WHERE	a	<	25	ORDER	BY	b;

� Sort	plan-node	must	completely	consume
its	input	before	it	can	produce	any	rows

� These	are	called	blocking	operations
� Some	databases	take	blocking	operations	into	account

� e.g.	PostgreSQL’s planner	computes	two	estimates	for	each	
plan	node:

� the	cost	to	produce	all	rows

� the	cost	to	produce	the	first	row

� For	e.g.	EXISTS	subquery,	want	to	minimize	time	to	first	row

23

t a <	25

SORT

b



Blocking Operations (2)
� Some	operations	can	be	implemented	in	blocking	or	in	
pipelined	ways

� Grouping/aggregation	operation
� SELECT	username,	SUM(score)	AS	total_score
FROM	game_scores GROUP	BY	username;

usernameGsum(score)	as total_score(game_scores)

� If	incoming	tuples	are	already	sorted	on	username:
� Can	apply	aggregate	function	to	runs	of	tuples	with	same	
username value,	and	produce	output	rows	along	the	way

� If	incoming	tuples	are	not	sorted	on	username:
� Must	either	use	a	hash-table,	or	must	sort	internally

� Either	way,	the	operation	will	be	blocking

24



SQL Query Translation (2)
� For	now,	ignore	the	question	of	how	to	implement	
specific	relational	algebra	operations
� (Most	are	straightforward	anyway)

� SQL	doesn’t	map	directly	to	the	relational	algebra
� Nested	subqueries!!!!		Correlated	evaluation!!!!
� Grouping	and	aggregation	is	also	complicated

� Basic SQL	syntax	maps	easily	to	relational	algebra
� Explored	this	in	CS121

25



Mapping Basic SQL Queries
� SELECT	*	FROM	t1,	t2,	…

� t1	× t2	× …
� SELECT	*	FROM	t1,	t2,	…	WHERE	P

� σP(t1	× t2	× …)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…

� e1,	e2,	…	are	expressions	using	columns	in	t1,	t2,	…
� a1,	a2,	…	are	aliases	(alternate	names)	for	e1,	e2,	…
� Πe1	as	a1,e2	as	a2,…(t1	× t2	× …)

� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P
� Πe1	as	a1,e2	as	a2,…(σP(t1	× t2	× …))

26



Mapping Basic SQL Queries (2)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P

� Πe1,e2,…(σP(t1	× t2	× …))
� This	mapping	is	somewhat	confusing,	because	many	DBs	
accept	queries	that	don’t	work	with	this	translation

� Example:		SELECT	a	+	c	AS	v FROM	t	WHERE	v <	25;
� Following	the	above	mapping:		Πa+c as	v(σv<25(t))
� Doesn’t	make	sense;	v isn’t	defined	in	select	predicate!

� The	SQL	standard	is	very	clear	(and	simple!):
� P	is	only	allowed	to	refer	to	columns	in	the	FROM	clause
� (ignoring	correlated	evaluation	for	the	time	being)

27



Mapping Basic SQL Queries (3)
� Can	easily	support	non-standard	syntax	by	recording	
select-clause	aliases	in	the	AST	representation

� Example:		SELECT	a	+	c	AS	v	FROM	t	WHERE	v	<	25;
� Traverse	SELECT	clause;	record	alias:		v =	a +	c
� In	the	WHERE	predicate:		anytime	v is	used,	replace	it	
with	expression	a +	c
� Also	do	this	with	ON	clauses	in	joins,	HAVING	clauses,	etc.

� Allows	us	to	follow	previous	mapping:		Πa+c as	v(σa+c<25(t))

� Other	techniques	as	well,	but	same	idea

28



SQL Grouping/Aggregation
� Grouping	and	aggregation	are	significantly	more	difficult

� SELECT	g1,	g2,	…,	e1,	e2,	…	FROM	t1,	t2,	…	WHERE	Pw
GROUP	BY	g1,	g2,	…	HAVING	Ph

� g1,	g2,	…	are	expressions	whose	values	are	grouped	on
� e1,	e2,	…	are	expressions	involving	aggregate	functions

� e.g.	MIN(),	MAX(),	COUNT(),	SUM(),	AVG()

� Approximately maps	to:		σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� What	makes	this	challenging:

� g1,	g2,	…	are	not	required	to	be	simple	column	refs
� e1,	e2,	…	are	not	required	to	be	single	aggregate	fns
� Ph can	also	contain	aggregate	function	calls	not	in	ei

29



SQL Grouping/Aggregation (2)
� This	is	an	acceptable	grouping/aggregate	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� Clearly	can’t	use	our	mapping	from	last	slide:
� σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� e.g.	Ph is	SUM(f)	<	20,	but	we	don’t	compute	SUM(f)	in	G step

� Problem:		SQL	mixes	grouping/aggregation,	projection	
and	selection	parts	of	the	query	together

� Need	to	rewrite	query	to	separate	these	different	parts
� Makes	translation	into	relational	algebra	straightforward

30


