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Disk Records and Fields
� Tuples	are	ordered	sets	of	attribute-value	pairs

� Every	attribute	has	an	associated	type	(a.k.a.	“domain”)

� A	value	may	also	be	NULL to	represent	unknown	data
� The	data	dictionary	specifies	the	schema	for	every	table

� Issues:
� Can’t	expect	a	table	to	have	all	tuples	be	the	same	size

� Also	can’t	expect	a	table	to	have	all	non-NULL values
� Need	a	way	to	represent	tuples	within	a	disk	page,	
where	tuples	can	vary	in	size,	and	some	attribute-

values	are	unspecified
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Disk Records and Fields (2)
� Fixed-size	data	types	are	easy	to	store	into	a	tuple

� e.g.	INTEGER,	CHAR(25),	DATE fields
� Table’s	schema	records	each	column’s	type

� For	columns	with	size/precision	details,	these	are	also	stored

� Just	use	schema	to	guide	reading/writing	the	column

� Variable-size	values	also	require	a	size	to	be	stored
� e.g.	VARCHAR(n) fields
� If	n <	256:		store	1-byte	size,	then	string	data
� If	n <	65536:		store	2-byte	size,	then	string	data
� (Can	also	terminate	the	field	with	a	special	character)
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Disk Records and NULL Values
� In	each	tuple,	include	a	bit	for	each	attribute	indicating	
whether	its	value	is	NULL
� If	bit	is	1	then	corresponding	attribute	has	a	NULL value

� (Don’t	need	to	store	data	for	NULL attributes	in	the	record…)
� Store	bits	in	packed	format:		each	byte	holds	8	null-bits
� Called	a	null	bitmap

� Example	record	format:

� (no	data	is	actually	stored	for	the	name field)

user_id (big-endian)

0xF0,0x95,0x01,0x00

null
bitmap

0x04

username
0x06,'donnie'

name
NULL

website_url
0x22,'http://www.cs…'
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Variable-Size Record Storage
� Some	row-values	can	vary	in	size

� VARCHAR,	BLOB,	CLOB,	TEXT,	NUMERIC,	etc.	types
� Some	implementations	of	NUMERIC are	fixed-size

� Also,	don’t	store	any	value	for	NULL fields
� Records	will	also	vary	in	size

� Variable-size	records	can	be	stored	into	fixed-size	
blocks	using	a	slotted-page	structure

# entries R0 R1 R2 free space R0 dataR1 dataR2 data
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Slotted Page Structure (1)
� The	slotted-page	structure:

� Records	in	a	block	are	stored	contiguously,	starting	
from	the	end of	the	block
� Records	are	stored	in	reverse	order

� Start	of	block	has	a	header	specifying	where	each	
record	in	the	block	starts
� First	value	specifies	total	number	of	records	N in	the	block
� Next	N values	specify	the	starting	offset	of	each	row’s	data

block header record data
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Slotted Page Structure (2)
� When	a	record	is	deleted:

� Record’s	entry	in	the	index	is	marked	as	“deleted”
� (e.g.	its	index	is	set	to	an	invalid	value,	such	as	0)

� The	record’s	space	is	reclaimed	within	the	block	by	
moving	other	records	toward	end	of	block

� Example:		Delete	record	1	from	this	block:

# entries R0 del R2 free space R0 dataR2 data
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Indexes and Tables
� Table	records	may	be	referenced	from	other	files
� Example:

� Indexes	allow	specific	rows	to	be	found	and	retrieved,	based	
on	the	values	of	some	set	of	attributes

� The	index	needs	some	way	to	reference	a	particular	record
� Every	record	has	a	specific	location	in	a	data	file:

� The	block	the	record	is	stored	within
� The	offset	of	the	record	within	the	block

� Example:		NanoDB record	pointers:
� Block	number	(unsigned	short:		0	to	65535)
� Offset	within	block	(unsigned	short:		0	to	65535)
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Slotted Page Structure (3)
� With	the	slotted-page	structure,	records	can	be	
referenced	by	their	index	in	the	block	header
� Level	of	indirection	allows	record	data	to	be	moved	within	the	
block,	without	affecting	data	that	references	the	record

� We	can	only	shrink	the	slotted-page	header	when	deleted	
records	are	at	the	end of	the	header	area
� e.g.	cannot	move	entry	R2 to	index	1	and	shrink	the	header
� When	R2 is	deleted,	then	we	can	eliminate	both	entries
� Or,	if	a	new	row	is	added	to	this	block,	it	could	occupy	R1
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Record-Level File Organization
� Can	also	organize	data	files	at	the	record-level
� Heap	file	organization

� A	record	can	appear	anywhere	within	the	data	file
� Very	simple;	requires	little	additional	structure
� Currently	the	most	common	file	organization

� Sequential	file	organization
� Records	are	stored	in	sequential	order,	based	on	a	search	key

� Hashing	file	organization
� Records	are	stored	in	blocks	based	on	a	hash	key

� Multitable	clustering	file	organization – mentioned	earlier
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Sequential File Organization
� Records	stored	in	sequential	order	based	on	search	key
� If	accessing	the	file	based	on	the	search	key:

� Sequential	scan	of	the	file	produces	records	in	sorted	order
� No	additional	work	needed	for	producing	sorted	output

� Can	find	individual	records,	or	ranges	of	records,	using	binary	
search	on	the	file

� (In	many	cases,	also	allows	more	efficient	implementations	of	
joins,	grouping,	and	duplicate	elimination)

� If	not	accessing	based	on	the	search	key:
� Records	are	in	no	specific	order
� No	different	from	accessing	a	heap	file
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Sequential File Organization (2)
� Search	keys	can	contain	multiple	columns
� Given	a	table	T(A,	B,	C,	D),	with	search-key	(A,	B,	C):

� Rows	are	ordered	based	on	values	of	column	A
� Rows	with	the	same	value	of	column	A are	ordered	on	B
� etc.
� If	table	is	sorted	on	(A,	B,	C),	it	is	also	sorted	on
(A)	and	(A,	B)

� If	a	query	needs	rows	from	T in	order	of	(A)	or
(A,	B),	again	no	sorting	is	required!
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Sequential File Organization (3)
� How	do	we	maintain	sequential	order	of	records?

� How	to	insert	new	records	into	sequential	file?
� What	about	deleting	records?
� Clearly,	rearranging	the	entire	file	is	unacceptable

� A	simple	(naïve)	implementation	strategy:
� Add	a	pointer	to	each	record,	specifying	next	record	in	
the	file
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Sequential Files
� Example:

� Accounts,	ordered	by
branch	name

� Initially,	each	record	pointer
references	the	next	record

�When	new	record	is	added
� If	block	containing	previous
record	has	space	for	a	new
record,	add	it	there

� Otherwise,	append	record
to	end	of	file

� Update	pointer	chain	to
reflect	new	record	order

A-217 Brighton 750
A-101 Downtown 500
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700

A-217 Brighton 750
A-101 Downtown 500
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-888 North Town 700
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Sequential File Organization (4)
� Ideally,	key	order	and	physical	layout	will	match	closely

� Could	maintain	extra	space	in	blocks	to	help	keep	nearby	
tuples	in	the	same	(or	nearby?)	blocks

� After	many	inserts	and	deletes,	file	will	eventually	become	
disorganized

� Without	maintenance,	sequential	scans	or	binary	searches	
would	eventually	become	very expensive
� Disk	seek	time	would	kill	performance
� (SSD	would	avoid	this	problem!)

� Must	periodically	reorganize	the	file	to	ensure	physical	
order	of	records	matches	key	order
� (Could	do	this	when	system	load	is	typically	low)
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Hashing File Organization
� Records	are	stored	in	a	location	based	on	a	hash	key
� If	accessing	the	file	based	on	the	hash	key:

� Very	fast	for	finding	records	with	a	specific	value
� Doesn’t	support	general	inequality	comparisons,	ranges,	etc.!

� Really	only	good	for	equality	comparisons
� If	not	accessing	based	on	the	hash	key:

� Again,	records	are	in	no	specific	order
� No	different	from	accessing	a	heap	file

� As	before,	hash	key	can	contain	multiple	columns
� Unfortunately,	far	less	useful	than	search	keys	with	multiple	
columns
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Hashing File Organization (2)
� In-memory	hash	tables:

� Can	use	a	fixed	number	of	bins	with	overflow	chaining,	
or	open	addressing,	to	handle	placement	of	entries

� As	the	table	becomes	full,	it	must	periodically	be	
reorganized

� Increase	number	of	locations,	and	spread	out	the	entries

� How	do	we	manage	a	hash	table	of	records	in	a	file?
� Again,	rearranging	the	entire	file	would	be	unacceptable
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Static Hashing
� Generally,	open	addressing	isn’t	well	suited	to	data	files
� Create	some	number	of	buckets	to	store	records

� Use	overflow	chaining	when	a	bucket	is	full
� A	simple	solution:		static	hashing

� Create	a	fixed number	of	buckets	B
� Different	ways	to	represent	buckets	in	the	data	file
� e.g.	each	bucket	is	one	disk	block,	or	N sequential	disk	blocks

� Hash	key	k is	mapped	to	a	bucket	bwith	a	hash	function	
h(k)

� Store	each	record	into	the	bucket	specified	by	the	hash	
function
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Static Hashing (2)
� Devote	part	of	file	to	mapping
from	bucket	#	to	block	#
� e.g.	block	0	holds	mapping

� If	bucket	holds	any	records,
entry	specifies	block	number
where	records	are	stored
� Otherwise,	use	some	value	to
indicate	an	empty	bucket

� As	records	are	added	to	file,
assign	blocks	to	buckets	as	needed

Bucket 0:  2
Bucket 1:  0
Bucket 2:  1
Bucket 3:  0

Block	0	(Mapping)

Record 2.1
Record 2.2
Record 2.3

Block	1	(Bucket	2)

Record 0.1
Record 0.2

Block	2	(Bucket	0)
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Static Hashing (3)
� If	a	bucket	becomes	full,	must
overflow	records	into	another
location!

� Several	options	for	managing
overflow	records
� e.g.	create	linked	chains	of
blocks,	as	before

� If	a	record	is	deleted	from	a	chain
of	blocks,	can	move	records	from
overflow	blocks	into	earlier	blocks

Bucket 0:  2
Bucket 1:  0
Bucket 2:  1
Bucket 3:  0

Block	0	(Mapping)

Record 2.1
Record 2.2
Record 2.3

Block	1	(Bucket	2)

Record 0.1
Record 0.2

Block	2	(Bucket	0)
Overflow:		Block	3

Record 2.4
Record 2.5

Block	3	(Bucket	2)
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Static Hashing (4)
� Static	hashing	has	some	big	limitations:
� Data	files	frequently	grow	in	size	over	their	lifetime

� Must	predict	how	many	buckets	are	necessary	at	start
� If	buckets	end	up	being	too	full,	lookups	will	involve	lots	of	
scanning	through	overflow	blocks

� May	end	up	with	data	that	doesn’t	hash	well!
� e.g.	data	doesn’t	have	a	good	distribution	for	the	number	of	
buckets,	or	if	the	hash	function	isn’t	very	good

� Again,	end	up	with	some	buckets	that	hold	many	records
� Would	prefer	a	dynamic	hashingmechanism

� Allow	the	number	of	buckets	to	change	over	time,	without	
requiring	the	entire	data	file	to	be	reorganized
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File Organization:  Summary
� Simplest	file	organization	is	heap	file	organization

� No	particular	order	for	records	in	the	file
� Requires	no	additional	record-level	organization

� Other	file	organizations	can	dramatically	improve	
access	performance,	but	only	in	specific	situations!
� Can	use	alternate	organization	to	make	queries	fast…
� If	query	doesn’t	match	file	organization’s	characteristics,	
it’s	equivalent	to	accessing	a	heap	file

� If	physical	organization	doesn’t	correspond	to	logical	
organization,	access	can	be	very slow
� e.g.	increased	disk	seeks	for	out-of-order	sequential	file
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File Organization:  Summary (2)
� If	a	sequential	or	hash	file	changes	frequently,	periodic	
reorganization	may	be	required
� Will	likely	require	moving	large	numbers	of	records

� Most	common	solution:
� Store	the	records	themselves	in	a	heap	file
� Build	one	or	more	indexes into	the	heap	file

� Indexes	are	generally	either	ordered	(typical)	or	hashed
� Indexes	reference	records	in	heap	file	using	record	pointers

� Index	entries	are	much	smaller	than	table	records:
� Can	fit	many	more	into	each	disk	block
� Much	faster	to	move	and	reorganize	them
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File Organization:  Summary (3)
� When	we	are	evaluating	a	query:

� If	we	can,	utilize	indexes	to	do	faster	lookups	in	heap	file
� (Or,	just	evaluate	query	against	the	index!)
� If	not,	just	do	a	sequential	scan	through	the	heap	file

� Will	talk	much	more	about	indexes	in	a	few	weeks!
� For	now,	just	focus	on	queries	against	heap	files
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SQL Query Evaluation
� Relational	databases	frequently	use	SQL	query	language	to	
specify	queries

� Databases	don’t	execute	SQL	directly!
� Very	complicated	language
� Difficult	to	transform/optimize	before	executing

� SQL	is	transformed	into	a	plan	based	on	the	relational	
algebra,	and	then	executed	by	the	query	evaluator

� First	step	is	to	translate	SQL	into	an	abstract	syntax	tree
� In	NanoDB,	top-level	object	is	a	Command

� Subclasses	for	various	commands,	e.g.	CreateTableCommand
� If	command	is	a	DDL	operation,	it	is	executed	directly
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Query Evaluation Pipeline
� DML	operations	are	processed	through	these	stages:

� e.g.	SELECT,	INSERT,	UPDATE,	DELETE

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan
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Query Evaluation Pipeline (2)
� SQL	queries	are	parsed	into	an	abstract	syntax	tree

� AST	represents	the	query	as	a	hierarchy	of	related	
SELECT-FROM-WHERE	operations

� Sometimes	called	“SFW	blocks”
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Query Evaluation Pipeline (3)
� Query	AST	is	then	translated	into	an	initial	query	plan

� Plan	is	based	on	relational	algebra	operations
� Can	apply	some	high-level	optimizations	to	the	AST
� Also,	join	ordering	can	be	determined	in	this	phase
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Query Evaluation Pipeline (4)
� Initial	query	plan	is	then	optimized

� Optimizer	applies	additional	optimizations	to	plan
� Determines	final	execution	details	for	each	plan	node

� e.g.	best	algorithm	to	use,	which	indexes	to	use,	etc.
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Query Evaluation Pipeline (5)
� Finally,	execution	plan	is	evaluated	against	the	tables!

� At	this	point,	operation	is	generally	very	straightforward
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