
CS122	– Lecture	3
Winter	Term,	2018-2019

Disk Records and Fields
� Tuples	are	ordered	sets	of	attribute-value	pairs

� Every	attribute	has	an	associated	type	(a.k.a.	“domain”)

� A	value	may	also	be	NULL to	represent	unknown	data
� The	data	dictionary	specifies	the	schema	for	every	table

� Issues:
� Can’t	expect	a	table	to	have	all	tuples	be	the	same	size

� Also	can’t	expect	a	table	to	have	all	non-NULL values
� Need	a	way	to	represent	tuples	within	a	disk	page,	
where	tuples	can	vary	in	size,	and	some	attribute-

values	are	unspecified

2

Disk Records and Fields (2)
� Fixed-size	data	types	are	easy	to	store	into	a	tuple

� e.g.	INTEGER,	CHAR(25),	DATE fields
� Table’s	schema	records	each	column’s	type

� For	columns	with	size/precision	details,	these	are	also	stored

� Just	use	schema	to	guide	reading/writing	the	column

� Variable-size	values	also	require	a	size	to	be	stored
� e.g.	VARCHAR(n) fields
� If	n <	256:		store	1-byte	size,	then	string	data
� If	n <	65536:		store	2-byte	size,	then	string	data
� (Can	also	terminate	the	field	with	a	special	character)

3

Disk Records and NULL Values
� In	each	tuple,	include	a	bit	for	each	attribute	indicating	
whether	its	value	is	NULL
� If	bit	is	1	then	corresponding	attribute	has	a	NULL value

� (Don’t	need	to	store	data	for	NULL attributes	in	the	record…)
� Store	bits	in	packed	format:		each	byte	holds	8	null-bits
� Called	a	null	bitmap

� Example	record	format:

� (no	data	is	actually	stored	for	the	name field)

user_id (big-endian)

0xF0,0x95,0x01,0x00

null
bitmap

0x04

username
0x06,'donnie'

name
NULL

website_url
0x22,'http://www.cs…'

4

Variable-Size Record Storage
� Some	row-values	can	vary	in	size

� VARCHAR,	BLOB,	CLOB,	TEXT,	NUMERIC,	etc.	types
� Some	implementations	of	NUMERIC are	fixed-size

� Also,	don’t	store	any	value	for	NULL fields
� Records	will	also	vary	in	size

� Variable-size	records	can	be	stored	into	fixed-size	
blocks	using	a	slotted-page	structure

entries R0 R1 R2 free space R0 dataR1 dataR2 data

5

Slotted Page Structure (1)
� The	slotted-page	structure:

� Records	in	a	block	are	stored	contiguously,	starting	
from	the	end of	the	block
� Records	are	stored	in	reverse	order

� Start	of	block	has	a	header	specifying	where	each	
record	in	the	block	starts
� First	value	specifies	total	number	of	records	N in	the	block
� Next	N values	specify	the	starting	offset	of	each	row’s	data

block header record data

6

entries R0 R1 R2 free space R0 dataR1 dataR2 data

Slotted Page Structure (2)
� When	a	record	is	deleted:

� Record’s	entry	in	the	index	is	marked	as	“deleted”
� (e.g.	its	index	is	set	to	an	invalid	value,	such	as	0)

� The	record’s	space	is	reclaimed	within	the	block	by	
moving	other	records	toward	end	of	block

� Example:		Delete	record	1	from	this	block:

entries R0 del R2 free space R0 dataR2 data

7

entries R0 R1 R2 free space R0 dataR1 dataR2 data

Indexes and Tables
� Table	records	may	be	referenced	from	other	files
� Example:

� Indexes	allow	specific	rows	to	be	found	and	retrieved,	based	
on	the	values	of	some	set	of	attributes

� The	index	needs	some	way	to	reference	a	particular	record
� Every	record	has	a	specific	location	in	a	data	file:

� The	block	the	record	is	stored	within
� The	offset	of	the	record	within	the	block

� Example:		NanoDB record	pointers:
� Block	number	(unsigned	short:		0	to	65535)
� Offset	within	block	(unsigned	short:		0	to	65535)

8

Slotted Page Structure (3)
� With	the	slotted-page	structure,	records	can	be	
referenced	by	their	index	in	the	block	header
� Level	of	indirection	allows	record	data	to	be	moved	within	the	
block,	without	affecting	data	that	references	the	record

� We	can	only	shrink	the	slotted-page	header	when	deleted	
records	are	at	the	end of	the	header	area
� e.g.	cannot	move	entry	R2 to	index	1	and	shrink	the	header
� When	R2 is	deleted,	then	we	can	eliminate	both	entries
� Or,	if	a	new	row	is	added	to	this	block,	it	could	occupy	R1

9

entries R0 del R2 free space R0 dataR2 data

Record-Level File Organization
� Can	also	organize	data	files	at	the	record-level
� Heap	file	organization

� A	record	can	appear	anywhere	within	the	data	file
� Very	simple;	requires	little	additional	structure
� Currently	the	most	common	file	organization

� Sequential	file	organization
� Records	are	stored	in	sequential	order,	based	on	a	search	key

� Hashing	file	organization
� Records	are	stored	in	blocks	based	on	a	hash	key

� Multitable	clustering	file	organization – mentioned	earlier

10

Sequential File Organization
� Records	stored	in	sequential	order	based	on	search	key
� If	accessing	the	file	based	on	the	search	key:

� Sequential	scan	of	the	file	produces	records	in	sorted	order
� No	additional	work	needed	for	producing	sorted	output

� Can	find	individual	records,	or	ranges	of	records,	using	binary	
search	on	the	file

� (In	many	cases,	also	allows	more	efficient	implementations	of	
joins,	grouping,	and	duplicate	elimination)

� If	not	accessing	based	on	the	search	key:
� Records	are	in	no	specific	order
� No	different	from	accessing	a	heap	file

11

Sequential File Organization (2)
� Search	keys	can	contain	multiple	columns
� Given	a	table	T(A,	B,	C,	D),	with	search-key	(A,	B,	C):

� Rows	are	ordered	based	on	values	of	column	A
� Rows	with	the	same	value	of	column	A are	ordered	on	B
� etc.
� If	table	is	sorted	on	(A,	B,	C),	it	is	also	sorted	on
(A)	and	(A,	B)

� If	a	query	needs	rows	from	T in	order	of	(A)	or
(A,	B),	again	no	sorting	is	required!

12

Sequential File Organization (3)
� How	do	we	maintain	sequential	order	of	records?

� How	to	insert	new	records	into	sequential	file?
� What	about	deleting	records?
� Clearly,	rearranging	the	entire	file	is	unacceptable

� A	simple	(naïve)	implementation	strategy:
� Add	a	pointer	to	each	record,	specifying	next	record	in	
the	file

13

Sequential Files
� Example:

� Accounts,	ordered	by
branch	name

� Initially,	each	record	pointer
references	the	next	record

�When	new	record	is	added
� If	block	containing	previous
record	has	space	for	a	new
record,	add	it	there

� Otherwise,	append	record
to	end	of	file

� Update	pointer	chain	to
reflect	new	record	order

A-217 Brighton 750
A-101 Downtown 500
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700

A-217 Brighton 750
A-101 Downtown 500
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-888 North Town 700

14

Sequential File Organization (4)
� Ideally,	key	order	and	physical	layout	will	match	closely

� Could	maintain	extra	space	in	blocks	to	help	keep	nearby	
tuples	in	the	same	(or	nearby?)	blocks

� After	many	inserts	and	deletes,	file	will	eventually	become	
disorganized

� Without	maintenance,	sequential	scans	or	binary	searches	
would	eventually	become	very expensive
� Disk	seek	time	would	kill	performance
� (SSD	would	avoid	this	problem!)

� Must	periodically	reorganize	the	file	to	ensure	physical	
order	of	records	matches	key	order
� (Could	do	this	when	system	load	is	typically	low)

15

Hashing File Organization
� Records	are	stored	in	a	location	based	on	a	hash	key
� If	accessing	the	file	based	on	the	hash	key:

� Very	fast	for	finding	records	with	a	specific	value
� Doesn’t	support	general	inequality	comparisons,	ranges,	etc.!

� Really	only	good	for	equality	comparisons
� If	not	accessing	based	on	the	hash	key:

� Again,	records	are	in	no	specific	order
� No	different	from	accessing	a	heap	file

� As	before,	hash	key	can	contain	multiple	columns
� Unfortunately,	far	less	useful	than	search	keys	with	multiple	
columns

16

Hashing File Organization (2)
� In-memory	hash	tables:

� Can	use	a	fixed	number	of	bins	with	overflow	chaining,	
or	open	addressing,	to	handle	placement	of	entries

� As	the	table	becomes	full,	it	must	periodically	be	
reorganized

� Increase	number	of	locations,	and	spread	out	the	entries

� How	do	we	manage	a	hash	table	of	records	in	a	file?
� Again,	rearranging	the	entire	file	would	be	unacceptable

17

Static Hashing
� Generally,	open	addressing	isn’t	well	suited	to	data	files
� Create	some	number	of	buckets	to	store	records

� Use	overflow	chaining	when	a	bucket	is	full
� A	simple	solution:		static	hashing

� Create	a	fixed number	of	buckets	B
� Different	ways	to	represent	buckets	in	the	data	file
� e.g.	each	bucket	is	one	disk	block,	or	N sequential	disk	blocks

� Hash	key	k is	mapped	to	a	bucket	bwith	a	hash	function	
h(k)

� Store	each	record	into	the	bucket	specified	by	the	hash	
function

18

Static Hashing (2)
� Devote	part	of	file	to	mapping
from	bucket	#	to	block	#
� e.g.	block	0	holds	mapping

� If	bucket	holds	any	records,
entry	specifies	block	number
where	records	are	stored
� Otherwise,	use	some	value	to
indicate	an	empty	bucket

� As	records	are	added	to	file,
assign	blocks	to	buckets	as	needed

Bucket 0: 2
Bucket 1: 0
Bucket 2: 1
Bucket 3: 0

Block	0	(Mapping)

Record 2.1
Record 2.2
Record 2.3

Block	1	(Bucket	2)

Record 0.1
Record 0.2

Block	2	(Bucket	0)

19

Static Hashing (3)
� If	a	bucket	becomes	full,	must
overflow	records	into	another
location!

� Several	options	for	managing
overflow	records
� e.g.	create	linked	chains	of
blocks,	as	before

� If	a	record	is	deleted	from	a	chain
of	blocks,	can	move	records	from
overflow	blocks	into	earlier	blocks

Bucket 0: 2
Bucket 1: 0
Bucket 2: 1
Bucket 3: 0

Block	0	(Mapping)

Record 2.1
Record 2.2
Record 2.3

Block	1	(Bucket	2)

Record 0.1
Record 0.2

Block	2	(Bucket	0)
Overflow:		Block	3

Record 2.4
Record 2.5

Block	3	(Bucket	2)

20

Static Hashing (4)
� Static	hashing	has	some	big	limitations:
� Data	files	frequently	grow	in	size	over	their	lifetime

� Must	predict	how	many	buckets	are	necessary	at	start
� If	buckets	end	up	being	too	full,	lookups	will	involve	lots	of	
scanning	through	overflow	blocks

� May	end	up	with	data	that	doesn’t	hash	well!
� e.g.	data	doesn’t	have	a	good	distribution	for	the	number	of	
buckets,	or	if	the	hash	function	isn’t	very	good

� Again,	end	up	with	some	buckets	that	hold	many	records
� Would	prefer	a	dynamic	hashingmechanism

� Allow	the	number	of	buckets	to	change	over	time,	without	
requiring	the	entire	data	file	to	be	reorganized

21

File Organization: Summary
� Simplest	file	organization	is	heap	file	organization

� No	particular	order	for	records	in	the	file
� Requires	no	additional	record-level	organization

� Other	file	organizations	can	dramatically	improve	
access	performance,	but	only	in	specific	situations!
� Can	use	alternate	organization	to	make	queries	fast…
� If	query	doesn’t	match	file	organization’s	characteristics,	
it’s	equivalent	to	accessing	a	heap	file

� If	physical	organization	doesn’t	correspond	to	logical	
organization,	access	can	be	very slow
� e.g.	increased	disk	seeks	for	out-of-order	sequential	file

22

File Organization: Summary (2)
� If	a	sequential	or	hash	file	changes	frequently,	periodic	
reorganization	may	be	required
� Will	likely	require	moving	large	numbers	of	records

� Most	common	solution:
� Store	the	records	themselves	in	a	heap	file
� Build	one	or	more	indexes into	the	heap	file

� Indexes	are	generally	either	ordered	(typical)	or	hashed
� Indexes	reference	records	in	heap	file	using	record	pointers

� Index	entries	are	much	smaller	than	table	records:
� Can	fit	many	more	into	each	disk	block
� Much	faster	to	move	and	reorganize	them

23

File Organization: Summary (3)
� When	we	are	evaluating	a	query:

� If	we	can,	utilize	indexes	to	do	faster	lookups	in	heap	file
� (Or,	just	evaluate	query	against	the	index!)
� If	not,	just	do	a	sequential	scan	through	the	heap	file

� Will	talk	much	more	about	indexes	in	a	few	weeks!
� For	now,	just	focus	on	queries	against	heap	files

24

SQL Query Evaluation
� Relational	databases	frequently	use	SQL	query	language	to	
specify	queries

� Databases	don’t	execute	SQL	directly!
� Very	complicated	language
� Difficult	to	transform/optimize	before	executing

� SQL	is	transformed	into	a	plan	based	on	the	relational	
algebra,	and	then	executed	by	the	query	evaluator

� First	step	is	to	translate	SQL	into	an	abstract	syntax	tree
� In	NanoDB,	top-level	object	is	a	Command

� Subclasses	for	various	commands,	e.g.	CreateTableCommand
� If	command	is	a	DDL	operation,	it	is	executed	directly

25

Query Evaluation Pipeline
� DML	operations	are	processed	through	these	stages:

� e.g.	SELECT,	INSERT,	UPDATE,	DELETE

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

26

Query Evaluation Pipeline (2)
� SQL	queries	are	parsed	into	an	abstract	syntax	tree

� AST	represents	the	query	as	a	hierarchy	of	related	
SELECT-FROM-WHERE	operations

� Sometimes	called	“SFW	blocks”

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

27

Query Evaluation Pipeline (3)
� Query	AST	is	then	translated	into	an	initial	query	plan

� Plan	is	based	on	relational	algebra	operations
� Can	apply	some	high-level	optimizations	to	the	AST
� Also,	join	ordering	can	be	determined	in	this	phase

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

28

Query Evaluation Pipeline (4)
� Initial	query	plan	is	then	optimized

� Optimizer	applies	additional	optimizations	to	plan
� Determines	final	execution	details	for	each	plan	node

� e.g.	best	algorithm	to	use,	which	indexes	to	use,	etc.

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

29

Query Evaluation Pipeline (5)
� Finally,	execution	plan	is	evaluated	against	the	tables!

� At	this	point,	operation	is	generally	very	straightforward

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

30

