B

Relational Database

S m Impleme ion

2

/—\

/ Disk Records and Fields

Tuples are ordered sets of attribute-value pairs
e Every attribute has an associated type (a.k.a. “domain”)
e A value may also be NULL to represent unknown data

e The data dictionary specifies the schema for every table

[ssues:
e Can't expect a table to have all tuples be the same size
e Also can’t expect a table to have all non-NULL values

Need a way to represent tuples within a disk page,
where tuples can vary in size, and some attribute-
values are unspecified

/—\

Disk Records and Fields (2)

Fixed-size data types are easy to store into a tuple
¢ e.g. INTEGER, CHAR (25), DATE fields
e Table’s schema records each column’s type
» For columns with size/precision details, these are also stored
e Just use schema to guide reading/writing the column

Variable-size values also require a size to be stored
e e.g. VARCHAR (n) fields
e [f n <256: store 1-byte size, then string data
e [fn <65536: store 2-byte size, then string data
e (Can also terminate the field with a special character)

Disk Records and NULL Values

In each tuple, include a bit for each attribute indicating
whether its value is NULL

e [f bitis 1 then corresponding attribute has a NULL value
» (Don’t need to store data for NULL attributes in the record...)

e Store bits in packed format: each byte holds 8 null-bits
e Called a null bitmap

Example record format:

null

bitmap user_id (big-endian) username name website _url

0x04 |[0xF0,0x95,0x01,0x00| 0x06, 'donnie" NULL 0x22, 'http://www.cs...'

e (no data is actually stored for the name field)

Variable-Size Record Storage

Some row-values can vary in size

e VARCHAR, BL.OB, CLOB, TEXT, NUMERIC, etc. types
« Some implementations of NUMERIC are fixed-size
e Also, don't store any value for NULL fields

Records will also vary in size

Variable-size records can be stored into fixed-size
blocks using a slotted-page structure

entries| R, | R, | R, | free space R, data R,data| R, data
e — — =

/—\

Slotted Page Structure (1)

The slotted-page structure:

entries| R, | R, | R, | free space R, data R,data| R, data
blockvheader recoré data

Records in a block are stored contiguously, starting
from the end of the block

e Records are stored in reverse order
Start of block has a header specifying where each
record in the block starts
e First value specifies total number of records N in the block
e Next N values specify the starting offset of each row’s data

Slotted Page Structure (2)

When a record is deleted:

e Record’s entry in the index is marked as “deleted”
 (e.g.its index is set to an invalid value, such as 0)

e The record’s space is reclaimed within the block by
moving other records toward end of block

Example: Delete record 1 from this block:

entries | R, | R, | R, | free space R, data Rydata| R, data
| = =
entries | R, |del| R, free space R, data R, data

e e

Indexes and Tables

Table records may be referenced from other files

Example:

e Indexes allow specific rows to be found and retrieved, based
on the values of some set of attributes

e The index needs some way to reference a particular record
Every record has a specific location in a data file:

e The block the record is stored within

e The offset of the record within the block
Example: NanoDB record pointers:

e Block number (unsigned short: 0 to 65535)

e Offset within block (unsigned short: 0 to 65535)

= /

| Slotted Page Structure (3)

With the slotted-page structure, records can be
referenced by their index in the block header

e Level of indirection allows record data to be moved within the
block, without affecting data that references the record

entries | R, |del| R, free space R, data R, data

RN R

We can only shrink the slotted-page header when deleted
records are at the end of the header area

e e.g. cannot move entry R, to index 1 and shrink the header
e When R, is deleted, then we can eliminate both entries
e Or, if a new row is added to this block, it could occupy R,

10

Record-Level File Organization

Can also organize data files at the record-level

Heap file organization
e Arecord can appear anywhere within the data file
e Very simple; requires little additional structure
e Currently the most common file organization
Sequential file organization
e Records are stored in sequential order, based on a search key
Hashing file organization
e Records are stored in blocks based on a hash key
Multitable clustering file organization — mentioned earlier

11

Sequential File Organization

Records stored in sequential order based on search key

If accessing the file based on the search key:

e Sequential scan of the file produces records in sorted order
« No additional work needed for producing sorted output

e Can find individual records, or ranges of records, using binary
search on the file

e (In many cases, also allows more efficient implementations of
joins, grouping, and duplicate elimination)
If not accessing based on the search key:
e Records are in no specific order
e No different from accessing a heap file

12

Sequential File Organization (2)

Search keys can contain multiple columns
Given a table T(A4, B, C, D), with search-key (4, B, C):

* Rows are ordered based on values of column A
e Rows with the same value of column A are ordered on B
o etc.
e If table is sorted on (4, B, (), itis also sorted on
(A) and (A, B)

[f a query needs rows from T in order of (4) or
(4, B), again no sorting is required!

- Sequential File Organization (3)

* How do we maintain sequential order of records?

e How to insert new records into sequential file?
e What about deleting records?
e (Clearly, rearranging the entire file is unacceptable

* A simple (naive) implementation strategy:

e Add a pointer to each record, specifying next record in
the file

Sequential Files

Example:

e Accounts, ordered by
branch name

e [nitially, each record pointer
references the next record

When new record is added

e [f block containing previous
record has space for a new
record, add it there

e Otherwise, append record
to end of file

e Update pointer chain to
reflect new record order

A-217 Brighton 750 | &—
A-101 | Downtown | 500 | e—
A-110 | Downtown | 600 | e—
A-215 Mianus 700 | o—
A-102 | Perryridge | 400 | o
A-201 Perryridge | 900 | e—
A-218 | Perryridge | 700

A-217 Brighton 750 | o—
A-101 | Downtown | 500 | e—
A-110 | Downtown | 600 | e—
A-215 Mianus 700 | o
A-102 | Perryridge | 400 | o—
A-201 Perryridge | 900 | e—
A-218 | Perryridge | 700

A-888 | North Town | 700 | e

\NVAYSVAVAVAVERRVAVAVAVAVAV

&

/—\

>

Sequential File Organization (4)

Ideally, key order and physical layout will match closely

e Could maintain extra space in blocks to help keep nearby
tuples in the same (or nearby?) blocks

e After many inserts and deletes, file will eventually become
disorganized

Without maintenance, sequential scans or binary searches
would eventually become very expensive

e Disk seek time would Kkill performance

e (85D would avoid this problem!)

Must periodically reorganize the file to ensure physical
order of records matches key order

e (Could do this when system load is typically low)

16

Hashing File Organization

Records are stored in a location based on a hash key

If accessing the file based on the hash key:
e Very fast for finding records with a specific value

e Doesn’t support general inequality comparisons, ranges, etc.!
« Really only good for equality comparisons

If not accessing based on the hash key:
e Again, records are in no specific order

e No different from accessing a heap file

As before, hash key can contain multiple columns

e Unfortunately, far less useful than search keys with multiple
columns

17

//\
Hashing File Organization (2)

In-memory hash tables:

e Can use a fixed number of bins with overflow chaining,
or open addressing, to handle placement of entries

e As the table becomes full, it must periodically be
reorganized

e Increase number of locations, and spread out the entries

How do we manage a hash table of records in a file?

e Again, rearranging the entire file would be unacceptable

18

/4\»

- / :

Static Hashing

Generally, open addressing isn't well suited to data files
Create some number of buckets to store records

e Use overflow chaining when a bucket is full
A simple solution: static hashing

e Create a fixed number of buckets B
 Different ways to represent buckets in the data file
 e.g. each bucket is one disk block, or N sequential disk blocks

e Hash key k is mapped to a bucket b with a hash function
h(k)

e Store each record into the bucket specified by the hash
function

' Static Hashing (2)

* Devote part of file to mapping
from bucket # to block #

e e.g. block 0 holds mapping

¢ If bucket holds any records,
entry specifies block number
where records are stored

e Otherwise, use some value to
indicate an empty bucket

® Asrecords are added to file,
assign blocks to buckets as needed

Block 0 (Mapping)

Bucket 0: 2
Bucket 1: O
Bucket 2: 1
Bucket 3: O

Block 1 (Bucket 2)

Record 2.1
Record 2.2
Record 2.3

Block 2 (Bucket 0)

Record 0.1
Record 0.2

' Static Hashing (3)

e [f a bucket becomes full, must
overflow records into another
location!

» Several options for managing
overflow records

e e.g. create linked chains of
blocks, as before

e If arecord is deleted from a chain
of blocks, can move records from
overflow blocks into earlier blocks

Block 0 (Mapping)
Bucket 0: 2

Bucket 1: O
Bucket 2: i
Bucket 3: O

Block 1 (Bucket 2)
Record 2.1

Record 2.2
Record 2.3

Overflow: Block 3

Block 2 (Bucket 0)
Record 0.1

Record 0.2

Block 3 (Bucket 2)
Record 2.4

Record 2.5

21

| Static Hashing (4)

Static hashing has some big limitations:

Data files frequently grow in size over their lifetime
e Must predict how many buckets are necessary at start

e If buckets end up being too full, lookups will involve lots of
scanning through overflow blocks

May end up with data that doesn’t hash well!

e e.g. data doesn’t have a good distribution for the number of
buckets, or if the hash function isn’t very good

e Again, end up with some buckets that hold many records
Would prefer a dynamic hashing mechanism

e Allow the number of buckets to change over time, without
requiring the entire data file to be reorganized

22

File Organization: Summary

Simplest file organization is heap file organization
e No particular order for records in the file
e Requires no additional record-level organization

Other file organizations can dramatically improve
access performance, but only in specific situations!

e Can use alternate organization to make queries fast...

e [f query doesn’t match file organization’s characteristics,
it’s equivalent to accessing a heap file

If physical organization doesn’t correspond to logical
organization, access can be very slow

e e.g.increased disk seeks for out-of-order sequential file

23

/—\

| File Organization: Summary (2)

If a sequential or hash file changes frequently, periodic
reorganization may be required

e Will likely require moving large numbers of records

Most common solution:
e Store the records themselves in a heap file

e Build one or more indexes into the heap file

« Indexes are generally either ordered (typical) or hashed

» Indexes reference records in heap file using record pointers
e Index entries are much smaller than table records:

 Can fit many more into each disk block
e Much faster to move and reorganize them

File Organization: Summary (3)

* When we are evaluating a query:

e If we can, utilize indexes to do faster lookups in heap file
e (Or, just evaluate query against the index!)
e [f not, just do a sequential scan through the heap file

o Will talk much more about indexes in a few weeks!
* For now, just focus on queries against heap files

=5

/4\»

- / :

SQL Query Evaluation

Relational databases frequently use SQL query language to
specify queries
Databases don’t execute SQL directly!

e Very complicated language

e Difficult to transform/optimize before executing

SQL is transformed into a plan based on the relational
algebra, and then executed by the query evaluator

First step is to translate SQL into an abstract syntax tree
In NanoDB, top-level object is a Command

e Subclasses for various commandes, e.g. CreateTableCommand
If command is a DDL operation, it is executed directly

Query Evaluation Pipeline

* DML operations are processed through these stages:
e e.g. SELECT, INSERT, UPDATE, DELETE

SQL SQL abstract
i—} 5
[query parser S}eregx
L SQL relational uery plan annotated evaluation ue
algebra q ,YP execution . QUeLY
translator plan optimizer plan engine result

3 5

&

table statistics table data

Query Evaluation Pipeline (2)

* SQL queries are parsed into an abstract syntax tree

e AST represents the query as a hierarchy of related
SELECT-FROM-WHERE operations

e Sometimes called “SFW blocks”

R b— i)
SQL SQL abstract
i—% 9‘ t
[query parser S{}L_SX |
A A o
SQL relational uery plan annotated evaluation ue
e algebra q ,YP execution . QUeLY
translator plan optimizer plan engine result
) 3

&

table statistics table data

Query Evaluation Pipeline (3)

® Query AST is then translated into an initial query plan
e Plan is based on relational algebra operations
e Can apply some high-level optimizations to the AST
e Also, join ordering can be determined in this phase

abstract
SQL SQL syntax
query parser tree
O e |

relational annotated .
SQL Ala query Plan e evalu;fltlon query
translator plan | | optimizer plan engine result

A G v A

&

table statistics table data

Query Evaluation Pipeline (4)

e Initial query plan is then optimized
e Optimizer applies additional optimizations to plan

e Determines final execution details for each plan node
 e.g. best algorithm to use, which indexes to use, etc.

SQL SQL abstract
t
[query | parser ‘ S{}L_SX
________ 1

relational annotated .
N SQL Ala que?y Plan e evalu;fltlon query
translator plan optimizer plan engine result

4 e e]

table statistics table data

B A e~

Query Evaluation Pipeline (5)

* Finally, execution plan is evaluated against the tables!
e At this point, operation is generally very straightforward

SQL SQL abstract
i—} 5
[query parser S{}L_ZX
SQL relational uery plan annotated evaluation ue
e algebra q ,YP execution . QUeLY I
translator plan optimizer plan engine result |

) 0 . & s u

&

table statistics table data

