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Magnetic Disks
� Magnetic	disks	are	most	widely	used	online	storage	
medium	in	computers
� Hard	disk	drives	(HDD)

� Drive	contains	some	number	of
plattersmounted	on	a	spindle
� Platters	spin	at	a	constant
rate	of	speed

� 5400	RPM,	up	to	15000	RPM
� Read/write	heads	are	suspended
above	platters	on	a	disk	arm
� All	heads	move	together	as	a	unit
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Magnetic Disks (2)
� Platters	are	divided	into	tracks
� Tracks	are	divided	into	sectors

� Modern	drives	have	more	sectors	towards	edge	of	disk
� All	heads	are	positioned	by	one	assembly…

� A	cylinder is	made	up	of	the
tracks	on	all	platters	at
the	same	position

� To	read	a	sector	from	disk:
� Assembly	seeks to	the
appropriate	cylinder

� Sector	is	read	when	it	rotates
under	the	disk	head

cylinder

tracks

sectors
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Disk Performance Measures
� Access	time is	the	time	between	a	read/write	request	
being	issued,	and	the	data	being	returned
� Read/write	heads	must	be	moved	to	appropriate	track
� Sectors	must	rotate	past	the	read/write	heads

� First	operation	is	called	a	seek
� Average	seek	time of	a	disk	is	measured	from	a	series	of	
random	seeks	(uniform	distribution)

� Generally	ranges	from	3-15ms
� Typical	consumer	drives	are	in	the	range	of	9-12ms

� Seeking	nearby	tracks	will	obviously	be	faster
� Track-to-track seek	times	in	range	of	0.2-0.8ms

� (SSDs	have	“seek	times”	in	the	0.08-0.16ms	range)
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Disk Performance Measures (2)
� Rotational	latency	time is	amount	of	time	for	sector	to	
pass	under	read/write	heads
� Average	rotational	latency is	½	the	time	for	a	full	rotation
� 5,400	RPM:		5.6ms
� 7,200	RPM:		4.2ms
� 15,000	RPM:		2ms

� Disks	can	only	read/write	information	so	quickly
� Data	transfer	rate specifies	how	fast	data	is	read	from/written	
to	the	disk

� Current	interfaces	can	support	up	to	600+	MB/sec
� Actual	transfer	rate	depends	on	several	things:

� The	disk	and	its	controller,	motherboard	chipset,	etc.
� The	section	of	the	disk	being	accessed
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Disk-Access Optimizations
� Wide	range	of	techniques	used	to	improve	hard	disk	
performance
� Implemented	in	the	HDD	itself,	and/or	in	operating	system

� Buffering
� When	data	is	read,	store	it	in	a	memory	buffer
� If	same	data	is	requested	again,	provide	it	from	the	buffer

� Read-ahead
� When	a	sector	is	read,	read	other	sectors	in	the	same	track
� If	a	program	is	scanning	through	a	file,	subsequent	accesses	
can	be	satisfied	immediately	from	cache
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Disk-Access Optimizations (2)
� I/O	Scheduling

� The	hard	disk	can	queue	up	batches	of	read	and	write	
requests,	then	schedule	them	in	a	reasonable	way

� Goal:		reduce	the	average	seek	time	of	accesses
� Writes	can	be	buffered	in	volatile	memory	to	facilitate	this	
(can	cause	problems	if	power	fails	before	write	is	performed)

� Nonvolatile	write	buffers
� Disk	provides	NV-RAM	to	cache	disk	writes
� Data	is	saved	in	NV-RAM	before	being	saved	to	disk
� Data	isn’t	written	to	disk	until	the	disk	is	idle,	or	the	NV-RAM	
buffer	is	full

� If	power	fails,	contents	of	NV-RAM	are	still	intact!
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Disk-Access Optimizations (3)
� RAID	(Redundant	Array	of	Independent	Disks)

� Employed	for	both	performance	and	reliability	reasons
� One	storage	device	can	transfer	up	to	600MB/s
� Processor	memory	bus	can	transfer	GB/s
� Idea:		Access	multiple	storage	devices	in	parallel

� Data	is	either	duplicated	on	multiple	devices,
or	it	is	striped	across	multiple	devices

� A	RAID	controller	translates	logical	accesses	into	
corresponding	accesses	on	the	appropriate	device(s)
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Solid State Drives
� Solid	State	Drives	are	becoming	increasingly	common

� Still	more	expensive	and	smaller	than	HDDs
� (This	trend	will	likely	continue	for	a	number	of	years)

� Use	flash	memory	chips	to	provide	persistent	storage
� Most	common	is	NAND	flash	memory,	which	is	
read/written	in	512B-4KB	pages	(similar	to	HDDs)

� Reads	are	very	fast:		on	the	order	of	a	few	μs
� No	seek	time	or	rotational	latency	whatsoever!
� (Still	slower	than	main	memory,	of	course)

� Write	performance	can	be	much more	varied…
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Solid State Drives (2)
� SSDs	are	comprised	of	flash	memory	blocks

� Each	block	can	hold	e.g.	4KB	of	data
� As	usual,	break	data	files	into	blocks

� Example:		three	files	on	our	SSD:		F1,	F2	and	F3
� SSDs	must	follow	specific	rules	when
writing	to	blocks:
� SSDs	can	only	write	data	to	blocks	that
are	currently	empty

� Cannot	modify	a	block	that	already
contains	data
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Solid State Drives (3)
� SSDs	can	only	write	to	blocks	that	are	currently	empty
� Example:		we	want	to	modify	the	data	in	block	2	of	F1

� Can’t	just	change	the	data	in-place!
� Instead,	must	write	a	new	version	of	F1.2

� SSD	marks	old	version	of	F1.2	as	not
in	use,	and	stores	a	new	version	F1.2’

� SSD	Issue	1:
� SSDs	aren’t	good	at	disk	structures	that
require	frequent	in-place	modifications
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Solid State Drives (4)
� Don’t	want	applications	to	have	to	keep	track	of	the	
actual	blocks	that	comprise	their	files…
� Every	time	part	of	an	existing	file	is	written	to	the	SSD,	a	
new	block	must	be	used

� Solid	State	Drives	also	include	a	Flash
Translation	Layer	that	maps	logical
block	addresses	to	physical	blocks
� This	mapping	is	updated	every	time	a
write	is	performed
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SSDs:  Erase Blocks
� Over	time,	SSD	ends	up	with	few	or	no	available	cells

� e.g.	a	series	of	writes	to	our	SSD	that	results	in	all	cells	
being	used,	or	marked	old

� Problem:		SSDs	can	only	erase	cells	in	groups
� Groups	are	called	erase	blocks
� A	read/write	block	might	be	4-8KiB…
� Erase	blocks	are	often	128	or	256	of
these	blocks	(e.g.	2MiB)!

� SSDs	must	periodically	clear	one	or
more	erase-blocks	to	free	up	space
� Erasing	a	block	takes	1-2	ms to	perform
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SSDs:  Erase Blocks (2)
� Best	case	is	when	a	whole	erase	block	can	be	reclaimed
� Example:		want	to	write	to	F2.1’

� SSD	can	clear	an	entire	erase-block	and	then	write	the	
new	block

14

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old

old

old oldold

old

Erase!

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old old

F2.1''

old



SSDs:  Erase Blocks (3)
� More	complicated	when	an	erase	block	still	holds	data

� e.g.	SSD	decides	it	must	reclaim	the	third	erase-block
� SSD	must	relocate	the	current	contents	before	erasing
� Example:		SSD	wants	to	clear	third	erase-block
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SSDs:  Erase Blocks (4)
� SSD	Issue	2:

� Sometimes	a	write	to the	SSD	incurs	additional	writes	
within the	SSD

� Phenomenon	is	called	write	amplification
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SSDs:  Erasure and Wear
� A	block	can	only	be	erased	a	fixed	number	of	times…
� SSDs	ensure	that	different	blocks	wear	evenly

� Called	wear	leveling
� Data	that	hasn’t	changed	much	(cold	data)	is	moved	into	
blocks	with	higher	erase-counts

� Data	that	has	changed	often	(hot	data)	is	moved	into	
blocks	with	lower	erase-counts

� Theoretically,	SSDs	should	last	longer	than	hard	disks
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SSDs and HDDs:  Failure Modes
� SSDs	fail	in	different	ways	than	hard	disks	generally	do
� Hard	disks	tend	to	degrade	more	slowly	over	time

� Sensitive	to	mechanical	shock	and	vibration
� Surface	defects	can	slowly	become	apparent	over	time
� Result:		usually,	data	is	slowly	lost	over	time	(although	
disk	controllers	can	also	burn	out,	etc.)

� Solid	state	drives	are	far	less	sensitive	to	mechanical	
shock	and	other	environmental	factors
� But,	SSD	controller	electronics	can	fail,	particularly	due	
to	power	surges	/	outages

� Result:		all	the	data	disappears	at	once,	without	warning

18



Database External Storage
� Virtually	all	of	our	discussion	going	forward	will	
assume	spinning	magnetic	disks,	not	solid	state	drives
� Data	volumes	continue	to	grow,	and	HDDs	are	both	
larger	and	cheaper	than	SSDs

� HDDs	will	continue	to	be	relevant	for	the	time	being
� Observation	1:		Solid-state	drives	obviate	some	of	the	
issues	we	will	take	into	account!
� e.g.	designing	algorithms	and	file-storage	formats	to	
minimize	disk	seek	overhead

� There	is	no	seek	overhead	with	SSDs
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Database External Storage (2)
� Most	of	our	discussions	assume	that	there	is	no	
overhead	for	in-place	modification	of	data

� Observation	2:		Solid-state	drives	really	aren’t	capable	
of	modifying	data	in-place
� They	can	present	the	abstraction,	but	under	the	hood,	
the	SSD	is	doing	something	completely	different

� SSDs	are	more	efficient	with	file	formats	that	minimize	
in-place	modification	of	data

� This	is	an	active	area	of	research

20



Database Files
� Databases	normally	store	data	in	files…

� The	filesystem	is	provided	by	the	operating	system

� Operating	system	provides	several	essential	facilities:
� Open	a	file	at	a	particular	filesystem	path
� Seek	to	a	particular	location	in	a	file
� Read/write	a	block	of	data	in	a	file
� (other	facilities	as	well,	e.g.	memory-mapping	a	file	into	a	
process’	address-space)
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Database Files (2)
� Operating	systems	also	provide	the	ability	to	
synchronize a	file	to	disk
� Ensures	that	all modified	data	caches	are	flushed	to	disk
� Includes	flushing	of	OS	buffers,	hard-disk	cache,	etc.
� Expectation	is	that	if	the	operation	completes,	the	data	is	
now	persistent	(e.g.	on	the	disk	platter,	or	in	NV-RAM)

� If	the	system	crashes	before	a	modified	file	is	sync’d	to	
disk,	data	will	very	likely	be	corrupted	and/or	lost

� Once	the	file	is	sync’d,	the	OS	effectively	guarantees	
that	the	disk	state	reflects	the	latest	version	of	the	file

22



Disk Files and Blocks
� Databases	normally	read	and	write	disk	files	in	blocks

� Block-size	is	usually	a	power	of	2,	between	29 and	216

� Main	reason	is	performance:
� Disk	access	latency	is	large,	but	throughput	is	also	large
� Accessing	4KiB	is	just	as	expensive	as	accessing	one	byte

� Also	makes	it	easier	for	Storage	Manager	to	manage	
buffering,	transactions,	etc.
� Disk	pages	are	a	convenient	unit	of	data	to	work	with

� The	OS	presents	files	as	a	contiguous	array	of	bytes…
� Typically	want	the	database	block	size	to	be	some	multiple	of	
the	storage	device	block	size
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Disk Files and Blocks (2)
� Blocks	in	a	file	are	numbered	starting	at	0
� To	read	or	write	a	block	in	a	data	file:

� Seek	to	the	location	block_num × page_size
� Read	or	write	page_size bytes

� To	create	a	new	block:
� Most	platforms	will	automatically	extend	a	file’s	size	when	a	
write	occurs	past	the	end	of	the	file

� Seek	to	location	of	new	block,	then	write	new	block’s	data
� To	remove	blocks	from	the	end	of	the	file:

� Set	the	file’s	size	to	the	desired	size
� File	will	be	truncated	(or	extended)	to	the	specified	size
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Files and Blocks… and Tuples?
� Issue:

� Physical	data	file	will	be	accessed	in	units	of	blocks
� Query	engine	accesses	data	as	sequences	of	records,	
often	specifying	predicates	that	the	records	must	satisfy

� How	do	we	organize	blocks	within	data	files?
� How	do	we	organize	records	within	blocks?
� Do	we	want	to	apply	any	file-level	organization	of	
records	as	well?
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Caveats
� Two	important	caveats	to	state	up	front:
� Caveat	1	(as	before):

� Most	of	our	discussion	going	forward	will	assume	
spinning	magnetic	disks,	not	solid	state	drives

� Data	is	frequently	changed	in-place
� Caveat	2:

� We	are	discussing	general	implementation	approaches,	
not	theory,	so	there	are	many	“right”	ways	to	do	things

� Most	implementations	use	these	approaches,	and/or	
minor	variations	on	them
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Data File Organization
� Simplification	1:

� We	will	store	each	table’s	data	in	a	separate	file.

� Some	databases	allow	records	from	related	tables	to	be	
stored	together	in	a	single	file
� e.g.	records	that	would	equijoin	together	are	stored	
adjacent	to	each	other	in	the	file

� Called	a	multitable	clustering	file	organization
� Facilitates	very fast	joins	between	these	tables
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Data File Organization (2)
� Simplification	2:

� We	will	require	that	every	tuple	fits	entirely	within	a	
single	disk	block.

� Disk	blocks	can	usually	hold	multiple	records,	but	it	is	
easy	for	a	tuple	to	exceed	the	size	of	a	single	block
� e.g.	table	with	VARCHAR(20000) field;	pg.	size	of	4KiB

� Most	DBs	support	records	larger	than	a	disk	block
� DB	can	support	records	that	span	multiple	blocks,	or	it	
can	use	separate	overflow	storage	for	large	records,	etc.
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Considerations
� Operations	performed	on	table	data:

� Inserting	new	records
� (reuse	available	space	before	increasing	file	size?)

� Deleting	records
� (coalesce	freed	space	if	possible?)

� Selecting/scanning	records	(possibly	applying	updates)
� Operations	may	involve	only	a	few	records,	or	they	may	
involve	many	records

� Want	to	optimally	handle	the	expected	usage
� Evaluate	storage	format	against	all above	operations!
� Don’t	impose	too	much	space	overhead
� Don’t	unnecessarily	hinder	speed	of	operation
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Example:  Inserting Records
� User	executes	this	SQL:

INSERT INTO users VALUES
(103921, 'joebob', 'Joe Bob', 'https://…');

� Database	must	find	a	block	with	enough	space	to	hold	the	
new	record

� NanoDB’s	solution:
� Starting	with	first	data	block	in	table	file,	search	linearly	until	
a	block	is	found	with	enough	space	to	hold	the	record

� If	we	reach	the	end	of	the	file,	extend	the	file	with	a	new	block	
and	add	the	record	there

� What	is	this	approach	good	at?		What	is	it	bad	at?
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Example:  Inserting Records (2)
� NanoDB approach	is	very slow	for	inserting	records!

� One	benefit:		reuses	free	space	as	much	as	possible
� Could	remember	the	last	block	in	the	file	with	free	
space,	and	start	there	when	adding	new	rows

� Can	also	use	block-level	structures	to	manage	the	file
� Often	focused	on	making	it	much	faster/easier	to	find	
available	space	in	the	file

� Can	also	impact	database	performance	if	the	approach	
causes	many	extra	disk	seeks	and/or	block	reads
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Block-Level Organization
� Introduce	block-level	structure	to	manage	the	file
� Example:		list	of	blocks	that	can	hold	another	tuple

� First	block	in	the	data	file	specifies	start	of	list
� “Pointers”	in	the	linked	list	are	simply	block	numbers

� e.g.	could	use	a	block	number	of	0	to	terminate	the	list

� In	NanoDB,	block	0	is	special:
� It	holds	the	table-file’s	schema,	among	other	things

(schema)

2 4 0 3
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?

Block 5
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List of Non-Full Blocks (1)

� Note	that	pages	will	almost	never	be	completely full
� List	simply	specifies	pages	that	can	hold	another	tuple

� Can	use	the	table’s	schema	to	compute	minimum	and	
maximum	size	of	a	tuple	for	that	table

(schema)
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List of Non-Full Blocks (2)

� When	a	new	row	is	inserted:
� Starting	with	first	block,	search	through	list	of	blocks	
with	free	space,	for	space	to	store	the	new	tuple

� When	space	is	found,	store	the	tuple
� If	the	block	is	now	full,	remove	it	from	the	list

� Now	we	sometimes	modify	two pages	instead	of	one

(schema)
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List of Non-Full Blocks (3)

� When	a	new	row	is	inserted:
� Starting	with	first	block,	search	through	list	of	non-full	blocks	
for	space	to	store	the	new	tuple

� Other	performance	issues?
� Scanning	through	the	list	of	non-full	blocks	will	likely	incur	
many	disk	seeks

� Could	mitigate	this	by	keeping	free	list	in	sorted	order,	but	
this	would	be	more	expensive	to	maintain

(schema)
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List of Non-Full Blocks (4)

� When	a	row	is	deleted:
� If	block	was	previously	full,	need	to	add	it	to	the	non-full	list

� e.g.	if	tuple	was	deleted	from	block	5
� A	simple	solution:		always	add	the	block	to	start	of	the	list

� (Issue:		Non-full	list	will	become	out	of	order)
� Again,	two	blocks	are	written	in	some	situations
� (It’s	likely	that	block	0	will	already	be	in	cache,	though)

(schema)
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Free-Space Bitmap
� Can	also	use	a	free-space	bitmap to	record	blocks	with	
available	space
� 0	=	“block	is	full”
� 1	=	“block	may	have	room	for	another	tuple”

� Achieves	same	benefits	as	a	list	of	non-full	blocks,	but	with	
far	fewer	seeks,	less	space	consumed,	etc.
� Requires	same	operations	as	non-full	list,	but	they	all	operate	
on	the	free-space	bitmap

� Can	become	a	performance	bottleneck	w/concurrent	writes
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