DATA STREAMS AND DATABASES
Static and Dynamic Data Sets

- So far, have discussed relatively static databases
 - Data may change slowly over time...
 - Queries and updates operate against a static data-set
 - Especially true in context of transactions: within each txn, database appears to be unchanged by other txns

- Increasingly common to have data streams generated by various sources
 - An infinite, time-ordered sequence of tuples
 - Tuples have a particular schema, as before
 - One attribute in the tuple schema is a timestamp τ
Data Streams: Examples

- Many different examples of data streams
- Stock market data!
- Example: Volume-Weighted Average Price (VWAP)
 - Value computed over a time-window of stock trades
 - Window is fixed size, contains n stock trades
 - Trade i has price P_i, with Q_i shares changing hands
 - $P_{VWAP} = \sum P_i Q_i \div \sum Q_i$
Data Streams: Examples (2)

- Traffic-flow sensor networks generate data streams
 - Various estimates of traffic-flow characteristics, e.g. time/space mean speed, density, flow

- Seismographic networks generate many data streams!
 - Individual seismometers generate multiple data streams along different axes (vertical, N/S, E/W)
 - Other software consumes seismic data streams, identifies earthquakes, produces other data streams

- Computer network security monitoring systems
- Sensor networks in plants, factories, etc.
Data Streams in Relational Databases?

- How to implement Volume-Weighted Average Price (VWAP) computation with a relational database?
- Need to store the stream of stock prices into a table
 - Each stock price must have a timestamp
 - Example schema:
 - `stock_sales(sale_time, ticker_symbol, num_shares, price_per_share)`
- As new stock sales occur, store them in the table
- Need to eventually remove records from this table when we don’t care anymore
Periodically compute the VWAP against this table

```sql
SELECT ticker_symbol,
       SUM(price_per_share * num_shares) / SUM(num_shares)
FROM stock_sales
WHERE sale_time >= NOW() - INTERVAL 5 MINUTE
GROUP BY ticker_symbol;
```

An index on (sale_time) will help select the rows in the window of interest

Issues?

Performance: we throw away a significant amount of work every time the query is recomputed!
Our query:

```
SELECT ticker_symbol,
       SUM(price_per_share * num_shares) / 
       SUM(num_shares)
FROM stock_sales
WHERE sale_time >= NOW() - INTERVAL 5 MINUTE
GROUP BY ticker_symbol;
```

Can we do this incrementally instead?

Can easily apply same concepts as with materialized views to save and update intermediate state

As rows enter and leave the window of interest, we can update our rolling averages for each stock

Should make it very fast to generate the desired results!
Data Streams and Queries

- What if we want to update the output of our query every time the input data stream changes?
 - e.g. every time more stock values arrive, we update the corresponding VWAP immediately
 - (e.g. could implement this with triggers on stock_sales)

- What if we want to join the data stream against one or more relations?

- What if we want to generate a data stream based on the changes made to a relation?
Data Stream Management Systems

- Over the last few decades, many efforts to build Data Stream Management Systems (DSMS)
 - Like Database Management Systems (DBMS), but able to handle data streams as well as static tables
- Also called Complex Event Processing (CEP) systems
- Several approaches to building these systems...
- A popular approach:
 - Extend the relational model to add stream processing capabilities
 - (i.e. reuse the existing work of relational databases!)
Many major research projects on relation-oriented stream databases:
- Aurora/Borealis (Brown, Brandeis, MIT)
- STREAM (Stanford)
- TelegraphCQ (Berkeley)

Commercial stream databases:
- StreamBase (commercial version of Aurora/Borealis)
- Truviso (commercial version of TelegraphCQ; acquired May 2012 by Cisco)
- TIBCO Business Events, Oracle BAM
Stream Database Implementations

- Some stream databases were built by extending existing relational databases
 - e.g. TelegraphCQ and Truviso are extensions of PostgreSQL that incorporate data streams
 - Existing SQL syntax is extended to handle stream declarations, windowed queries on streams, etc.

- Many others are built from scratch
 - Custom stream-processing engines that are database-agnostic, or that don’t use a relational database
 - Usually have a specific focus, e.g. high-volume data streams, low-latency results, specific kinds of queries, etc.

- Today: focus on relation-oriented stream databases
In a relational database:
- Data is static! (As long as no DML is issued...)
- Issue queries against DB whenever we need results.

In a stream database:
- Stream data changes continually! Thus, results of queries against a stream also change continually.
- Such queries are called **continuous queries**.
- Register continuous queries with the database server.
- As stream data changes, DB can incrementally update and output query results efficiently.
A data stream S is an infinite, time-ordered multiset of tuples, one attribute being a timestamp τ
- τ denotes the logical arrival time of the tuple into the system

A relation R is an unordered multiset of tuples that varies over time
- $R(\tau)$ is the version of the relation at a point in time τ

A continuous query Q is constructed from a tree of operators against streams S_i and relations R_j
Continuous Query Operators

- Relation-to-relation operators take one or two relations and produce a relation
 - Exactly like standard relational algebra, except that relations in stream databases have a notion of time
 - Uses most recent versions of involved relations $R_j(\tau)$
- Relation-to-stream operators take a relation and produce a data stream
 - Typically defined to produce a stream containing changes made to a relation R_i
 - e.g. $\text{ISTREAM}(R)$ produces tuples inserted into R at time τ
 - A stream of tuples $\langle s, \tau \rangle$ where $s \in R(\tau) - R(\tau - 1)$
 - e.g. $\text{RSTREAM}(R)$ produces a stream of all tuples in R at τ
Continuous Query Operators (2)

- Stream-to-relation operators take a data stream S and produce a relation R
 - Most continuous queries only care about the recent tuples in a data stream...
 - Define a sliding window on a stream that ends at time τ
- Tuple-based sliding windows contain the N most recent tuples from the data stream S
- Time-based sliding windows contain tuples from S that fall in a range of timestamps
 - $R(\tau)$ contains all tuples from S with timestamp in $[\tau - \omega, \tau]$
 - Also provide support for “now” tuples, where $\omega = 0$
Continuous Queries

- When a continuous query is added to the database, a plan is constructed from these operators.

- Example: compute volume-weighted average stock prices from stream of stock sales.
 - Convert stock-sale data stream into a relation using a time-based sliding-window operator over last 5 minutes of data.
 - Compute a relation containing aggregates using standard grouping/aggregation operations.
 - Convert entire relation into another stream containing results.

- Problem: as stated, this is still expensive.
 - Every time, results are computed entirely from scratch!
Continuous Queries (2)

- A continuous query operator can maintain a synopsis of its most recent results
 - A relation containing the rows used to generate results for most recent time τ
 - When rows enter or exit the sliding window, synopsis can be incrementally updated very efficiently

- Example:
Continuous Queries (3)

- Can construct very complex queries, even with these [relatively] simple operators
- Example: windowed join of two data streams
 - Shared synopses across different nodes
Some continuous query languages (CQL) are extensions of SQL
- Particularly in implementations built on relational DBs
- Include ability to create and remove streams
 - `CREATE STREAM stock_sales (sale_time TIMESTAMP, ticker_symbol VARCHAR(10), num_shares INTEGER, price_per_share NUMERIC(7, 2));`
 - `DROP STREAM stock_sales;`
- (Actual stream data usually arrives over network and must be in a specific format for the database to use it)
Continuous Query Languages (2)

- Need a way to indicate what column is timestamp τ
- Example: Truviso syntax:
  ```
  CREATE STREAM stock_sales ( 
    sale_time TIMESTAMP CQTIME USER GENERATED, 
    ticker_symbol VARCHAR(10), 
    num_shares INTEGER, 
    price_per_share NUMERIC(7, 2) 
  );
  ```
- Can also have system-generated timestamps
- Other stream databases use similar mechanisms, e.g. TelegraphCQ has `TIMESTAMPCOLUMN` modifier
Continuous Query Languages (3)

- Can also specify if a stream is archived or not
 - An archived stream can be queried for historical data; an unarchived stream cannot.
 - Most CQLs have `TYPE [ARCHIVED | UNARCHIVED]`
- To preserve historical data:
 - `CREATE STREAM stock_sales (sale_time TIMESTAMP CQTIME USER GENERATED, ticker_symbol VARCHAR(10), num_shares INTEGER, price_per_share NUMERIC(7, 2)) TYPE ARCHIVED;`
Continuous Queries

- Can issue queries against both relations and streams
- If a stream is involved, need to specify the window!
- Stanford STREAM CQL annotates streams within the query:
  ```sql
  SELECT ticker_symbol,
          SUM(num_shares * price_per_share) / SUM(num_shares)
  FROM stock_sales [RANGE 5 MINUTES]
  GROUP BY ticker_symbol;
  ```
- Truviso has a similar annotation:
  ```sql
  SELECT ticker_symbol,
          SUM(num_shares * price_per_share) / SUM(num_shares)
  FROM stock_sales < VISIBLE '5 MINUTES' >
  GROUP BY ticker_symbol;
  ```
TelegraphCQ has a separate window specification:

```
SELECT ticker_symbol,
       SUM(num_shares * price_per_share) / SUM(num_shares)
FROM stock_sales
GROUP BY ticker_symbol
WINDOW stock_sales ['5 MINUTES'];
```
Derived Streams

- Continuous queries run once and produce their results, just like standard queries
- Can create derived streams from continuous queries
 - Query is persistent, and produces a data stream of results
 - Results in output data stream have timestamps, as expected
- Truviso syntax:
 - CREATE STREAM vol_weighted_avg_price AS
 (SELECT ticker_symbol,
 SUM(num_shares * price_per_share) / SUM(num_shares)
 FROM stock_sales < VISIBLE '5 MINUTES'
 ADVANCE '5 SECONDS' >
 GROUP BY ticker_symbol);
 - ADVANCE keyword specifies how often to generate results
Stream-Processing Challenges

- Many challenges in implementing stream databases
- Frequently, data streams are bursty and can have very high volumes
 - Peak message rate $>>$ average message rate
 - Latency between input data and results skyrockets
- Most common approach: **load-shedding**
 - Simply drop some of the input tuples out of the stream!
 - Stream DBs use statistics gathered about stream data to drop/summarize tuples to maximize accuracy of results
 - May involve dropping tuples from multiple sources in a query to ensure accuracy is maximized
Other databases use windowed/aggregate operators to achieve a similar result:

- Use windowed aggregate operations to generate multiple granularities of a given data stream
- Different granularities will produce different volumes of tuples...

As system load varies, can react very easily by changing the granularity of data being used

- Choose the finest granularity of input data that the current system load will allow
Stream-Processing Challenges (3)

- Tuples in a stream don’t always arrive in order!
 - A tuple’s timestamp can be set by database when the tuple arrives, or it can be an externally specified field
 - e.g. stock-sale records might already include timestamp

- Generally a characteristic of a specific stream…
 - Can specify a stream’s slack: the maximum “out-of-order”-ness that will be allowed
 - Tuples that arrive later than the specified slack are ignored!
Stream-Processing Challenges (4)

- Truviso example:
  ```sql
  CREATE STREAM stock_sales (
    sale_time TIMESTAMP WITH CQTIME
      USER GENERATED SLACK '1 MINUTE',
    ticker_symbol VARCHAR(10),
    num_shares INTEGER,
    price_per_share NUMERIC(7, 2)
  );
  ```

- Problem: if tuples can arrive out of order, a query may have already generated invalid results...
 - Could simply delay outputting results by the specified amount of slack. Then we know results won’t change...
Another approach: output revisions to answers!

Some input data streams can also include revisions to previous records
- (commercial stock ticker feeds, for example)
- e.g. correct invalid values, add extra rows, remove rows

A few stream databases (e.g. Borealis) can handle revisions on data streams

If all tuples affected by revision are still in memory:
- Recompute affected results incrementally, using old and new versions of dataset for the affected timestamp(s)
- Only output new records that actually changed
- (Revised outputs may force other revisions to be made…)

Stream-Processing Challenges (6)

- If tuples affected by revision no longer in memory:
 - Must scan and replay archived data-stream tuples to find all relevant tuples

- Also likely that query nodes’ synopses will no longer contain data for the affected timestamps 😞
 - Must recomputed all work from scratch; can’t use incremental updates

- As before, only issue revised output records for results that actually change

- If revisions are far enough in past, may cause many results to be recomputed and revised 😞
Possible to use relational databases to continuously process data streams, but not very efficient!

Relation-oriented data stream management systems (DSMS) blend together standard relational model databases with stream-processing capabilities

Very powerful solution for problems involving data stream processing!
References

- **STREAM: The Stanford Data Stream Management System [Arasu et al]**
 - Introduction to how the relational model is extended to include data stream processing

- **Models and Issues in Data Stream Systems [Babcock et al]**
 - Discussion of data models and query languages used in relational data stream management systems

- **The 8 Requirements of Real-Time Stream Processing [Stonebraker, Çetintemel, Zdonik]**
 - A good summary of the major requirements of DSMSes

- **Revision Processing in a Stream Processing Engine [Ryvkina, Maskey, Cherniack, Zdonik]**
 - Description of Borealis revision processing
References (2)

- Processing Flows of Information: From Data Stream to Complex Event Processing [Cugola, Margara]
 - Excellent survey of many different data stream engines!

- Stanford STREAM research project:
 - http://infolab.stanford.edu/stream/

- Aurora and Borealis research projects:
 - http://www.cs.brown.edu/research/aurora/
 - http://www.cs.brown.edu/research/borealis/

- TelegraphCQ research project:
 - http://telegraph.cs.berkeley.edu/