ALTERNATE SCHEMA
DIAGRAMMING METHODS
DECISION SUPPORT SYSTEMS

CS121: Introduction to Relational Database Systems
Fall 2016 – Lecture 22
E-R Diagramming

- E-R diagramming techniques used in book are similar to ones used in industry
 - Still, plenty of variation on how schemas are diagrammed
- Some books use a different diagramming technique
 - Attributes are represented as ovals attached to entity-set
 - Much harder to lay out!
 - Takes up a lot of room
- These methods don’t include types or other constraints
Unified Modeling Language

- A standardized set of diagrams for specifying software systems
- Focuses on three major areas:
 - Functional requirements:
 - What is the system supposed to do?
 - Who may interact with the system, and what can they do?
 - Static structure:
 - What subsystems comprise the system?
 - What classes are needed, and what do they do?
 - Dynamic behavior:
 - What steps are taken to perform a given operation?
 - What is the flow of control through a system, and where are the decision points?
UML Class Diagrams

- UML class diagrams are typically used to diagram database schemas
 - Classes are similar to schemas
 - Objects are similar to tuples
- Two kinds of class diagrams for data modeling:
 - Logical data models (which are also called “E-R diagrams”)
 - Conceptual schema specification
 - Diagramming entity-sets and relationships, along the lines of the traditional E-R model, but not exactly like it
 - Physical data models
 - Implementation schema specification
 - Diagramming tables and foreign-key references
 - From a SQL perspective, is actually logical and view levels
Entity-sets and tables are represented as boxes
- First line is entity-set name
- Subsequent lines are attributes
- First group of attributes usually the entity-set’s primary key
 - Bolded, or marked with a *, +, or #

Table diagrams often also include type details

<table>
<thead>
<tr>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>latitude</td>
</tr>
<tr>
<td>longitude</td>
</tr>
<tr>
<td>description</td>
</tr>
<tr>
<td>last_visited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>latitude</td>
</tr>
<tr>
<td>longitude</td>
</tr>
<tr>
<td>description</td>
</tr>
<tr>
<td>last_visited</td>
</tr>
</tbody>
</table>
Relationships are represented with a simple line
- No diamond for the relationship
- Relationship’s name or role can be specified on line

When modeling entity-sets (logical data model):
- Don’t include foreign-key columns
- Foreign-key columns are implied by the relationship itself

When modeling tables (physical data model):
- Related tables actually include the foreign-key columns
- Some relationships are modeled as separate tables
 - e.g. many-to-many relationships require a separate table
UML Relationship Examples

- Logical data model:

 customer

 | cust_id |
 | cust_name|
 | street |
 | city |

 loan

 | loan_id |
 | branch_name|
 | amount |

 borrower

- Physical data model:

 (would normally include type information too)

 customer

 | cust_id |
 | cust_name|
 | street |
 | city |

 borrower

 | cust_id |
 | loan_id |

 loan

 | loan_id |
 | branch_name|
 | amount |
Annotating Keys

- Sometimes keys are indicated with two-character annotations:
 - PK = primary key
 - FK = foreign key

- Candidate keys are specified with:
 - AK = alternate key
 - SK = surrogate key
 - (No difference between the two terms…)

<table>
<thead>
<tr>
<th>customer</th>
<th>borrower</th>
<th>loan</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>PK, FK1</td>
<td>PK</td>
</tr>
<tr>
<td>cust_id</td>
<td>cust_id</td>
<td>loan_id</td>
</tr>
<tr>
<td>cust_name</td>
<td>FK1</td>
<td></td>
</tr>
<tr>
<td>street</td>
<td>FK2</td>
<td></td>
</tr>
<tr>
<td>city</td>
<td></td>
<td>branch_name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>amount</td>
</tr>
</tbody>
</table>
Mapping Cardinalities

- Can specify numeric mapping constraints on relationships, just as in E-R diagrams
 - Can specify a single number for an exact quantity
 - lower..upper for lower and upper bounds
 - Use * for “many”

Example:
- Each customer is associated with zero or more loans
- Each loan is associated with one or more customers
Information Engineering Notation

- Can also use Information Engineering Notation to indicate mapping cardinalities
 - Also called “crow’s foot notation”

- Symbols:
 - Circle means “zero”
 - Line means “one”
 - Crow’s foot means “many”

- Can combine symbols together
 - circle + line = “zero or one”
 - line + line = “exactly one”
 - line + crow’s foot = “one or more”
Barker’s Notation

- A variant of Information Engineering Notation

- Symbols:
 - A solid line means “exactly one”
 - A dotted line means “zero or one”
 - Crow’s foot + solid line means “one or more”
 - Crow’s foot + dotted line means “zero or more”

- IE Notation:

- Barker’s Notation:
Examples

- **Information Engineering notation:**

 ![Diagram](customer_loan_information.png)

- **Barker’s notation:**

 ![Diagram](customer_loan_barker.png)
Generalization and Specialization

- Can represent generalization in UML class diagrams
 - Open arrow, pointing from child to parent
- Can specify “disjoint” for disjoint specialization

```
+-----------------+   disjoint   +-----------------+
| account         |               | account_no      |
|                 |               | branch_name     |
|                 |               | balance         |
|                 +-----------------+-----------------+
| checking        |               | savings         |
| overdraft_limit |               | interest_rate   |
```
Very good idea to learn UML diagramming!
- Used extensively in the software industry
- You can create visual diagrams of software, and other people will actually understand you! 😊

Significant variation in details of how data models are diagrammed
- Data modeling is still not yet a standard part of UML specification
- Good to be familiar with all major techniques
OLTP and OLAP Databases

- **OLTP**: Online Transaction Processing
 - Focused on many short transactions, involving a small number of details
 - Database schemas are normalized to minimize redundancy
 - Most database applications are OLTP systems

- **OLAP**: Online Analytic Processing
 - Focused on analyzing patterns and trends in very large amounts of data
 - Database schemas are denormalized to facilitate better processing performance
Decision Support Systems

- Decision Support Systems (DSS) facilitate analyzing trends in large amounts of data
 - DSS don’t actually identify the trends themselves
 - Are a tool for analysts familiar with what the data means
 - Analyze collected data to measure effectiveness of current strategies, and to predict future trends
 - Increasingly common for analysts to use data mining on a system to identify patterns and trends, too

- Decision support systems must provide:
 - Specific kinds of summary data generated from the raw input data
 - Ability to break down summary data along different dimensions, e.g. time interval, location, product, etc.
Decision Support Systems (2)

- OLAP databases are frequently part of decision support systems
 - Called data warehouses
 - Capable of storing, summarizing, and reporting on huge amounts of data

- Example data-sets presented via DSS:
 - Logs from web servers or streaming media servers
 - Sales records for a large retailer
 - Banner ad impressions and click-throughs
 - Very large data sets (frequently into petabyte range)

- Need to:
 - Generate summary information from these records
 - Facilitate queries against the summarized data
Example: sales records for a large retailer
- Customer ID, time of sale, sale location
- Product name, category, brand, quantity
- Sale price, discounts or coupons applied

Billions/trillions of sales records to process
- Summary results may also include millions/billions of rows!

Could fully normalize the database schema...
- Information being analyzed and reported on would be spread through multiple tables
- Analysis/reporting queries would require many joins
- Often imposes a heavy performance penalty

This approach is prohibitive for such systems!
Example Data Warehouses

- Starbucks figures from 2007:
 - 5TB data warehouse, growing by 2-3TB/year

- Wal-Mart figures from 2006:
 - 4PB data warehouse

- eBay figures from 2009:
 - Two data warehouses
 - Data warehouse 1: Teradata system
 - >2PB of user data
 - Data warehouse 2: Greenplum system
 - 6.5PB of user data
 - 17 trillion records – 150 billion new records each day
 - >50TB added each day
Measures and Dimensions

- Analysis queries often have two parts:
 - A measure being computed:
 - “What are the total sales figures…”
 - “How many customers made a purchase…”
 - “What are the most popular products…”
 - A dimension to compute the result over:
 - “…per month over the last year?”
 - “…at each sales location?”
 - “…per brand that we carry?”
Star Schemas

- Decision support systems often use a star schema to represent data
 - A very denormalized representation of data that is well suited to large-scale analytic processing
- One or more fact tables
 - Contain actual measures being analyzed and reported on
- Multiple dimension tables
 - Provide different ways to “slice” the data in the fact tables
- Fact tables have foreign-key references to the dimension tables
Example Star Schema

- **Sales data-warehouse for a large retailer:**

 - **Fact table is center of star**
 - Dimension tables are referenced by the fact table
This approach is called **dimensional analysis**

Good example of denormalizing a schema to improve performance

- Using a fully normalized schema will produce confusing and horrendously slow queries

Decompose schema into a fact table and several dimension tables

- Queries become very simple to write, or to generate
- Database can execute these queries very quickly
Dimension Tables

- Dimension tables are used to select out specific rows from the fact table
 - Dimension tables should contain only attributes that we want to summarize over
 - Dimension tables can easily have many attributes
- Dimension tables are usually very denormalized
 - Specific values are repeated in many different rows
 - Only in 1NF
- Example: sale_dates dimension table
 - Year, quarter, month, day, and hour are stored as separate columns
 - Each row also has a unique ID column

<table>
<thead>
<tr>
<th>date_id</th>
<th>date_value</th>
<th>year</th>
<th>quarter</th>
<th>month</th>
<th>mday</th>
<th>hour</th>
</tr>
</thead>
</table>
...
Dimension Tables (2)

- Dimension tables tend to be relatively small
 - At least, compared to the fact table!
 - Can be as small as a few dozen rows
 - All the way up to tens of thousands of rows, or more
 - Sometimes see dimension tables in 100Ks to millions of rows for very large data warehouses

- Sometimes need to normalize dimension tables
 - Eliminate redundancy to reduce size of dimension table
 - Increases complexity of query formulation and processing
 - Yields a snowflake schema
 - Star schemas strongly preferred over snowflake schemas, unless absolutely unavoidable!
Could normalize product and store details

- Can represent more details
- Queries become much more complex

<table>
<thead>
<tr>
<th>sale_dates</th>
<th>sales_data</th>
<th>products</th>
<th>brands</th>
<th>categories</th>
<th>store_regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>date_id</td>
<td>date_id</td>
<td>product_id</td>
<td>brand_id</td>
<td>category_id</td>
<td>region_id</td>
</tr>
<tr>
<td>date_value</td>
<td>product_id</td>
<td>brand_name</td>
<td>category_name</td>
<td>prod_name</td>
<td>city</td>
</tr>
<tr>
<td>year</td>
<td>prod_desc</td>
<td>prod_desc</td>
<td>prod_desc</td>
<td>prod_desc</td>
<td>state</td>
</tr>
<tr>
<td>quarter</td>
<td>price</td>
<td>price</td>
<td>price</td>
<td>price</td>
<td>zipcode</td>
</tr>
<tr>
<td>month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inventory_sold</td>
<td>inventory_sold</td>
<td>inventory_sold</td>
<td>inventory_sold</td>
<td>inventory_sold</td>
</tr>
<tr>
<td></td>
<td>total_revenue</td>
<td>total_revenue</td>
<td>total_revenue</td>
<td>total_revenue</td>
<td>total_revenue</td>
</tr>
</tbody>
</table>
Fact Tables

- Fact tables store aggregated values for the smallest required granularity of each dimension
 - Time dimension frequently drives this granularity
 - e.g. “daily measures” or “hourly measures”

- Fact tables tend to have fewer columns
 - Only contains the actual facts to be analyzed
 - Dimensional data is pushed into dimension tables
 - Each fact refers to its associated dimension values using foreign keys
 - All foreign keys in the fact table form its primary key

- Fact table contains the most rows, by far.
 - Well upwards of millions of rows (billions/trillions common)
Fact Tables (2)

- Not uncommon to have multiple fact tables in a data warehouse
 - Facts relating to different aspects of the enterprise, where it doesn’t make sense to store in same table
 - Facts for a single aspect of the enterprise, but partitioned in different ways
 - Used in situations where combining into a single fact table would result in a huge, sparse fact table that is very slow to query

- Multiple fact tables frequently share dimension tables
 - e.g. date and/or time dimensions
 - May also have separate dimension tables only used by a particular fact-table
Analytic Queries

- Using a star schema, analytic queries follow a simple pattern
 - Query groups and filters rows from the fact table, using values in the dimension tables
 - Query performs simple aggregation of values contained within selected rows from fact table
- Queries contain only a few simple joins
 - Because dimension tables are (usually) small, joins can be performed very quickly
 - Fact table’s primary key includes foreign keys to dimensions, so specific fact records can be located very quickly
Analytic Queries (2)

- Because only the fact tables are large, databases can provide optimized access.

- Example: partitioned tables
 - Many databases can partition tables based on one or more attributes.
 - Queries against the partitioned table are analyzed for which partitions are actually relevant to the query.

- DSS schema design can partition the fact table to dramatically improve performance.

<table>
<thead>
<tr>
<th>sales_data</th>
<th>sales_data</th>
</tr>
</thead>
<tbody>
<tr>
<td>all sales data from 2004 through 2008</td>
<td>2004 sales data</td>
</tr>
<tr>
<td></td>
<td>2005 sales data</td>
</tr>
<tr>
<td></td>
<td>2006 sales data</td>
</tr>
<tr>
<td></td>
<td>2007 sales data</td>
</tr>
<tr>
<td></td>
<td>2008 sales data</td>
</tr>
</tbody>
</table>
Slowly-Changing Dimensions

- Frequently, data in dimension tables changes over time
 - e.g. a “user” dimension, where some user details change over time
 - e-mail address, rank/trust level within a community, last login time

- How do we represent slowly changing dimensions?

- Type 1 Slowly Changing Dimensions:
 - When a dimension value changes, overwrite the old values
 - Warehouse only maintains one row for each dimension value
 - Doesn’t track any history of changes to dimension records
 - Can’t analyze facts with respect to the change history!
 - e.g. “How do user behaviors change, with respect to how quickly their rank/trust level changes within their community?”
Type 2 Slowly Changing Dimensions:

- Used to track change-history within a dimension
- Rows in the dimension table are given additional attributes:
 - `start_date, end_date` — specifies the date/time interval when the values in this dimension record are valid
 - `version` — a count (e.g. starting from 0 or 1) indicating which version of the dimension record this row represents
 - `is_most_recent` — a flag indicating whether this is the most recent version of the dimension record

Updating a dimension record is more complicated:

- Find current version of the dimension record (if there is one)
- Set the `end_date` to “now” to indicate the old row is finished
- Create a new dimension record with a `start_date` of “now”
 - Fill in new dimension values; update `version, is_most_recent` values too
Good and Bad Measures

- Not all measures are suitable for star schemas!
- Fact table contains partially aggregated results
 - Analysis queries must complete aggregation, based on desired dimension and grouping aspects of query
- Example measures to track:
 - Quantities of each product sold
 - Easy to aggregate – just sum it up
 - Average per-customer sales totals
 - Fact table needs to store both the number of sales, and the total sale price, so that query can compute the average
 - Distinct customers over a particular time interval
 - Would need to store a list of actual customer IDs for each reporting interval! Much more complex.
Homework 7

- Includes a very simple data-warehouse exercise:
 - A simple OLAP database for analyzing web logs
 - Two months of access logs from NASA web server at Kennedy Space Center in Florida, from 1995
 - 3.6 million records, about 300MB storage size
 - Huge compared to what we have worked with so far!
 - Microscopic compared to most OLAP databases 😊
 - Create an OLAP database schema
 - Star schema diagram will be provided
 - Populate the schema from raw log data
 - Write some OLAP queries to do some simple analysis
- Please start this assignment early!
 - 70 students vs. 1 DB server… it could get messy… 😊